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ASYMPTOTIC EXPANSIONS FOR THE JOINT AND
MARGINAL DISTRIBUTIONS OF THE LATENT
ROOTS OF THE COVARIANCE MATRIX

By R. J. MUIRHEAD AND Y. CHIKUSE!

Yale University

Let nS be an m x m matrix having the Wishart distribution Wn(n, Z).
For large n and simple latent roots of X, it is known that the latent roots
of § are asymptotically independently normal. In this paper an expansion,
up to and including the term of order n-1, is given for the joint density
function of the roots of S in terms of normal density functions. Expansions
for the marginal distributions of the roots are also given, valid when the
corresponding roots of T are simple.

1. Introduction and summary. Let S be the covariance matrix formed from
a sample of size n + 1 drawn from an m-variate normal distribution with popu-
lation covariance matrix Z (assumed to be positive definite); then nS has the
Wishart distribution (see e.g. T. W. Anderson [2], page 157). Let, >0 >--->
l,>0and 2, > 2, > --- = 4, > 0 denote the latent roots of S and X respec-
tively. Itisknown (Girshick [6], T. W. Anderson [3]) that if 4, is a simple root
then, for large n, /; is asymptotically independent of the other sample roots and
the limiting distribution of (n/2)}(/,/2, — 1) is standard normal N(0, 1). We will
assume throughout this paper that all the roots of X are simple. The extreme
roots [, and /,, are first considered in Section 2. Sugiyama [15] has shown that
the distribution function of /; can be expressed in a form involving a confluent
hypergeometric function ,F, of matrix argument. It is shown that the distribution
function of /,, can be expressed in terms of another confluent hypergeometric
function defined earlier by Muirhead [13]. Then a system of partial differential
equations (pde’s) is used to expand the two distribution functions up to and
including terms of order n~".

In Section 3 an expansion is given, up to and including the term of order n—?,
for the joint density function of , - - -, /,, in terms of normal density functions.
This expansion then yields an expansion for the marginal density function of /,
which has also been obtained by Sugiura [14] using another method.

2. Expansions of the extreme root distributions. We consider first the largest
root /,. Sugiyama [15], [16] has shown that the distribution function of /, can
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be expressed in the form

2.1  Ph<y= [——"‘(P Jm)* "](det Z)-i» Fy(3n; dn + p; —3ny2Y),
I.(3n + p)

where p = (m + 1)/2, T',,(¢) = z™™Y4T[~, (@ — (i — 1)/2) and ,F, is a con-
fluent hypergeometric function of matrix argument (see Herz [7], Constantine
[5]). Since (2.1) depends on X only via its latent roots we can regard X as being
diagonal, i.e. = diag (4, 4,, - -+, 4,,). An expansion for large n has been ob-
tained for the ,F, function in (2.1) by Muirhead [12]; however this expansion
is of limited interest since it is valid only over the range 0 < y < 4,, and one
would usually be interested in the upper tail of the distribution. Using (2.1)
Sugiyama [16] has obtained an approximation to P(/, < y) in terms of a product
of y* probabilities.

Now assume that 4,, - - -, 1,, are all distinct; from (2.1) the distribution func-
tion of x; = (n/2)}(l,/A, — 1) can be written as

22)  P(x <x)=[Tu(p)/TuGn + p)ldet Ry, F,(3n; g1 + p; —R),

where R = diag (r, 1y, - -+, 1) With r, = [n/2 + (n)2)ix])z,, z, = 4/4, (i =1,
2, ..., m). (Note that z, = 1 is a dummy variable and the R.H.S. of (2.2) is a
function of x, z,, ---, z,.) A system of pde’s satisfied by the ,F, function has
been given by Muirhead [12]. Starting with this system it can be readily
verified that P = P(x, < y) satisfies each of the m pde’s

3
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We now look for a solution of these m pde’s (2.3) and (2.4) of the form

(2.6) P =®x) + X, (2/n)Q,,
where @(+) denotes the standard normal distribution function and the Q, are
functions of x, z,, - - -, z,. (That P possesses such an expansion follows from

results in the next section.) We substitute the series (2.6) into (2.3) and (2.4)
and equate coefficients of powers of (2/n)! on the L.H.S.’s to zero. Equating
the constant term in (2.3) to zero gives

d*®(x)/dx* 4+ x dD(x)/dx =0,

verifying that ®(x) = (27)~* {*, exp(—#*/2) dt is indeed the correct limiting dis-
tribution function. Now equate the coefficient of (2/n)! in (2.4) to zero. We

obtain
(zi - l)an/azi + (1 - zi)_lgo(x)/z = 0 ’ (i = 2a 3’ MR ) m)

