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CONVERGENCE OF EMPIRICAL PROCESSES OF
MIXING rv’s ON [0, 1]

By C. S. WITHERS
Applied Mathematics Division, D.S.I.R., Wellington

Conditions are given for the weak convergence of weighted empirical
cumulative processes of three types of mixing random variables (rv’s) on
[0, 1].

1. Introduction. In this section we define three types of mixing conditions
and derive a basic lemma concerning them. Section 2 gives a central limit
theorem for sums of uniformly bounded strongly-mixing rv’s with some examples.
Section 3 applies Section 1 and Section 2 to obtain the main results—the con-
vergence of empirical processes to Gaussian processes. This work generalises
a theorem of Koul [4] for independent rv’s.

Let {X,,,i= 1,2, ..., ny} be a sequence of rv’s defined on some probability
space, N=1,2.... For1 <a < b < nylet MY, be the g-algebra generated
by X,y, - - +» Xyy. Let ¢y, ¢y, @y be functions on {0, 1, - - -, ny — 1} such that
¢du(0) = oo, $y(0) = ay(0) = 1. Suppose that for 1 S k <k +-i=<ny, A€
MY, Be M},

Q) |P(AB) — P(A)P(B)| = ¢x()P(A)P(B)
then we call {X,,} ¢y-mixing. If we replace (1) by

2) |P(4B) — P(A)P(B)| = ¢x()P(4)
or

A3) |P(4B) — P(A)P(B)| = ay(i)

we call {X,,} ¢y-mixing or ay-mixing respectively.

This extension of the usual notions (e.g. see Phillip [5], [6] for ¢y(i) = ¢(iry),
dx(i) = d(iry), ay(i) = a(i)) allows us to obtain C.L.T. results even when
¢dn(1) > oo or 3, ay(i) — oo as N — oo.

LEMMA 1. Suppose 1 < k <k + i< ny. Let X,Y be real rv’s measurable
MY, and MY, ., respectively. Then each of the following is an upper bound (when
finite) for |[EXY — EXEY], for {X,y} &y-mixing, (¢-mixing, a-mixing respectively).

@) ¢y()EIXIEIY|

(b) 2¢, 7 (DEV?|X|PEV|Y |4, for p=t 4 g7 =1, 1 <p < o0
(©) 204(i)C,E|X|, for |Y| < C,

(d) 4a,(i)C,C,, for |X| < Cp, |Y| £ G,
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1102 C. S. WITHERS

(e) 10ay(i)-¥?C,2-Y»EY?|X|?, for |Y| < Cp, 1 < p < oo

(f) kay(i)*=v?=Vi, for1 < p< 00,1 < ¢ < oo,
where k = K(E|\X|?, E|Y|?) and K(x, y) = 8((x + y + xtyb)j2)e+i/s,

Proor. For (a) to (d) see Lemmas 1, 2 of Phillip [5] and page 171 of Billingsley
[1]. (f) is proved by an easy generalisation of Lemma 1.3 of Ibragimov [3],
who gives K(x,y) =4 + 2(x + y + xiyt) for p = ¢q. An alternative value,
K(x, y) = 10x¥ryYe, is given by Lemma 1 of Deo [2], and thus implies (e).
(These authors all consider the stationary case).

2. AC.L.T. for uniformly bounded rv’s.

THEOREM 1. Let {X,} be real rv’s satisfying (3). Suppose EX,, = 0, |X;;| <
C<L oo, 1 i ny, and t,* = E(33%_, X;4)% N =1, where n = ny — oo as
N —oo. Let k =ky, p=py, q = qy be sequences of positive integers such that
k(p + q) < n, and

4) 17k T ay(jp) — 0

) tykq 387 ay(j) — 0

(6) ty7*q(p + q) 2t ay(jp) — 0

() ty™ n — k(p + ) Zi7* 0 ay(j) — 0

kay(q) — 0, ty~*k{p 287 jlan(j) + P X5 an(j))?} — 0, as N — co. Then
(8) tyt I X,y — . N(O, 1) .

Proor. This follows from the proof of Theorem 1.6 of Ibragimov, [2]: define
Sy analogously to S,” on line 4, page 359. Equations (4) and (5) deal with
the cases i =+ j, i = j respectively for the first term on the R.H.S. of line 4.
Equations (6) and (7) ensure that the second and third terms on the R.H.S. of
line 4 tend to zero. Hence ES,”* — 0.

