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DISCRETE SEQUENTIAL SEARCH FOR ONE OF
MANY OBJECTS

By FurMAN H. SMITH! AND GEORGE KIMELDORF
Florida State University

Suppose N objects are hidden multinomially in 7 boxes, where m is
known and N is random. The boxes are to be searched sequentially. As-
sociated with a search of box & is a cost ¢ > 0 and a conditional probability
ay, of finding a specific object in box k, given that it is hidden there. An
optimal strategy is one which minimizes the total expected cost required
to find at least one object. If N has a positive-Poisson distribution, then
an optimal strategy is shown to take a simple form. Conversely, if for all
possible {c;} and {ax} an optimal strategy takes this simple form, then N has
a positive-Poisson distribution.

1. Introduction and summary. Let N objects be hidden in m > 3 boxes where
m is known and N is unknown. The quantity N has a prior probability distri-
bution p = (p,, p,, - - -) where p, = P(N = n)and Y7, p, = 1. If N, denotes the
number of objects in box k, let the conditional distribution of N = (N,, - -+, N,,)
given N = n be multinomial with parametersnand = = (x,, - - -, 7,), where & is
known. Without loss of generality assume that = > 0, i.e. that =; > 0 for all i.
Associated with box k are constants ¢, and «,, where ¢, >0 and 0 < o, < 1.
Each time box k is searched, the cost ¢, is paid and, if there are n, objects there,
the probability of finding at least one object is 1 — (1 — «;)™. (A box may be
searched more than once.) The goal is to search the boxes so that the expected
total cost expended to find at least one object is minimized.

Many similar models, but treating only the case p, = 1, have been studied in
the literature. The interested reader is referred to Chew (1967), Kadane (1971),
Ross (1969) and Sweat (1970). A fairly recent bibliography of the theory of
search and reconnaissance appears in Pollock (1971).

The foregoing model can arise in the following manner: There are N objects
in the system; each object is located in box k with probability =, independently
of the location of other objects; when box k is searched, each object in the box
is found with probability «, independently of the others. A consequence of this
model is that if box k is searched and no object is found, then, by Bayes Theorem,
the number N of objects in the system has a new distribution p* and the posterior
conditional distribution of N = (N, ---, N,,), given N = n, is still multinomial,
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but with parameters » and #* = (7,*, ..., r,®) given by

(1,1) n-j(k) — (1 - 044 X)T 5

1 — a,x,
where 4 is the Kronecker delta. Hence, the new state of the system, assuming
an object has not been found, can be represented by the ordered pair (p*, =®);
the constants ¢ = (¢;, - -+, ¢,,) and @ = (a, - - -, a,,) do not change.

A searching sequence is a sequence S = (s, 5,, - - -) wWhich calls for a search of
box s, at stage t (assuming no object has yet been found). A searchingsequence is
optimal from an initial state (p, 7) if it minimizes among all searching sequences
the total expected cost to find at least one object. A strategy is a function which
associates with each initial state a searching sequence. A strategy is optimal if
it associates with each initial state an optimal searching sequence.

We can now formulate the discrete sequential search problem as a dynamic
programming problem and show the existence of a stationary optimal strategy.

Formally, a dynamic programming problem is an ordered quadruple (Q, 4, p, p)
where Q and A4 are nonempty Borel sets, ¢ is a regular conditional probability
on Q given Q x A4, and p is a Baire function on Q x 4 x Q. The set Q is the
set of states, A is the set of actions available at each state, u(q'|g, a) is the prob-
ability of moving to state ¢’, given that we are in state ¢ and take action a, and
0(g, a, q') is the return received when moving to state ¢’ from state ¢ after taking
action a. The process is repeated from the new state ¢’. A random strategy is
a sequence z = (7, Z,, - --) where z, is a conditional distribution over a, given
the history of the process up to the ith stage. The risk of a random strategy
from a given state ¢ is the negative of the expected total return into the infinite
future. An optimal random strategy is a random strategy for which no random
strategy has smaller risk from any state. A stationary strategy is a random strategy
for which there exists a function v: Q — A4 such that each z, assigns probability
one to v(g;). That is, a stationary strategy prescribes for each state a given
action to be taken regardless of the history, and is nonrandom.

