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ON THE USE OF RANKS FOR TESTING THE COINCIDENCE
OF SEVERAL REGRESSION LINES

By J. N. ApICHIE
University of Nigeria, Nsukka

For several linear regression lines Yi; = a; + Bi(xi; — Xi.) + Zij, i =

< kyj=1, .-+, n a statistic for testing a; = a, f; = B is constructed
based on the simultaneous ranking of all the observations. The asymptotic
properties of the criterion are also studied. The results are, however, not
directly applicable to the general design model Yi; = a; + i xi; + Zij,
unless it is assumed that the group means x;, are all equal.

0. Introduction and summary. In two recent papers Sen (1969, 1972) con-

sidered several regressionlines Y,; = o, + B, x,; + Z,;,i = 1,-- -, k;j =1,
n,, and studied optimum rank score tests for the separate hypotheses H:B, =8
(unknown), «, are nuisance parameters and H,: a;, = @ (unknown), B, are
nuisance parameters. In the present paper, we propose rank score tests that
discriminate simultaneously against different 8’s and different a’s. The methods
of Sen could be used to construct rank order statistics for testing H;: a, = a,
B, = B. This would, however, involve the estimation of « and the 8, and the
combination of the separate k rankings. The alternative method presented below
makes use of the simultaneous ranking of all the observations, and involves the
estimation of 8 only. However, our procedure is limited to designs where the
group means x, of x;;’s are all equal.

The proposed test statlstlc is shown to have a limiting chi-square distribution
under the hypothesis and a non-central chi-square under an appropriate sequence
of alternatives. The asymptotic efficiency of the given procedure relative to the
least squares procedure is also shown to be the familiar efficiency of rank score
tests relative to the s-test in the two-sample problem.

1. Notation and assumptions. Foreachi =1, ..., k,letY,;,j =1, n;
be independent random variables. Also let x,; be known constants that are not
all equal. It is assumed that the distribution function F,,(+) of Y;; are given by

(1.1) P(Y;; <y) = Fi(y) = Fly — a; — By(x;; — X))

where x;, = n,7' 3},x,;, F is continuous but its functional form need not be
known, and «;, B, are the unknown parameters of interest. Our problem is to
test the hypothesis '

(1.2) Hy: a; = @ (unknown), B, = B (unknown),
against the set of alternatives that violate (1.2).
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REMARK. The model in (1.1) assumes that the x,;’s have been centered about
their group means x, . This assumption, which necessarily limits the scope of
our procedure to specially balanced designs, is equivalent to the so-called
“orthogonality condition” in the classical least squares regression theory. For
testing hypothesis about §,, test criteria are always available independent of «;,
and without extra condition on the distribution functions F,;,, On the other
hand, tests about a, usually depend on the $; and require some symmetry con-
dition. The symmetry effect may be achieved if either the F,; are symmetric or
the x,; are symmetrically balanced as in (1.1) (see e.g., Hajek (1969), Theorem
3F).

In order to maintain the notation in Adichie (1974), we shall actually be
considering sequences {Y,,,} and {x,;}, n = 1,2, - .-, of independent random
variables, and constants respectively. However, for simplicity of notation, the
dependence on n of Y, ;, x,; and some of their function, will often be suppressed.
We shall therefore write

(1.3) Cri = 25 (%5 — %)% Tui = Caif G2

Z'M«=(ni/n)’ pni:(ni/cn)’ l: 1’ ""ka
where
(1.4) Clrl=2,Ck; n=3,n;.

For all the summations in this paper, i, s, and ¢ go from 1 to k, while j or v goes
from 1 to n, or n,. All limits are taken as n — co. It is assumed that each of
the quantities n, and C2; increases with » in such a way that for eachi =1, - .., k,

0< < (Supnrm) < =r)< 1,
(1.5) 0< 2 < (up, ) < (1 —2) < 1,
0 < Po é (Supn pm) < K:

and max (7,, 4,) < (1/k). Throughout this paper K with or without subscripts
will denote a generic constant. We shall write

(1.6) el = 7(X; — X)) s(#i)=1,.--,k,
= _(1 - rm‘.)(xsj - xs.) s=1i ’

(17) dg) =0 s¢j’

=1 s=1 N

so that .

(1.8) d = n T, % = A & =0,

(1.9) T D@ —dvy = p(l — 2,)C,7,

and

(1‘10) Zs Zj (CL? - E(i))2 = rm(l - rm‘.)an .

