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LARGE DEVIATIONS
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Let {P,}>_, denote a sequence of probability measures on (R, B¥),
where Rk is k-dimensional Euclidean space and B* the Borel subsets. For
Ae Bk, let e(A) = limp—w (1/n) log Px(A), if the limit exists. Sufficient
conditions are given for expressing e(4) as the supremum of e(B) for certain
“rectangular’ sets B = X’;=l (aj, B;) with either aj = —oo or §; = + oo for
eachj=1, ..., k. Also, some k-dimensional generalizations of the density
theorem of Killeen, et al. (1972) are given for expressing e(4) in terms of
certain limits of the sequence of density (or probability) functions. Finally,
an example is considered where P, is the distribution of & order statistics
from a sample of size n.

1. Notation and main results. Forn = 1,2, ... let P, denote a probability
measure on (R, B¥) where R* is k-dimensional Euclidean space and B* the Borel
subsets. For A4 e B* define the extended real-valued function (log0 = — o)
e(A) = lim,_, (1/n) log P,(A), if the limit exists. Similarly define ¢(4) and &(4)
using lim inf and lim sup, respectively.

This paper is concerned with the determination of e(A4), the exponential rate
of convergence to zero of a sequence of probabilities P,(X € 4), where X =
(X, - -+, X,) is a random vector with distribution P,. A special case of interest
is A = {T = a}, where T = T(X) is some statistic. In this section some methods
are developed for determining e(4) from e(B) for simpler events B of the form
B = {X, x x,, - - - X, x x,} where the x’s are either = or <. In many cases it
should be easier, using standard methods, to determine the rates ¢(B) than to
determine e(A) directly. This point is discussed again after the theorems of this
section.

First we introduce some notation.

Typical points in R* are denoted x = (x,, - - -, x;) and the closure (interior)
of A€ B* is denoted cs/(A4)(A°).

With A(1) = {t: + = 0} and A(2) = {¢: ¢t < 0}, define M = 2* subsets of R* of
the form X%_, A(a;) where @; = lor2forj =1, ---, k. These sets are denoted
0,(0) = Xoy A(L), Q4(0), - -+, Qu(0).

ForxeRfandi=1,---,Mlet Q(x) ={yeRf:y=x+ z,2¢Q,(0)} and
Ni(x,¢) ={yeR:y=x+12,2€0Q,0), |z;) <ecforj=1,...,k} for ¢ > 0.
Also let my(x) = e(Q,(x)) if the limit exists, m,(X) = e(Q,(x)) and 71,(x) = é(Q,(X)).

For all integers i, 1 S i< M;r, 1 Sr<k—1j, -, ju 1< <
J» < kand points y = (y,, - - -, y,) € R" define the extended real-valued function
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9i(Y; jus -+ +» o) = Inf {my(x): x € Q,(0), x; = y, for j = j, - - -, j,}. The function
is not defined for y at which the infimum of an empty set arises.
Consider the following conditions:

(A) For each i =1, .-+, M, my(x) exists and is a continuous function of
x € 0,(0),

(B) There exists a point in R* which we take to be 0 (by suitable translation,
if necessary) such that for all ¢ > 0, integers i, ] <i < M, and x € Q;(0) we
have m,(x) = e(N,(x, ¢)), and

(C) For all integers i, | <i<M; r, 1<r<k—1,andj, ---,j,, 1 =
i< -+ < j. < k, the function g,(y; ji, - -+, j,)isa continuous function of y on
its domain of definition.

THEOREM 1.1. Assume conditions (A) and (B) hold. If Ae B*, @ # A C c/(A4°)
and A is bounded, then

(1.1) e(A) = max,_; ., sup {m,(x): xe 4° n Q;(0)}.

THEOREM 1.2. Assume conditions (A), (B) and (C) hold. If Ae B* and @ +
A C ¢/(A°), then (1.1) holds.

The following corollary is immediate.

COROLLARY 1.1. For integers i, j with1 < i < j < M, let my(x) = my(x) for
all x € Q,(0) N Q;(0). Then the definition m(x) = my(X) for x € Q;(0), defines m(X)
unambiguously on R*. Let the hypothesis of Theorem 1.1 or 1.2 hold. Then
e(A) = sup{m(x): x € 4}.

The following lemmas give sufficient conditions for conditions (B) and (C)
that are frequently easy to verify in particular cases.