where ¢(+) denotes the standard normal density function. This may be solved
to give Q, in the form
2.7 0, = —A4e(x)[2 + f(x) »
where 4, is given by (2.5) and f(x) is a function of x alone, which has yet to be
determined. Equating the coefficient of (2/n)? in (2.3) to zero gives
(2.8) 0°Q,/0x* + x 00¢/0x + [1 — x* — $A4,]e(x) = 0.
Substituting (2.7) in (2.8) gives
d’fldx* + x dfldx + (1 — x*)e(x) =0,
the complete solution of which is
fx) =1 = )p(x)/3 + k,P(x) + k.,
where k, and k, are arbitrary constants. The boundary conditions P(x, < co) = 1
and P(x, < —oo) = 0 may be used to show that k;, = k, = 0. Hence we have
(2.9) Q) = —3p(N)[2Hy(x) + 34, H(x)],
where H,(x) denotes the Hermite polynomial of degree j (tabulated to j = 10 in
Kendall and Stuart [9], page 155). Similarly, equating the coefficient of 2/n in
the L.H.S.’s of (2.3) and (2.4) to zero and solving the resulting equations gives
(2.10) Q, = —Ap(x)[4H(x) + 18H(x) + 124, Hy(x) — 18B,H,(x)
+ 94°H\(x)] ,
where
A = Zia(z — )7, B, =2tz — 1.
Coefficients of higher powers of (2/n)! in (2.6) may be obtained in a similar
manner if required. The expansion is summarized in the following:

THEOREM 2.1. The distribution function of x, = (n/2)¥(l;/2, — 1), when the latent
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roots of T are simple, can be expanded for large n as

(2.11) P(x, < x) = @©(x) + (2/n)}Q, + (2/n)Q, + O(n7¥),

where ®©(-) denotes the standard normal distribution function and Q,, Q, are given
by (2.9), (2.10) respectively.

Consider now the distribution of the smallest root /,,. We first derive an exact
expression for its distribution function. Since nS is W, (n, X) we have

2.12) P(ln > y) = [(Bm)i~(det 2)7#/Tu(3n)]
X §ssyr €Xp(—3n tr (271S)) det St»~7 dS,

where p = (m + 1)/2. Making the transformation 7' = y~'S — [ it is easily seen
that (2.12) becomes

(2-13) Pl >y) = [Lu(p)Tn(Em](3ny)t™"(det Z)~#" exp(—4ny tr 27
X W(p, 4n + p; ymyZ™),
where
W(a, ¢; R) =qer. [1/T0(@)] (550 €Xp(—tr (RS))(det S)*~? det (I + S)*~*~*dS.

The function ¥ is another confluent hypergeometric function of matrix argu-
ment (see Muirhead [13]).

Another expression for P(l,, > y) has been obtained by Khatri [10], in the case
when n/2 — p is a nonnegative integer, as a finite series of zonal polynomials.

Now put x,, = (n/2)}(,,/2,, — 1). From (2.13) we have

P(xp > x) = [Tn(p)/Tu(3n)](det R)}" exp(—tr R)¥(p, §n + p; R) ,

where R = diag (r, ry, - - -, 1) With r, = (n]2 +-(n)2)4x)z,, 2, = Anf2p_in (=
1,2, ..., m). (Again, z; = 1 is a dummy variable.) Using the system of pde’s
satisfied by the W function given by Muirhead [13] it can readily be shown that
the distribution function of x,,, P = P(x,, < x), satisfies each of the m pde’s (2.3)
and (2.4). The only difference here is that now z, = 4,/4,,_,., instead of 2,/, as
it was in the largest root distribution. Hence

THEOREM 2.2. The distribution function of x,(nf2)}(l,./2, — 1), when the latent
roots of X are simple, can be expanded for large n as

P(xp < x) = O(x) + (2/n)*Q: + (2/)Q; + O(n7F)
where z, = Ap[Ay_i1y in Q, and Q, given by (2.9) and (2.10) respectively.

From the general form of the expansion for the marginal distribution of [,
obtained in the next section, it may be conjectured that the distribution func-
tions of each of the variables (n/2)}(l,/2, — 1) (i = 1,2, - - -, m) satisfy the system
of pde’s (2.3) and (2.4), with appropriate changes in the definitions of the z,.
The authors have not been able to show this.

3. Expansion of the joint distribution. In this section we derive an expansion
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for the joint density function of /,, - .., [, when each of the roots 2, - - -, 4, is
assumed to be simple. The joint density function of /,, - - -, [,, can be expressed
in the form (see James [8])

CRY i (gn) L (3m)C(3m)] 7 TL0 L7747 Tl (G — )
X oFo(—3%nL, Z7Y),

where p = (m + 1)/2, L = diag (};, -- -, 1), £ = diag(4,, - -+, 4,) and F, is a
hypergeometric function with two argument matrices. The ,F, function in (3.1)
has been expanded for large n by G. Anderson [1] by expressing it as an integral
over the orthogonal group. After making the transformation from [, - - -, [, to
Xy, « -, X,, Where x; = (n/2)}(l;/2;, — 1) (i=1,2, ---, m), Anderson’s method
can be adapted to expand the resulting ,F, function for large n. However it is
simpler, and equivalent, to transform Anderson’s expansion directly. In [1] it
is shown that the joint density function can be expressed as

(3.2)  ky IIp [ASm 022 exp(—nly[24,)] TT7e, [(L — 1)/(2 — )] - G,
where
ky = (n2ym =TT T((n — i + 1)/2)
and
(3-3) G =1+ 207" X7 4454 — 4;)7(L; — ;)™ + O(n™?) .