2. The test statistic. Let ¢(u), 0 < u < 1, be a smooth non-decreasing



COINCIDENCE OF SEVERAL REGRESSION LINES 523

function, and let the scores generated by ¢ be defined by
2.1) a.(p) = ¢lp/(n + 1)}, p=1-

Also let R,; be the rank of Y,; in the combined ranking of all the n observations.
For the unknown 8 in (1. 2), we shall require an estimate § defined in Adichie
(1974). For ease of reference, the estimate is

(2.2) B =3B + B,

where

(2.3) B, * =sup{b: S (Y — bx) > 0}, B ** =inf{b: S (Y — bx) < 0},
and S,(Y — bx) denotes the statistic

(2:4) S(Y) = T 55 (% — %)au(Ryy) »

when the observations Y,; are replaced by {Y,, — b(x,; — x,)}.
Now write ?,; = {¥;; — f(x;; — x,)}, and let R, be the rank of P,,. For each
i=1,...,k, define

(2.5) T =X, 2, @Y —da,R,,),
(2.6) Tos = X, 25 c%a,(R,;) -

Also for each i, let

(2’7) I’) = n- 5( M/A) ’ m — ( ﬁm/ACm) ’
where

(2.8) A = § PAu)du — {§ o(u) du}® .

The proposed test statistic is

(2'9) Mn = Zz (V?n + ffiz) .

3. Asymptotic distribution of M,. We shall consider the limiting distribution,
not only under the hypothesis (1.2), but also under a sequence of alternatives
defined by

where |§,] < K, and |0,| < K;, i = 1, .
Now set Y, = {Y,; — B(x,; — x;.)}, and let R}; be the rank of Y/,. For the
proof of the limiting distribution we shall need the following 2k statistics:

(3.2) T = 5, 0 {d% — d)ay(R)),

(3-3) TP = 2. 25 67a.(RY) i=1,...,k.

Observe that, although neither (3.2) nor (3.3) can be calculated, because they
depend on the unobservable random variables Y}; their distributions are fairly
well known both under H, and H,. The main tool in the proof of the limiting
distribution of M, is the following lemma
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LEMMA 3.1. Let the score generating function ¢(u) 0 < u < 1, satisfy the fol-
lowing
(@) l¢"@)]| < K,
(i) sup, [¢,{F} < K;.
Also let the regression constants be such that
(i) {max;; [x;; — x,|/C,} — 0,
and assume that the estimate  defined in (2.2) is such that as n — oo,

(iv) |Cu(B — B)| is bounded in both P, and P, probabilities. Then under (1.5),
foreach1 =1, ... k,

(3'4) {(Tani - Tgm)/cn} -0 ’

in both P, and P, probabilities, where ¢’ denotes the derivative, and ¢, the deriva-
tive with respect to y, while P, and P, denote probabilities under (1.2) and (3.1)
respectively.

ProoF. The detailed proof of (3.5), under a slightly different P, has been
given in Adichie (1974). The proof of (3.4) proceeds on similar lines, upon
defining Hajek’s projection statistics for T2, and noting that in view of (1.7),
(1.8) and (1.9), the constants d(? satisfy condition (iii) of the lemma. The proof
that f-estimate satisfies condition (iv) of the lemma is similar to that given in
Sen (1969).

LeMMA 3.2, Let V,, and U,, be as defined in (2.7), and let

(3.6) Hews = 20 505 (5 — d®) § Q{E(»)} dF,(y) »
(3.7) Poni = 24 2585 § QF()}AF,i(y)
where

(3.8) Fy) = n 5, 5, F(y) -

Then, under the conditions of Lemma 3.1
() V) =P+, V..) is asymptotically N(0, X,) under P,, and asymptotically
N(v,,, Z,) under P,;
ii) U, = (U, - -, U,,) is asymptotically N(0, ) under P, and asymptoticall
ymp Y # ymp 4
N(¥4ns Z;) under P,;
(iii) V, and U, are asymptotically independent both under P, and P,;

where v, = (Yau1> ** *»> YVaui)s Vi = (Vpms * Your)s With

(39) Yoni = n"’k(‘uam./A) s Yoy = (#ﬁm‘/ACm') 5
(3‘10) Ea = (aais) 5 Opis = {5is - (lni Znx)é} s
(3'11) Z,s = (oﬁis) H Opis = {0, — (T Tns)%} >

and 0,, is the Kronecker delta.
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Proor. If the lemma is true for P, then it is a fortiori true for P, so the proof
is given for P,. Without loss of generality, we take @ = 8 = 0, and by Lemma
3.1, we restrict attention to V,° and U,° defined through T?,, and T},,. Now
under (3.1) witha = 8 =0,

F(0) = Fly = (§/C) — (04 C)(xi; — x:)} 5
so that
Max, ji,y [Fo () — Fu(O)l < Kil(€ — €) + 0uxey — xo) — 0u(x0; — X,)I/Ca

< 2K/(K; + Kg) max,; |x,; — x,|/C,
=< Kmax,; |x,; — x,|/C, .