LemMA 1.1. The following condition is sufficient for condition (B): There exists
a point in R* which we take to be 0 such that for all integersi, 1 < i < M, m(X) is
strictly decreasing on Q,(0); that is, if X € Q,(0) and m,(X) > — oo, then m(x") <
my(x) for all X' € Q,(x) with X' + X.

LEMMA 1.2. Tke following condition is sufficient for condition (C): For all inte-
gersi, |l i< M,andj, 1 <j<k, g,(y; j) = —oo forall ye R* for which the
function is defined.

Without assuming the existence of the limits m,(x) in condition (A) slightly
more general versions of the theorems can be formulated involving m,(x) and
m;(x) with essentially the same proofs. The conditions that m,(x) be continuous
and that 4 C c/(A4°) are natural for a result like (1.1). Without either one it
is easy to find examples when k = 1 where (1.1) fails. Lemma 2.5 shows that
condition (B) is necessary for (1.1) when 4 C ¢/(A4°) and condition (A) holds.
Condition (C) does not appear to be necessary for (1.1); however a related
condition is needed when 4 is unbounded. The example at the end of Section
2 illustrates the difficulty.
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In particular cases, the theorems can be used when 4 depends on n and (pos-
sibly after suitable transformation) such a sequence of sets converges in some
sense.

It should be possible to extend the theorems to more general spaces than R.

In particular cases various means can be used to evaluate the m,(x) functions.
Since Q,(x) is a product set, if P, is a product measure, (1/n)log P,[Q,(x)] is a
sum of k terms involving univariate probabilities and the limits can be examined
separately (see example (a) of Section 4). If P, is not a product measure a similar
representation can be made using conditional probabilities although this approach
does not appear to have been exploited in the literature.

It seems clear that a k-dimensional version of the theorem in Sievers (1969)
or Theorem 2.2 in Bahadur (1971) holds using joint moment-generating functions
and, if this is so, would be useful in computing m,(x).

The first three theorems of Section 3 are k-dimensional generalizations of
theorems in Killeen, et al. (1972) for evaluating m,(x) from a sequence of density
or probability functions. The last two theorems of Section 3 are concerned with
the evaluation of e(A4) directly from a sequence of density or probability func-
tions. In particular, they are applicable in cases where condition (B) does not
hold.

2. Proof of theorems. The following two lemmas are immediate.

LemMMA 2.1. If B,e B* forr=1, ..., m, then &(Jr-, B,) = max{&(B,): r =
1, - .., m} and a similar identity holds for e(+) and e(+) if the limits exist.

Lemma 2.2. If B,, B,c B* with B, C B,, then &(B)) < é(B,) and a similar in-
equality holds for e(+) and e(+) if the limits exist.

LEMMA 2.3. Assume conditions (A) and (B) hold and that A € B* with @ #+ A C
c/(A°) and A C Q,0) for some integer i, 1 <i <M. Then sup{m(x):
xe A} < e(A).

ProOF. Let x e A. If x € A° there exists ¢ > 0 such that N,(x, ¢) C 4. Then
from conditions (A) and (B) and Lemma 2.2, my(x) = e(Ny(x, ¢)) < e(4). If
x ¢ A° there exists a sequence {X,}s_, in 4° converging to x. Then m(x,,) <
e(A) and with continuity, m,(x) < e(4).

LEMMA 2.4, If @ + A C Q,(0) for some integeri,1 < i < M, ande > 0, then
there exists a finite number of points x,, - - -, X, € Q,(0) and y,, - - -, y, € A such that

(1) lej_Yj||<8f0rallj=1,...,",
(11) AC U;=1 Qi(Xj) and
(iii) For some j, 1 < j < r, 2(A) < my(x;).

Proor. For parts (i) and (ii) only a brief outline of the proof will be given.
It is enough to consider the case i = 1 and with suitable translation, if necessary,
assume inf {x,: X = (x;, - -+, x,) € A} = Oforeachs = 1, - .., k. The proof can
be made by induction on k. As a starting point choose A < ¢/k* and consider
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“slices” of Q,(0) of the form {x: (m — 1)A < x, < mA} for m = 1,2, ... and
s =1, ---, k. With the first point x,, suitably chosen on the boundary of Q,(0),
note that Q,(0) — Q,(x,) can be viewed as a finite union of “slices” and since
these “slices” are essentially k — 1 dimensional, the inductive hypothesis can be
applied to them.