Finally, in place of E|};? x,|* £ MC*p’/1np we have used

E|ZH] Xilt < 414C3p 1371 (0 + Diay(i) + 4p(Z8 " an(i)))
(cf. Lemma 4, page 172 of [1].)

CoroLLARY 1. Let {X,,} be real uniformly bounded rv’s with mean zero satisfy-
ing (3). Suppose E(37 X;y)/n — T < oo and
(9) h=ny— o0 as N—>oo.
Then any of the following sets of conditions are sufficient to ensure that
n~t 3 X,y — .. NO, T).

(a) max, <, ay(i) = o(n7?)

(b) max,,, i logiay(i) = o(et/log}e), where e = log n,.

(€) X lay(i) < k < oo and ny'~Cay([nyt]) » 0, where0 < 2b<a<1—b,

n = Hy.
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(d) max,,, fay(i) = o(n).

(e) Xiti*ay(i) = o(ny?), and maxp-! ay(i) £ K < oo.
(f) Xiitay() < Kjr, 1 < j < ny, where r < 3

(8) L1 Pay(i) < Kn"and 717" ay(i) < Knd,

where either 0 < d < {,, r < 4 —2dord; <d< #,r< 3§ —4d.

12 =

Proor. If 7= 0 conditions (a)—(g) are redundant. If T > 0 this is just a
matter of checking the conditions of Theorem 1 with k = [n/(p + ¢)], and p =
[7*], ¢ = [n*] where

(@ a=} b=}
da=30b=4%

(€ a=4b=1%

(f) a=3,6b=(4+e)(1 + ¢) where ¢ = 3/r — 2

(8) a=1—¢—2d, b =min (2,3 — d) where ¢ > 0 is small.

For (b), use p=[nt.et.logle], g =[nt.et.logte], and in (e)—(g)
apply inequalities such as TThay(l) < K, K an integer = Y7 ifay(i) <
K ZZ—K+1 i’ = O(P)'

For (f) one uses Xt ay(jp) < sup Tk f; = T4 Kj-pr~(j" — (j — 1)), where
the sup is taken over {37 %8, < Kj"p™% 8, 2 0,j =1, - - -, k}.

Note. Of course there is no loss in assuming K = 1 in (e). By (b), M in
Theorem 1.6 of [2] can be improved to o(e?/In e)* where e = In n.

As an example we show that Theorem 3.2 of Serfling [8] holds with the
assumption of strict stationarity removed provided that A4* given by (3.8) of [8]
is well defined. This follows from

COROLLARY 2. Suppose for j=1,2,{X,i=1, -, n'9} are ay-mixing
sequences of real tv’s with ay = a,'?, n'¥) = n,'9 and n‘“/n‘z’ —-C<o0as N—
co. Suppose that the two sequences are independent, that for each i, X3, has con-
tinuous cdf F ‘9, that

i ey S K < oo,
and ay'? satisfies one of the sets of conditions (a)—(e) of Corollary 1, j = 1, 2.
Let Uy be the two-sample Wilcoxon statistic
Uy = (nn)7 £18 555 s(XG — X&)
where s(u) = —1, 0, 1 accordingasu < 0, = 0, >0. Letyy, =2 F,"VdF,®» —
1. Then
nY(Uy — ry) — . N(O, 4V)
where
V =limy_,n®=*Var 72% x, + Clim,_, n®~Var 32? y,,
Xy = FN(2)(X;2) >
Yi = FN(I)(X?I]\)’)
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provided V exists. Further, if {x;}, {y,} do not depend on N and for all i,
Cov (x;, x;4;) = Cov (x5, X;4;)
Cov (yir yirs) = COV (y1; yris)
then V exists and equals
Var x; 4 2 377 Cov (x;, x,;) + C(Vary, + 2 357 Cov (1, Y144)) -

Proor. This is immediate on examining that of Theorem 3.2; the requirement
C +0is unnecessary.

3. Empirical processes. Theorems 2, 3, 4, 5, respectively, concern inde-
pendent, a,-dependent, ¢,-dependent, and ¢,-dependent samples. For definition
of C, (D, &) see [1].

Let (Ciys -« +5 C,,x) be constants and let

oyt =ny 7t YN Cly
Suppose {X,} have cdfs {F;,} on [0, 1], and ny — co as N — co. Let
CiN i

Oy

qu(t) = nN_1 Z:l:ivl Fuv(t) s 01,

and Ly(f) = oy 'ny =t 3108 Coy(I( X,y £ 1) — Fi(2)). Letr, {t;} be numbers de-
pending on ¢ > 0 such that
(10) O=t<t .- <t, =1,

L—t ., 20,i=2,...,r—1.