(Anderson did not show in general that the remainder term in (3.3) is of order n=%
this has been shown by Chikuse (unpublished).) Now put x;, = (n/2)}(/;/2, — 1)
(i=1,2,...,m). From (3.2) the joint density function of x,, ..., x,, can be
expressed as

(3.4) ko FyF 1+ Q)™ S, 24,03 — 45) + O@-H]
where
ky = (nf2)meiammmi bt exp(—mnf2)[[1m T((n — i 4 1)/2) 5

Fy = [T [(1 A (2/m)tx;)*77 exp(—(n/2)x,)]
and

Fy = 17 [0+ @/mb(xd — x;2,)[(2 — 4,)]F
It remains to expand k,, F, and F, in (3.4) for large n. For example, by ex-
panding the gamma functions for large » it follows that

k, = 2r)~™*[1 — (24n)~'m(2m* + 3m — 1) + O(n7?)].

The functions F, and F, can be easily expanded in terms of powers of n=*; how-
ever these expansions, up to and including the terms of order n~?, are quite
lengthy and are omitted here. Substituting these expansions in (3.4) gives an
expansion of the joint density function of x,, - .., x,,. This final result is sum-
marized in the following

THEOREM 3.1. The joint density function of x, = (n/2)¥(l;/3;, — 1) (i = 1,2, .-,
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m), where 4,, - - -, A, are simple roots of X, may be expanded for large n as
(3.5  Ime() - {1+ @} T Pu(x) + @) (St Pux)

XA A
+ 27 Pu(x)Pyi(x;) + 3 DT i’x’—”—) + 0("'%)} ,

(2 — 4;)*
where ¢(+) denotes the standard normal density function,
(3.6) Pyy(x) = E[2Hy(x) 4+ 34, H\(x)],
(B.7)  Pu(x) = A[4H,(x) + 18H(x) + 124,H,(x) — 18B,Hy(x)

+ 94,°Hy(x)] ,
H (x) is the Hermite polynomial of degree j, and
(3.8) Ay = DT gei Ai[(A — 45) 5 By = XiTerini A7[(A — 45)*.
Note that A, is the same as in (2.5).

By integrating out the other variables in (3.5) an expansion of the marginal
density function of x; can be obtained.

COROLLARY. The marginal density function of x; = (n[2)¥(I,/2, — 1), where 2, is
a simple root of %, may be expanded for large n as

(3.9) ()1 + (2In)Py(x) + 2[r)Pa(x;) + O(nh}.
where P,,(x;) and P,,(x,) are given by (3.6) and (3.7) respectively.

The expansion (3.9), in the cases i = 1 and m, agrees with the expansions for
the extreme root distributions given in the previous section. Sugiura [14] has

also obtained (3.9) using another method.
Asymptotic moments of /; can be obtained from (3.9); we obtain

E(l) = A, + A;A/n + O(n7?),
(3.10) Var (I) = 22,}/n — 22,;*B,/n* + O(n~%) ,
ky(l;) = 823 /n* 4+ O(n~?), k(L) = 48424 [n® + O(n~Y),

where r,(/;) and «,(I;) denote the third and fourth cumulants of /; and 4,, B, are
given by (3.8). From (3.5) we obtain

(3.11) Cov (I, ;) = 2[2,4;/(2; — 2))n* + O(n~®) .

These expressions agree with results obtained by Lawley [11] without using the
asymptotic normality. In fact, it can be readily verified that the expansion (3.9)
for the marginal density function of x; can also be obtained by substituting the
expressions (3.10) for the first four moments of /; in the general Edgeworth ex-
pansion given in Kendall and Stuart [9], page 164. Similarly, the expansion (3.5)
of the joint density function of x;, - - -, x,, could also have been obtained using
(3.10) and (3.11) in a multivariate Edgeworth expansion (see Chambers [4]).
In [1], Anderson showed that, if 2, is a simple root of X, then for large n,
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nl;/2; is approximately distributed as y* with n degrees of freedom. It was pointed
out by the referee that if, instead of x, = (n/2)}(l,/2, — 1) we consider %; =
(n/2)¥(l, — 2, — A;2,/n)[4,(1 — B,[n)}, so that E(%,) = O(n%) and Var (%,) = 1 +
O(n~?), then the series obtained agrees, through terms of order n~', with the
Edgeworth series for (3,2 — n)/(2n)t. This suggests that a y* approximation might
be a little sharper than the normal approximation.

Acknowledgment. The authors would like to express their gratitude to the
referee for many valuable comments and suggestions.
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