Now (iii) follows from (i) and (ii) by noting that 4 = (J5_, (4 n Qu(x;))
and with Lemmas 2.1 and 2.2, &(4) = max{é(4n Q,x;):j=1,---,r} <
max {m,(x;):j=1,.--,r}

PRrROOF OF THEOREM 1.1. A4 C ¢/(A°) implies 4 C YL, c/(4° n Q,(0)) and
with Lemmas 2.1 and 2.2

(2.1)  max{e(4° n Q,0)): 1 < i < M}
< e(A) < &(A) < max {&(c/(4° 0 Q,0): 1 < i < M},

Since 4° n Q,(0) C cs(4° n Q,(0)), Lemma 2.3 implies
2.2) sup {m,(x) : x € 4° N Q,(0)} < ¢(A° N Qx(0))

foralli =1, ..., M for which 4° n Q,(0) = @.

For each fixed integer i, 1 < i < M, for which 4° n Q,(0) + @, Lemma 2.4
implies that forall m = 1, 2, - . . there exists x,, € 0,(0) and y,, € c/(4° N Q,(0))
such that ||x,, — y,|| < 1/m and

(2.3) &c/(4° 0 Q0)) < my(x,,) .

The hypothesis implies that the sequence {y,}, and hence {x,,}, is bounded and
so there exists a subsequence (which we take to be the original sequence) such
that x,, — z as m — oo for some z ¢ c/(A4° N Q,(0)).

With (2.3) and the continuity of m,(x),

&c/(A4° n Q(0))) < my(2)
(2.4) = sup{m,(x): x ecs/(A° N Q,(0))}
= sup{m,(x): xe 4° n Q,(0)}.
The theorem then follows from (2.1), (2.2) and (2.4).

ProOF oF THEOREM 1.2. As in the previous proof we have (2.1), (2.2), and
(2.3). For a given integer i, 1 < i < M, if the sequence {x,} is bounded then
(2.4) follows as before. So assume that {x,} is unbounded. Without loss of
generality, assume that /i =1 and that the coordinate sequences {x,;} are
bounded for 1 < j < r and unbounded for r + 1 < j < k for some integer r,
1 £r £k — 1. Note that all k coordinate sequences of {x,} cannot be un-
bounded, for then (2.2) and (2.3) contradict condition (B) if 4° n Q,(0) + @.

Leta; = sup{x,;: m=1}forl <j<rand a=(a, ---,a,).

Assume that (2.4) is false; then there exists ¢ > 0 such that sup {m(x): x e
cA(A4° N Q0))) = &(c/(4° 1 Q(0)) — <. Then my(y,) < &c/(A° 0 0,(0))) —
and with (2.3) we have my(x,,) — my(y,) = ¢ forallm = 1,2, .... Then for all
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6 > 0 and m sufficiently large (depending on ), m,(a; — 6, -+, @, — 0, Xppysr- -+
Xpi) — My(@ + 05 <+ <5 @ + 0y Vpars ** *» Vi) = & Now let m — oo and with
the monotonicity of m,(x) we have g,(a — 8;1,---,r) —g,(a+ 8;1,---,7r) = ¢,
which contradicts condition (C). Hence (2.4) holds.

The argument of the previous paragraph requires g,(a; 1, ---,r) > —oo. If
g,(a; 1, - -, r) = — oo, then (2.3) implies &(c/(A° N 0(0))) < my(x,,) < my(a, —
0, «++y @, — Oy Xpyy1s = 5 Xpy,) fOr all 6 > 0 and m sufficiently large (depending
on ). Then é(cs(A° N Qy(0))) < g,(a — 351, ---,r) and with continuity,
é(cz(A° N Qy(0))) = —oo. This with (2.2) implies sup {m,(x): x € 4° N 0,(0)} =
— oo and so (2.4) holds.

The theorem follows from (2.1), (2.2) and (2.4).

Proor oF LEMMA 1.1. For a given integeri, 1 < i < M,ande > 0let x € Q,(0)
with m,(x) > —oo. Let X, X,, - - -, X,_, denote the “corner points” of N,(x, ¢).
Forall j=1,...,M — 1, x;e€Q,(x) and Xx; # X so by hypothesis m,(x;) <
m,(x). Now Q,(X) = N(x,¢) U (UJ5' Qi(x;)) and by Lemma 2.1, my(x) =
max {e(Ny(X, €)), my(X,), -+, M(Xy_,)} = e(Ny(X, ¢)).