To formulate the searching problem as a dynamic programming problem, take
Q={q}vi{P=): Xo,p,=1,p,=0foralln, 32,7, =1, x, = 0forallk},
where g, is the state in which an object has been found. Take 4 = {1,2, ..., m},
where action & is associated with searching box k. For g + q,, 0(q, k, ¢') = —¢,
while p(qy k, ¢') = 0. From state (p, &) action k either moves us to state g, or
to the state (p®, #») where = is given by (1.1) and p*, by Bayes Theorem,
is given by
(1.2) poo = Pl —aem)"

2Pl — apmy)?

The transition probabilities 4 are defined by

UGl (P ), k) =1 — Fw (1 — ey m)"p,, s
p((@®, #®) (D, 7), k) = T (1 — aum)™p, s (o] g0 k) = 1.
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Hence the search problem is a dynamic programming problem with finite action
space and nonpositive return function. Therefore, by Theorem 9.1(b) of Strauch
(1966), there exists a stationary optimal strategy. Henceforth, the word strategy
will mean stationary strategy. Given an initial state ¢ = (p, ), a strategy as-
signs a searching sequence s = (s,, s,, - - -). The risk of s from state ¢ = (p, x)
is denoted by r(s;, 55, - - -). If, given a state g, there exists an optimal strategy
for which s, = k, we say in state q it is optimal to search box k.

The special case in which there is only one object in the system (p, = 1) is of
particular interest. In this case, it is well known (see Black (1965), Blackwell
(1962), Matula (1964)) that an optimal strategy is determined by the following
surprisingly simple rule: At each stage, it is optimal to search a box k if a,m,/c,
is maximized by k = k, where 7, is the current probability assigned to box k.

This rule is very easy to compute. At each stage one finds the maximum of
m quantities, the kth of which is a function of the current parameters associated
with the kth box. More generally, a distribution p has a separable rule if there
exists a function g, such that foralle (0 < @ < 1), all # > 0, and all ¢ > 0,
in state (p, ) it is optimal to search box k when the function g,(a,, 7, ¢,) is
maximized by k = k. The function g, is called the test function. Thus, for p =
(1,0,0, -..) the test function a,=,/c, determines a separable rule. Note that
having a separable rule is a characteristic of a distribution in the context of a
large class of dynamic programming problems, namely, as &, z, and ¢ vary.
(We will think of m as being permanently fixed.)

Since an optimal strategy in general is very difficult to compute, it is of major
interest to ask: (a) for what distributions p do there exist separable rules, and
(b) if in state (p, r) for which a separable rule exists for p selecting, say, action
k, does the new state (p*’, #'*’) have a distribution p* which also has a sepa-
rable rule.

It is shown in Section 2 that if p is a positive-Poisson distribution, then p has
a separable rule, and since from (1.2), p*® is also a positive-Poisson distribution,
it follows that an optimal strategy is determined by the following simple rule:
From any state (p, ), search a box & for which the test function (to be given
by (2.7)) is maximized. Conversely, for m = 3 it is shown that if p has a sepa-
rable rule, then p must be positive-Poisson.

2. Distributions having a separable rule. This section presents and proves
the principal result that the only distributions p which have a separable rule
are the positive-Poisson distributions.

A random variable X is said to have a positive-Poisson distribution with pa-
rameter 2 > 0 (we say X is pp(2)) if either 2 > 0 and
A
(e* — )n!
or, corresponding to 2 = 0, P(X = 1) = 1. If X has a Poisson distribution with
parameter 2 > 0, then the conditional distribution of X, given X > 0, is pp(4).

P(X:n): for n=1,2, ...,
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For any distribution p denote by %, the function

2.1) () =1— 3w (1 —x)"p,.

It then follows that the probability of finding at least one object in a search of
box k in state (p, ) is A (a; 7).