Also because of (1.5), (1.7), (1.8) and (1.9),

max,; |d — d9|(3, ;@5 — dV))

= max {2, (1 — 2,)}/{en(l — 2.)PC,
< {(04)7H/C,} < Ky max,; |x,; — X, |/C, .

for some appropriate K,. It follows then from Theorem 2.2 of Hajek (1968),

tnat under (2.1), n,"¥(T%,; — fun)/A(1 — A,,)* is asymptotically N(0, 1). Fur-
thermore, any linear combination of the k statistics T} is again a linear rank

statistic whose constants satisfy condition (iii) of Lemma 3.1. Hence V,’ under
P, is asymptotically normal with asymptotic mean »,,. For the asymptotic

n

covariance matrix, if we write

Wami =nt Zs Zi (dg;) - J(i))¢{st(y)}/A ’
then arguments similar to those used in the proof of Theorem 2.2 of Hajek (1968)
show that under (3.1),
Cov (V':?.L’ V??a) ~ Cov (Wa'n-i’ Wans) = _('zm Zns)% ’

where ~ denotes asymptotic equivalence in the ratio sense. This establishes (i)
of the lemma. The proof for (ii) is similar. Finally (iii) follows from the fact
that -

S endy —dP)=0.
The limiting distribution of M is given in the following

THEOREM 3.1. Consider model (1.1), and assume that the conditions of Lemma
3.1 are satisfied. Then under P, M, has asymptotically a chi-square distribution
with 2k — 2 degrees of freedom, and under P,, a non-central chi-square distribution
with 2k — 2 degrees of freedom and non-centrality parameter given by

(3.12) Ay = Ni{od& — &) + 10, — OVIS ¢,°(F(y) dF(y))/ AT,
where € = Y, 2,6; 0 = ¥, 71:0,, and p,, 2, are the limits of p,; and ,,; respectively.

Proor. Each of the covariance matrices (3.10) and (3.11) is singular of rank
(k — 1). On applying orthogonal transformations to the ¥, and U, it follows
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from Lemmas 3.1, and 3.2, that under (3.1) each of Y7, V2 and 3, U2 has
asymptotically a chi-square distribution with (k — 1) degrees of freedom and
non-centrality parameters

A, =lim 3,2, , A, =1lim 33,3, .

From (iii) of Lemma 3.2, the non-centrality parameter of M, is A, + A, = D,
say, so that

(3.13) D, = 1lim 3}, (Vin; + Vini)
Upon expanding the quantities v,,; and v,,; and integrating by parts, it is easily

seen that D, is equal to A, given in (3.12). The proof is thus complete.

4. Asymptotic efficiency. The classical test statistic Q, for the hypothesis
(1.2) is based on the difference between the least squares estimates of «; and §;
when (1.1) is true, and the estimates of & and 8 when (1.2) is true. Q, is the
variance ratio criterion which in this case becomes

(4.1) 0, = I, {m(Y, — Y. + CL(B: — B}k — 2)s2,

where the least squares estimates §; and B are given by

(4.2) B = Col{ 2 (X5 — X )(Yis — Y.} B=2irnbis
with Y, = n=' 3, Y,,, and s, is the mean square due to error. If F is assumed
to be normal, as in the classical case, then under H;, Q, has the variance-ratio
distribution with (2k — 2, n — 2k) degrees of freedom, and the test based on Q,
is in this case most powerful.

When the assumption of normality of F is dropped, the exact distribution of
Q, is not known. Although it can be shown that for any F(y) for which

o}(F) = {§ y*dF(y) — (Vy dF(y)} < o0,
(2k — 2)Q, under H, has asymptotically a chi-square distribution with (2k — 2)
degrees of freedom and under (3.1) has asymptotically a non-central chi-square
distribution with 2k — 2 degrees of freedom and non-centrality parameter,

(4.3) A, = lim E,{(2k — 2)s2Q,}/o*(F) ,

where the expectation E, is taken with respect to P,-probability distribution.
Straightforward computations yield

(4.4) Ay = 2i{od&: — é‘z)z + 7d0: — 0)}/o*(F) ,
where & and 6 are defined in (3.12). By the conventional method of measuring

efficiency, the asymptotic efficiency of the M,-test relative to the Q,-test is
therefore

(4.5) Bulbg = {a(F) § ¢,/(F(y)) dF(y)/ 4} ,
which is the familiar efficiency expression of rank score tests relative to the
classical r-test in the two-sample problem.
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If Z, = —21log L, where L is the likelihood ratio criterion, it follows that for
F(y) with a finite Fisher information I(F), the efficiency of the M, test relative
to the asymptotically optimum parametric Z,-test is

(4.6) Bulbz = [ ¢ AFO}YAF()]|ALF)
which is unity if 4* = I(F).
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