Proor oF LEMMA 1.2. The hypothesis and the monotonicity of m,(x) imply
that the functions g,(y; ji,, - - -, j,) = —oo and hence are continuous.

LEMMA 2.5. Assume for all Ae B* with @ #+= A C c/(A°) and A C Q,(0) for
some integer i, 1 < i < M, that sup{m,(x); x e A} < e(A4). For all integers i,
1 <i< M, and ¢ > 0 if x € Qy(0) then m(x) = e(Ny(x, ¢)).

Proor. If we assume the conclusion false, there exists i, ] < i< M, e >0
and x € Q,(0) such that m,(x) > e(N,(x, ¢)). But this, with 4 = N,(x, ¢), contra-
dicts the hypotheis.

ExAMPLE. Suppose for each n = 1,2, ... that P, is absolutely continuous
bivariate distribution with density function

[o(x) = nix exp{—nx,(1 + x,)}, X5, X, = 0

and zero otherwise. Then for x € Q,(0), my(x) = —x,(1 + x,). Conditions (A)

and (B) hold but not condition (C) since g,(y; 1) is discontinuous at y = 0.
However, with event 4 = {x € R*: x, x, = 1}, straightforward calculations show
e(A) = —1 = sup {m,(x): x € 4} so that the conclusion of Theorem 1.2 holds.

Suppose we modify the distribution P, by removing a probability mass
exp{—n/2} from near 0 and placing it at the point (1/n, n). Then m,(X) remains
unchanged and e(4) = max{—1, —3} = —%. Hence conditions (A) and (B)
hold but not condition (C) and the conclusion of Theorem 1.2 is false.

3. Density and probability function results. The first three theorems of this
section are k-dimensional versions of theorems in Killeen, et al. (1972) and since
the proofs are somewhat similar to those in this reference they will be omitted.

THEOREM 3.1. Suppose P, is an absolutely continuous distribution on R* with
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density function f,(x) forn = 1,2, ---. For a given integer i,1 <i < M, letac
Q.(0) and assume:

(i) there exists an integer N such that for n = N, f,(X) is non increasing on
Q,(a); that is, x € Q,(a) and X' € Q,(x) imply f,(X') = fu(X),

(ii) there exists a sequence {8,} in Q,(0) such that forn = 1,2, ..., 8, has co-
ordinates identical in absolute value, say d,,, with (1/n)logd, = o(1) and

(1/n) log[f.(a + 8,)/f.(a)] = o(1) as n— oo, and

(iil) there exists a non negative sequence {r,} such that (1/n)logy, = o(l) as
n — oo and

lim sup,_... (1/n) log [P.(Qu(a) — Ni(@, 1.))/fa(8)] = 0.
Then
(3.1) (1/m) log P,[Q(a)] — (1/n) log fu(a) = o(1) a5 n—oo.
THEOREM 3.2. Foreachn = 1,2, ... suppose that P, is a probability distribu-
tion on N*, the points in R* with integer coordinates, and has probability function

[fu(X). If for a given integer i, 1 <i < M, ae Q,0) N N* and conditions (i) and
(iii) of Theorem 3.1 hold ((i) holding on Q,(a) N N*), then (3.1) holds.

Condition (iii) is readily seen to be necessary for (3.1) but is sometimes awk-
ward to verify in particular cases. The following theorem gives a sufficient
condition in terms of moment-generating functions.

THEOREM 3.3. Forn=1,2,...letX, = (X, -+ -, X,;) denote a random vector
with distribution P,. For a given integer i, 1 < i < M, suppose there exists t =
(t1, -+, 1) € (Q4(0))° and constant R < oo such that the joint moment-generating
function E[exp{>%_,t; X,;}] < R for all n = 1,2, ---. If {r,} is a nonnegative
sequence with 1,/n — co, then for a € Q,(0),

limn-»oo (l/n) log Pn[Qi(a) - Ni(a’ T'n.)] = —x.
If, in addition, (1/n)logy, = o(l) as n— co and lim,_,, (1/n)log f.(a) = ¢ >
— o0, then condition (iii) holds.
ForxeR*and e > O0let N(x,¢) = {yeR*: |x; —y;| <e&j=1,---,k}
LEMMA 3.1. Assume B C R* has compact closure. Then for all ¢ > 0 there exists
Z € B such that é(B) = &(B N N(z, ¢)).