LemMMmA 1. Let ¢ = (p, &). Then

2.2) Fo(Bs s 830 Sus =0 0) S F(J> §s S35 845+ + %)

if and only if

(2.3) ho(aim) < hy(a;7;)
[P

Proor. By direct computation
2.4 To(is ]y 83 84+« +) = ¢ + ¢5[1 — hy(a;m)] + b(, j)ry(Ses S5 -+ +) s

where b(i, j) is the probability of not finding an object on a search of box i
followed by box j, and ¢’ is the state (p»?, #»9) = (p'99, #9), It is easy to
verify that b(i,j) and r,(s,, S,, - -+) are symmetric as functions of i and j.
Therefore, (2.2) holds if and only if (2.3) holds.

We shall be interested in maximizing over j the expression  (a; 7;)/c;. If this
expression is maximized by j = i, box i is called a most inviting box from state
(p, ). The next lemma shows that when p is pp(4), if box i is most inviting
from state (p, ), then after a search of a box other than box i, it remains most
inviting.

LEMMA 2. Suppose p is pp() and h (a;x;)[c; is maximized when j = i. If k =+ i
then hyu(a;m;*)/c; is maximized when j = i.

Proor. If p is pp(2), then it follows from (1.2) that p® is pp(2®), where

(2.5) AP =21 — aym,) .
Multiplying equations (2.5) and (1.1) yields
(2.6) WA = (1 — dpa)m; 2 < ik

When p is pp(2) with 2 > 0, 2 (x) = B(3)[1 — 2~**] where B(2) = (1 — e~*)~*and
hence
By (a;m;P)e; = BAP)[1 — exp(—a;z;M2%)]/c;
= BAM)1 — exp(—a;m;d)]/c;
_ BA®Yhy(a;7;)
B(A)¢;
- BO™)hy(ar)
o B(2)e;
= A1 — exp(—a;m;A)]/c;
= PAD)N1 — exp(—a,m,P2P)]/c
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since inequality (2.6) is an equality for j = i. Therefore,
(@) e; < hyw(am @),
A similar but simpler argument holds when 4 = 0.

THEOREM 1. Suppose p is pp(A). Then in state q = (P, 7) it is optimal to search
box i if h(a;m;)/c;, given by
(2.7a) [1 — exp(a;m;A)]/c; when 2> 0,
(2.7b) a;m;lc; when A=0,
is maximized by j = i, and thus, p has a separable rule.

PrOOF. Assume (2.7) is maximized by j = i. If (2.7)is zero for every j, then
every searching sequence has infinite risk and the theorem holds. If (2.7) is
positive at j = i, then z; > 0 and hence every searching sequence with finite
risk eventually calls for a search of box i. Among all searching sequences which
are optimal for state (p, «), let s = (s, s,, - - -) be one which searches box i at the
earliest stage. If s, = i, we are finished. If s, = i let ¢ 4 2 be the earliest stage
at which i is searched and denote s,,, by j so that s = (s,, -+, 5, J, £, S50 +++)
and for k <t + 1, 5, # i. Let g* = (p*, w*) be the state after searching boxes
S, - -+, 8, assuming an object has not yet been found. Since (2.7) is maximized
by j = i, Lemma 2 applied 7 times proves that k,.(a;m;*)/c; is maximized by
J =i. ByLemma 1, r..(i, ], S;y +++) < 7u(Js &5 Siyss - - -) and hence r (s, - - -, 5,5
L Jy Sepzs oo 0) = F(S15 = =5 845 J» Iy 840 + - +), Which contradicts the definition of s.

Theorem 1 yields a searching sequence which is optimal when the initial state
p is pp(), namely at each stage to search a box.which maximizes the current
value of (2.7). The proof of the converse, namely, that if p has a separable
rule, then p is pp(2) for some 2 = 0, follows from four lemmas.