THEOREM 2. (Koul, Theorem 2.2 of [2]). Suppose for N = 1{X,,} are independent
for N =1,

(1) max;%; Ciy/(nyoy’) — 0,

(12) EL\(s)Ly(t) — K(s, 1), 05,11, as N— oo,
and

(13) lim supy ... SUPy<i<1-5 (Iyalt + 0) — Gua(?)) — 0 as 0 —0.
Then

(14) Ly—_,L ‘in (D,2)

where L is a zero-mean Gaussian process such that P(Le C[0,1]) =1 and
EL(s)L(f) = K(s, t).

Note 1. Koul gives (incorrectly) #, — ¢,_; < d in (10).

Koul required F,, continuous (which is not necessary from his proof), ny = N
and replaced (13) by the stronger condition

lim supy_., max,g;cy Max,g;<, (Fiy(f;) — Fix(t;-)) — 0 as ¢ >0,
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which is equivalent to

(15) lim sup,, ., max,,, sup, (F;y(t + 9) — Fyy(t)) — 0 as 0 —0.
(For example if C,, = 1, and
FiN(t) =1 t=1

=(1 —ky)t, 0<t<1,

where ny~! 317 kiy — 0, 0 < k;y < 1, but max,g;.y kg — 0 then (13) holds
but not this stronger condition.)

Notke 2. If (16) holds (13) is equivalent to (13) with g, replacing g,, for any
g > 0. The latter holds if g, (f) — g(r), 0 < ¢ < 1, where g is continuous.

THEOREM 3. Suppose for N > 1 {X,,} are ay-mixing, (12), (13),
(16) max,;., |Ciy| < kooy where k, < oo,

for some b in (}, 1) and some d < (1 + b)/2

17 Y (G 4+ D0ay(j)t £ kyn?, N=1 where k, <
(18) lay() < ks, N =1 where k, < oo,
and

(19) 9x1 IS a continuous, strictly increasing function, N=1.

Then (14) holds.

Nortk 3. (19) can be removed if (13) is strengthened to sup, |H,(r) — g(¢)] —
0 as N — oo where H, = g,, or n* 37 F,,, and g € C.

Since our draft report [10], Deo [2] has published a special case of Theorem
3, ViZaN = a, CiN = 1>Fi1v :F,d:O.

Proor. For convenience we suppress N. Using d = 0 in Corollary 1(g), we
conclude that the finite-dimensional distributions of L, converge to these of L.
(One can also prove this under stronger conditions by adapting Theorem 19.4
of [1], based on Rosen [7]). By Theorems 15.1, 15.5 of [1] it suffices to prove
(19.51) of [1] for L,. By Note 2 with g = 1 this is so if (19.51) holds for L, =
Ly(9,7"). For0<s<t< 1 set

A; = Fi(9:7(1) — Fi(9,7'(5))

Z,=Is<g(X)<n—A,1<i<n.

IA
IA

By Lemma l(e) with i, < i, =i, + i< i, =i, +j< i, =i, + k,
(20) |EZ; --- Z,|[10A}
< min {a(i)'~*, a(k)'™, a(j)'=* + 10a(i)~*a(k)'="A}} .
Therefore
E|L,(t) — Ly(s)|* < 10.4! (hkg® - 3kyn®=* 4 10k %k, h?)
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where h = k,""%(t — s)*. Let g = min (2b, b + 2 — 2d), and
R, = 10.4! (3klky(2¢71)*~ 4 10k k ko'~ .

If

(21) ent K 2(t — )

then

22) EILy(t) — Ly(s)|* < Ryt — 5.

Therefore (21) = (22) with L, replaced by Ly, = Ly(¢,7"),i = 1,2 where
Lyy(t) = 0,707 Yo 20 ClI(X; < 1) — Fy(t)), and Lyy(f) = Ly(r) — Lyy(f). Hence
by Theorem 12.2 of [1], form =1, 2, - ..

PM,; = ¢) < K, 0°
where K, = R, - K} , - ¢*and

M,,; = maxzt, |Ly,(s + is/m) — Ly;(s)] j=12
whenever

(23) en~t < 26/m .
Fors<t<s+ p,
24 ILy(t) — Ly = [Lw(s + p) — Lya(9)]
+ 1Lwa(s + ) — Lwa(9)] + n4(9u(s + p) — 0:(9)) -

Hence if ¥y = sup,<,<,+s |Ly(f) — Ly(s)| then ¥V, < 3M,,, + 3M,,;, 4 ntd/m (c.f.
(22.17), (22.18) of [1].) Hence if (23) holds and n*j < em then

(25) P(Vy = Te) < 2K,07.