Proof. {N(y, ¢): y e B} is an open cover of c¢/(B). With compactness there
is a finite subcover of ¢/(B) and hence of B, say {N(y,,¢): y,€B,j =1, ---,r}
Then from Lemma 2.1, &(B) = &(U’-, (B n N(y,, €))) = &B n N(z, ¢)) where
z=y;forsomej=1,...,r.

THEOREM 3.4. Suppose P, is an absolutely continuous distribution on R* with
density function f,(x) for n = 1,2, --.. Suppose Ae B* with @ + A C c/(A°)
and the following conditions hold:



MULTIVARIATE PROBABILITIES 903

(i) lim,_, (1/n)log f,(x) = g(x) exists and is continuous on c/(A),

(ii) Foreachx € A°, there exists sequences of nonnegative reals {,(x)} and {r,(x)}
and a positive integer M(X) suchthatlim,, ., §,(x) = 0, liminf,  (1/n)logr,(x) = 0
and P, [N(x, 0,(X))] = f.(X)r.(X) for all n = M(x),

(iii) For each x € c/(A) and ¢ > 0O sufficiently small there exists y(x, ¢) € c/(N(x,
€)), a sequence of nonnegative reals {s,(X, ¢)} and a positive integer M(x, ) such that
lim sup, _,, (1/n) log 5,(x, ¢) < 0 and P,[N(X, ¢)] < fu(¥(X, €))s.(X, ¢) for all n =
M(x, ¢) and

(iv) inf{é(4 — N(0,7)): v > 0} < sup{g(x): x € 4}. Then e(A) = sup {g(x):
x € A}.

Proor. Letx e 4°. From condition (ii), P,(A) = P,[N(X, 0,(X))] = f.(X)r.(X)
for n sufficiently large. Then e(4) = g(x). Since 4 C c/(A4°) and g(x) is con-
tinuous

(3.2) e(4) = sup {g(x): x € 4] .
From Lemma 2.1, for all y > 0 &(4) = max {é(A4 n N(0, 7)), é(4 — N(0, 1))}

From (3.2) é(4) = sup {g(x): x € A} and with condition (iv), there is a 7, > 0
sufficiently large so that

(3.3) é(A) = é(A n N(0, 1,)) .
Let {¢,,} be a sequence of positive reals with lim,,_ ¢, = 0. Define a sequence
{x,} in 4 inductively as follows: for each m = 1, 2, ... apply Lemma 3.1 with

e= ¢, B=AN N(Xp_y, €,_y) and let x = z of the Lemma. Use x, = 0 and
& = 7,- Then
(3.4) e(A) = (A N N(X,,, &) < e(N(Xp» €5))
and x,,€ 4 N N(X,,_y, €,_,) form = 1,2, .... The sequence {x,} converges, say
to x, € c/(A).

Using (3.4) and condition (iii), for all ¢ > 0, &(4) < é(N(X,, ¢)) < 9(¥(Xo, €))-
Then the continuity of g(x) at x = x, implies
3.5) é(A) < 9(x,) < sup{9(x): x e cs/(A4)}

=sup{9(x): xe 4}.

The theorem follows from (3.2) and (3.5).

CorOLLARY 3.1. Condition (iv) of Theorem 3.4 can be omitted if A is bounded.

Proor. Condition (iv) was used in the proof of Theorem 3.4 to establish (3.4)
and (3.4) follows directly if 4 is bounded.
4. Applications.

ExampLE (a). Functions of sequences of independent random variables. For
n=12,...1let X, = (X,, ---, X,,) be a random vector with distribution P,
and mutually independent components. Foreachj=1, ..., k let

¢(x) = lim,_ (1/n)log P,[X,; € 4,]
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where A, = [x, o) ((— o0, x]) if x = 0 (x < 0), assuming the limits exist. As-
sume that ¢,(x) is continuous and strictly increasing (decreasing) on (— oo, 0]
([0, 0)). For i =1, ..., M it follows that if x = (x,, -- -, x;) € Q,(0) then
my(x) = Yk, ¢,(x;). Conditions (A), (B) (from Lemma 1.1) and (C) hold as
does the hypothesis of Corollary 1.1. Then

e(A) = sup {25, $;(x;): x € 4}

for all 4 e B*with @ # A C c/(A°). This yields an expression for the probabil-
ity of a large deviation for a sequence of random variables {7} with T, = T(X,)
and 4 = {xe R*: T(x) = 1}.