LeMMA 3. Ifm=3,7, > 0,7, >0anda = (1, 1,-.., 1), then for fixed (p, «)
and fixed c,, c,, there exist ¢y, - - -, ¢, and S, - - -, 5, such that either (1,2, s,, - - -, 5,,)
or(2,1,s, -, s,) is an optimal searching sequence from the state (p, 7).

The proof of Lemma 3 is elementary and is omitted.

LEMMA 4. Suppose p has a separable rule. Then for @ = (1,1, 1, .. .) the func-
tion h(m,)/c, serves as a test function.

ProOF. Let the separable rule have test function g,. Let g (1, 7, ¢;) be maxi-
mized by k = i and suppose & (r;)/c, is maximized by k =j. If i =j, we are
finished; assume i #+ j. By Lemma 3 there exist ¢/, s, s, ---, 5, such that
¢ =¢;, ¢/ =c;, and either (i, j, s, - -+, 5,) or (j, i, 8, -+, s,) is an optimal
searching sequence from state ¢ = (p, @) with cost vector ¢’. Since & (r;)/c,/! =
h,(r;)/c;’, Lemma 1 implies that r (i, j, S5, - -+, S») = 7, (J» I, 83 -+ -, 8,,) With cost
vector ¢’. Therefore, (j, i, 55, - - -, 5,,) is an optimal searching sequence from state
(p, ) with cost vector ¢/, and hence g,(1, 7;, ¢;") = 9,(1, 7;, ¢/). Butc;/ =c;
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and ¢’ = ¢, and hence g, (1, 7}, ¢;) is also maximized by k = j. Therefore, in
state (p, =) it is optimal to search box i.

LEMMA 5. If p has a separable rule, then h = h, satisfies
(2-8) h(x)h(y) + h(x + p)h(1 — x — y)
— h(x)h(1 — x — y) = h(1 — y)h(y) = 0
for all (x, y) such that x 20,y =0, x+ y < L.

Proor. Fix @ = (1, 1, ..., 1); without loss of generality assume that m = 3

by setting 7, = n; = ... = 0. Consider a w = (=, 7,, 7,) such that each =, > 0
and set ¢, = k(r,). Since the three quantities 4(m,)/c, equal 1, Lemma 1 implies
(2.9a) r(1,2,3)=r,2,1,3),
(2.9b) r,3,1,2) =r/(1,3,2),
(2.9¢) r, 2,3, 1)=r/(3,2,1),

where ¢ = (p, #). By Lemma 4 and the equality of the quantities 4(x)/c,, there
exists for k = 1, 2, 3 an optimal searching sequence starting with k. Hence, by
(2.9), at least four of the six risks of (2.9) are equal. In particular, at least one
of the following must hold:

(2.10a) r(2,1,3) —r,(1,3,2) =0,
(2.10b) r(1,3,2) —r,(3,2,1) =0,
(2.10¢) 73,2, 1) — r/(2,1,3) = 0.

By the definition of % and the fact that ¢, = h(7,),
T (515 835 85) = ¢ + [1— h(ﬂ:sl)]c82 +[1 — h(7r.,1 -+ 7r‘,2)]¢:‘,3
= h(z,) + [1 — k(= )](m,,) + [1 — h(z, + 7,)lh(m,,) .
Hence, letting # = (x, y, 1 — x — y), we write (2.10a) as (2.8). Similarly (2.10b)
and (2.10c) become
@11) A — x — yh(x) + k(1 — P)h(y)
— (1l — x — A(y) — b1 — x)h(x) =0

and
(2.12) h(y)h(1 — x — y) + h(1 — x)h(x)

— h(y)h(x) — h(x + Yh(1 —x — ) = 0,
respectively.

We have shown that if x >0, y > 0, x + y < 1, then at least one of (2.8),
(2.11), (2.12) holds. For each fixed x, at least one of the equations (2.8), (2.11),
(2.12) holds for infinitely many y in [0, 1 — x]; denote the appropriate equation
by e,. The left-hand sides of (2.8), (2.11), (2.12) are analytic functions since 4
is analytic. Since the zero function is the only analytic function with non-
isolated zeroes, for each x in (0, 1) equation e, holds for every y in [0, 1 — x].
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At least one of the equalities (2.8), (2.11), (2.12) is e, for infinitely many x
in (0, 1); denote the appropriate equation by e. For each y in (0, 1), equation
e holds for infinitely many x in [0, 1 — y); therefore, by the analyticity of the
left-hand side of equation e, equation e holds for all appropriate (x, y).