Choosing m satisfying r—* < men~t < 2r~' where r = [6]~', and using Corollary
8.3 of [1] with 7, = i/r, (19.51) for L, now follows.

THEOREM 4. If for some d < 1 the conditions of Theorem 3 hold with “a -
mixing” replaced by “¢,-mixing” and ay(j)*~" is replaced by ¢(j) in (17) and (18),
then (14) holds.

Proor. Instead of (20) one uses
|EZ,, - -+ |/(44,) < min {¢(i), $(k), $()) + 46()$(k)A,} .

COROLLARY 3. The condition )3 i*¢(i) < oo of Theorems 22.1, 22.2 of [1]
can be weakened to

Sir (i) = O(n?) for some d < 1.
(This improves Sen [8] who showed that }; i¢(i)} < oo was sufficient.)

THEOREM 5. Suppose for N = 1 {X,,} are ¢-mixing. Suppose for N = 1 (12),
(13), (16) and
i) Sk, <o for Nz1.
Then (14) holds.
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Proor. Here we avoid assuming (19) by proving for s <t < u

E|Ly(t) — Ly@)PILx(1) — Ly()]* = k(gm(#) — 9:(9))* Nzl
where k < co. This is done by breaking the L.H.S. into 29 separate sums and
applying Lemma 1(a). The proof now proceeds as for Theorem 2.

NotE 4. With obvious changes (e.g. replacing > 7~! by {; di) the results in
this paper apply to processes {X;y, 1 < i < ny} where i, N, n vary continuously.

ExaMpLE 1. Let F, be a cdf on [0, 1], and ¢ = 0, a function on [0, 1] such
that 0 < x < 1 = ¢(x) < oo. Suppose the conditions of Theorem 2 or 3 or 4
or 5 hold and

0 (x — x)(x)dx < oo, (with b =1 for Theorems 2, 4, 5),

. dF,

lim sup, max; sup, 71%’ () < o0,
and

lim sup,, § 0,°¢(F,) dFy < oo

where 0, = n¥(n"'oy ' 32 C;yF;y — F) — 0 uniformly as N-— oco. Let
Fy(x) = nt0, ' 31 Ciy 1( Xy < x). Then Ay = n§ (Fy — F))’¢(F))dFy— A=
§ (L + 0)*)(F,) dF, where L is given by (14).

Proor. The condition on {dF,,/dF,} implies for some C < oo EL,?* <
C(F, — F)* in [0, 1], N large (with b = 1 if using Theorems 2, 4, 5.) Hence,
for ¢ > 0 there exists € (0, ) and N, such that

(Sff + Sl—u)E(‘LN + aN)2¢(F0) dF, < ¢, NENZ o
where L, = L, 6., = 0. Therefore by Theorem 5.5 of [1],
B, = {7 (Ly + 0x)’¢(Fo) dFy — . B = {7 (L + 0)’(F,) dF, .
Hence,
|P(Ay < x + ¢) — P(A < x + ¢)|
S |P(Ay £ x +¢) — P(By < x)| 4+ |[P(By < x) — P(B £ x)|
4+ |[P(B < x) — P(A < x + ¢

Se4+Px<Ay=x+e)+e+Px<AZx+¢).
Hence 4, — . A.

ExaMPLE 2. Let a(-) be continuous- and nondecreasing on [0, 1] such that

a(s) > 0 for s > 0. Consider the cdf
F(s, u) = a(s)fa(u), 0<s<u<l
=1, O<uss<l.
When testing H,, : {F,y(s) = F(s, i/ny)} for {X,,} independent, an asymptotically

a-level test is to reject H, «

I (§:a7)
§o Low(s) (k"TA(s) + ka(s))? da(s) > t,,
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where L, denotes L, with expectations under H,, and P({; (W°)? > t,) = a.

we,

W are the Brownian-Bridge and Wiener process, {C,,} satisfy (16), A(s) =

{ta=' — a(s) {}a~? and k > 0 is an arbitrary constant.

PROOF. n=' 31 F(s, i/n) — s + a(s) {}a~' = (13) and (12) holds with K(s, 1) =
a(s)A(t), s < t so that by Theorem 2 under H,, L,y, —_ A - W(a/A). Finally on
uses Theorem 5.1 of [1] and expresses W in terms of W°.
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