ExaMrLE (b). Functions of a finite number of order statistics. For eachn =
1,2,--.letY, < ... <Y, denote the order statistics of an independent sample
of a size n from a population with an absolutely continuous distribution with
cdf F(x) and density f(x). Assume that f(x) > 0 for a < x < b and zero other-
wise for —co < a < b < co. Assume F(x) is differentiable and F'(x) = f(x) for
all x.

Let an integer k and constants 0 = p, < p, < -+ < p < Py = 1 be given.
Foralln=1,2,..- let n; = [np;] + land X,; = Y, for j=1,..., k. Let
ny = 0and n,,, = n + 1. For n sufficiently large, X, = (X,,, - - -, X,;) has the
familiar order statistic density.

The sequence {X,} satisfies the conditions of Theorem 3.4 (excepting the initial
elements where the density may not exist) for any 4 € B* with @ # 4 C c¢/(4°).
Condition (i) is clear with

(4.1) 9(x) = D5 (p; — pi-a) log [F(x5) — £(x;20))/(p; — Pi-1)] -

The verification of conditions (ii) and (iii) is somewhat routine and will be
omitted. For condition (iv), if y > 0, P,(4 — N(0,7)) < P,(X,; < —ror X,, > 7).
Using P,(X,, > 1) < ()[1 — F(r)]*~" and a similar bound for P,(X,, < —7),
it follows that inf{e(4 — N(0,7)): 7 > 0} = —oo and hence condition (iv)
holds.

Finally, with the conditions of Theorem 3.4 holding, for any 4 ¢ B* with
@ # A C c/(A°) we have
4.2) lim, ., (1/n) log P,(A) = sup {9(x): x € 4}
where g(x) is given by (4.1). This result can be applied to give expressions for
probabilities of large deviations for random variables which are functions of a
finite number of order statistics, such as linear combinations (4 = {x: a,x, + - - -
+ a, x, = c}), quadratic forms, etc.

Witting (1959) has considered a y* goodness-of-fit test with cell boundaries

equal to selected order statistics for testing the null hypothesis that a given F(x)
is the population cdf. The statistic for a sample of size n is T, where

T,/n = 0(v(X,),q,)
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where v(X) = (V,(X), - -+, Vpa(X)) With v,(x) = F(x;) — F(x;_,) for j=1, ...,
k+1 (xo=a X401 = 0), €= (qu> ***> 1) With g,; = (n; — n;_))[(n + 1)
for j=1,...,k+4+ 1 and §(v, w) = 3 %11 (v; — w;)*/w;. Note that q, —q as
n— oo where ¢; = p; — p;_;.

To determine the exact slope of the sequence {T,} let A(r) = {v: d(v, q) = ¢}

and 4,(1) = {v:d(v,q,) = t}forn =1,2, .... From (4.2),
#(1) = lim,_, (1/n) log P,[v(X,) € A(1)]
= sup{—K(q, v): v € A(2)}
where K(q, v) = > %t} g;1og (¢,/v;) is the Kullback-Leibler information number.
Since ¢(¢) is continuous and for all ¢ > 0, A(t + ¢) C A4,(f) C A(t — ¢) for n
sufficiently large,

lim, ., (1/n) log P,[T, = nt] = lim,_, (1/n) log P,[v(X,) € A,(£)] = ¢(¢) .
For an alternative cdf G(x) + F(x), (T,/n) — (s, q) a.s. if b, - - -, b, are unique,
where s; = F(b;) — F(b;_,)and G(b;) = p;forj=1, ...,k + 1 (b, = a, b,,, =
b). Hence from Theorem 7.2 of Bahadur (1971), the exact slope of the sequence
(T} is
(4.3) —26¢(0(s, q)) = 2 inf {K(q, v): v € A(3(s, q))} -

The usual y* goodness-of-fit statistic which is comparable to T, has cell bound-
aries a; with F(a;) = p; forj =1, ..., k (ay = a, a,,, = b). The exact slope of
this sequence is (see Bahadur (1971), page 31)

4.4) 2 inf {K(v, q): v € A(é(r, q))}

where r = (r, - -+, 1yy) With r; = G(a;) — G(a,;_,). Some rough calculations
indicate that (4.3) is larger than (4.4) for some alternatives G and that the reverse
can hold for other G. A precise comparison appears difficult.
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