Inspection of (2.10) shows that (2.8), (2.11), and (2.12) differ only by a label-
ing of the boxes. Since equation e holds for all (x, y) satisfying x = 0, y = 0,
x + y < 1 equation (2.8) also holds for all (x, y) satisfying x >0, y =0, x +
ysL

LEMMA 6. The only solutions h to (2.8) of the form (2.1) for some distribution
p are

A(1—-2
(2.13) Moy =1-¢""—=1

et — 1
for some 2 > 0, or
(2.14) h(x) = x.
Proor. Equation (2.8) may be written for y > 0 as

2.15) ”("”y)"’(") Bl = x —y) = i(yll (L — ») — A

Since (2.15), for fixed x in (0, 1), is an equality between analytic function of y
on (0, 1 — x) and & must satisfy #(0) = 0 and A(1) = 1, letting y — O+ yields the
differential equation

(2.16) k' (x) - k(1 — x) = A'(0) - [1 — A(x)].

Similarly, (2.8) may be written for x > 0 as

(2.17) Bl — x — y) - h(x +)’))C— h(y) + h(y) - h(l —x—y) — k(1 —y)

X

h
=0 n1 — x = ) = HO)
Letting x — 0* in (2.17) yields the following differential equation (where x rather
than y is used to denote the argument):
(2.18) k' (x)h(1 — x) — h(x)h'(1 — x) = #'(0) - [A(1 — x) — A(x)].
If x > 0 then A’(x) > 0; (2.16) may be written as

o 1 — A(x)

2.19 h(l1 — x) = #(0) . —— =2

(2.19) (1= =#0) -~

for x in some interval. Differentiating both sides of (2.19) yields

(2.20) K(1 — x) = () . WX+ A"[1 — A(x)]
(7 ()]

Substituting into (2.18) yields
(2.21) KO )] — FOR@E(x) = [FO)H(x) .
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The constant 4’(0) is nonzero since if 4’(0) were zero, then dividing both sides
of (2.16) by A’(x) gives us the false conclusion that A(1 — x) is zero in some
interval. Divide both sides of (2.21) by 4’(0) to obtain
(2.22) [#'(x)]? — R(x)h"(x) = K (O)H'(x) .

Since 4 is increasing on [0, 1], #’ is a function of 4. Let u = A(x) and q(x) =
h'(x); equation (2.22) becomes

(2.23) q(u) — ug'(u) = a,
where a, is the constant 4’(0); therefore
(2.24) q(u) = a, + a,u

for u in some interval and a, some constant. If a, = 0, (2.24) yields #'(x) = a,
in some interval; therefore, (2.14) holds on [0, 1]. If a, # 0, then (2.24) yields

(2.25) h(x) = +exp(a,x + a;) — a,
for some interval where a,, a;, a; are constants. The constraint that 4(x) be of

the form (2.1) for some distribution p simplifies (2.25) into (2.13). Since (2.13)
holds for x in some interval, (2.13) holds on [0, 1].

THEOREM 2. If m = 3 and p has a separable rule, then p is pp(R) for some A = 0.

Proor. Lemmas 5 and 6.

Theorems 1 and 2 completely characterize the class of distributions which
have a separable rule. However, for other distributions p there may exist for
specific values of the constants &, ¢ a function g, (a,, 7, ¢,) such that for all =
an optimal strategy prescribes searching a box & for which g,(a, 7, ¢,) is maxi-
mized. A trivial example is the case & = (1,0, 0, ..., 0), where we can take
9(@s> T, ¢;) = a; forall p. Another example is given by the following theorem.

THEOREM 3. Ifc, = ¢, = ... = ¢, then for all distributions p an optimal strate-
gy prescribes searching a box k for which the current value of a, =, is maximized.

Proor. The probability of finding at least one ball within d searches when
using searching sequence s is
(2.26) I — 3 9"Pas
where

¢=xram (1 — 5;’.«:,“1’) :

Chew (1967) showed that if there is just one ball, then the probability of finding
it within d searches is maximized by choosing at each stage a box with maximal
value of a, r,; therefore, Chew’s rule minimizes ¢. Since (2.26) is a decreasing
function of ¢ and the rule of searching a box with maximal value of a, r, maxi-
mizes the probability of finding at least one ball within d searches uniformly in
d, then the rule minimizes the expected cost whenc¢, = ¢, = --- =,

3. The case m = 2. It has heretofore been assumed that m > 3. In the case
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m = 2 we conjecture that every distribution p has a separable rule and that the
function g,(ay, T, ¢;) = h,(, )/, serves as a test function, where £, is given
by (2.1). A proof of the conjecture would follow from a proof of the statement
that if one box is more inviting from state (p, z), then after a search of the other
box, the first box remains more inviting. That this statement is not true in
general is shown below in Example 1. Lemma 8, however, shows that the state-
ment is true if there are at most two balls. The following lemma holds for an
arbitrary number of balls.

LemMA 7. If N has distribution p and N' has distribution p® given by (1.2), then
N is stochastically greater than or equal to N'.

Proor. Lett, = 3" ,p,and z =1 — a,7,. Then
[P(N' = n) — P(N = n)] X5 2°py
= 251 2Py — by 215=1 2P,
=1 —1) 20012 — b Deent1 2P
= (1 = 1)zt + X5 2°(t, — 1) — 2"'1,]
+ L2 — thy) + Drni2 Z(femr — 1)]
=z(1 — 2)[(1 — 1,) 2520 201 + tu 5= 2°(1 — L,19)]
which is clearly nonnegative, and hence PN < n) < P(N' < n)forn =1, 2,.--.
Lemma 8 is analogous to Lemma 2.

Lemma 8. If m=2,p, + p, =1, and

(3.1) ho(aymy)[ey = hy(asms)/cy
where h, is given by (2.1), then
(3.2) hp(z)(alﬂ'l(z))/cl g hp(z)(a’zﬂ'z(z))/cz .

Proor. It is sufficient to show

hptz)(alﬂ'l(z)) > hp(aln:l)
Ry (@, m,?) = h(aym,)

(3.3)

By Lemma 7,
By (@37, ®) S By (@a7y) = hy(anmy)

since A (a,7,) is an expectation of an increasing function of the random number
of objects. To prove the inequality

(3.4) by (aymy®) = hy(aym) ,
we use (1.1) and (1.2) to reduce inequality (3.4) to
2 —am)p, T2, (1 —aymy)p, — o, (1 — aymy — apmy)'p, = 0,
the left-hand side of which factors into
a,ma, [ pi(l — aym)(l — a,m,) + py(l — aym, — a,m,) + pi] s

which is clearly nonnegative.
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THEOREM 4. If m = 2 and p, + p, = 1, an optimal strategy prescribes searching
a box k for which h(a,x,)[c, is maximized.

Proor. Theorem 4 may be proved by the proof of Theorem 1, except that
Lemma 8 plays the role of Lemma 2.

We can neither prove nor find a counterexample to the proposition that for
m = 2 every distribution p has a separable rule. The following example shows
that Lemma 8 is not true without the condition that p, + p, = 1.

ExampLE 1. Letc = (1, 5), @ = (.99, .10), # = (.01, .99), and p be such that
Pi = Pso = -5. Note that box 1 is clearly more inviting because of its lower
cost and the fact that a search of either box will find an object with probability
near .5. However, a search of either box without finding an object makes it
highly probable that only one object is present and hence box 2 becomes more
inviting.

Acknowledgment. The authors thank a referee for providing Example 1 and
suggesting several improvements in an earlier version.
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