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APPROXIMATE BAYES SOLUTIONS TO SOME
NONPARAMETRIC PROBLEMS

By M. GOLDSTEIN
University of Oxford

The problem of making inferences about real functions of a probability
distribution of unknown form is examined in a Bayesian nonparametric
framework. With respect to a general quadratic loss function, Bayes esti-
mates within the class of linecar combinations of a given set of functions
on the sample space are obtained for general functions on the distribution
space. The result is then used to derive Bayes polynomial estimates of the
moments of the distribution.

1. Introduction. Ferguson (1973) has written that “The Bayesian approach
to statistical problems, though fruitful in many ways, has been rather unsuc-
cessful in treating nonparametric problems. This is due primarily to the difficulty
in finding workable prior distributions on the parameter space which in non-
parametric problems is taken to be a set of probability distributions on a given
sample space.” As a result, the Bayesian approach to nonparametric problems
seems, in practice, to proceed by approximating the given problem by a param-
etric problem which, hopefully, has many of the same features as the original
problem.

This paper presents an alternative approach, approximating the solution of
the original nonparametric problem, assuming a general prior distribution over
the distribution space of the sample space. With respect to a general quadratic
loss function, we look for the Bayes rule, for a general real-valued function on
the distribution space, when the decision space is restricted to the set of linear
combinations of some given set of real functions. The result is then used to
derive Bayes polynomial estimates, of any given order, for the ith moment of
the unknown distribution about the origin.

2. General formulation. A sample s is drawn from a probability distribution
F, which is defined over a sample space S. The form of F is unknown, and we
wish to make inferences about a real-valued quantity g(F), where g is a meas-
urable function from & (the space of all probability distributions defined over
S) to the real line. The loss function for the problem is taken to be of the form

(2.1) L(F, d) = w(F)(g(F) — d)?,

where w(F) = 0 for all Fe &,
We assign a prior measure P(+) over a g-algebra of subsets of &, with respect
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to which g(F), w(F) are measurable, and, using the Bayes theorem, we evaluate
P(+), the posterior measure over % given 5. The Bayes rule d(s) for g(F),
with respect to the loss function (2.1), is given by g(s), where

(22) 9(s) = § w(F)g(F) dP(F)[§ w(F) dP(F),

(provided the posterior risk of g is finite for each s; Girshick and Savage (1951)).
Typically, g(s) will be difficult to evaluate explicitly, and we therefore seek
to approximate it by a linear combination of m real-valued functions, 4,(+), - - -,
h,(+), defined on S; i.e. we seek the Bayes decision for g(F) within the class of
decision rules of the form ) ™, 2,4,(s), where the 2, are real.
We wish to find 2 = (2, - - -, 1,,), to minimize

(2.3) §§ (9(F) — X7 4:hy(s))*w(F) dF(s) dP(F) .

From the general theory of Least Squares (see, for example, Rao (1973)),
the value of 4 minimizing (2.3), and the value, R, of (2.3) for this value of 2,
are obtained by calculating D, the dispersion matrix of A, wt, ..., h_wt, and b,
the covariance vector of gw? with A, wt, ... h_wt,

We note that, defining

e = § g(F)w(F)dP(F),
(2.4) h(F) = § hy(s) dF(s) ,
hi(F) = § h(s)h(s) dF(s) ,
we have provided A,(+), /,;(+) are measurable functions of F,
2.5 §§ 9(E)h(s)w(F) dF(s) dP(F) = § g(F)h(Fyw(F) dP(F) = b,,
(2.6)  §§ h()h(s)w(F) dF(s) dP(F) = § hy,(Fyw(F) dP(F) = d; .
Evaluation of (2.5) and (2.6) requires only a partial specification of P and will

typically be more straightforward than evaluating (2.2). We have

TueoreM 2.1. If hy(+), -+, h,(+) are m real-valued functions on S, for which
the values b;, d,; (defined in (2.5), (2.6)) exist for each i, j, then with respect to loss
function (2.1), we obtain the following:

If the matrix D = (d;), i,j, = 1, - - -, m, is invertible, and e (defined in (2.4))
exists, then:

(i) the Bayes estimate for g(F), in the class of linear combinations of the func-
tions hy, - - -, h,, is given by

2.7) Mhy A oo Ay,

where, if 2 = (4, +++, 4,), b= (b, -+, b,),
(2.8) A=D"1;

ii) the Bayes risk of estimate (2.7) is given by R, defined b
y & y y
(2.9) R =13 }|/ID].
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3. Bayes polynomial estimates for moment problems. An observation x comes
from a probability distribution F(x) over the real line. The form of F(.) is un-
known, and we wish to estimate the function p,(F) defined by

@3.1) pF) = | xtdF(x),

where i is some given positive integer. (The case of greatest practical interest
is i = 1.) We assign a prior probability measure P(.) over &, the space of all
probability distributions over the real line, and we work with the quadratic loss
function L,(F, d) defined by

(3-2) Ly(F, d) = (p(F) — d)*.

With respect to this loss function, we seek the Bayes rule for p,(F) given x
within the class of real-valued polynomials in x of order n. We denote this class
by 4,, and we define 7,(x) = x%, i = 0, 1, ..., n. Further, we define

(3-3) fir = | 1, (F) dP(F),

(3.4) firo = § 1(F),(F) dP(F) ,

(3.5) E(F) = § 1,(x) dF(x)

(3.6) Fu(F) = § 1,(x)1,(x) dF(x) .
It follows that

(3.7) () = p(F),  E4(F) = pys(F)

so we have

(3.8) {E(F)AP(F) = friys,  § t(F)ESF) dP(F) = fy ;.
But if G(x) is our prior distribution for x, i.e.

(3.9) G(x) = § F(x) dP(F),

then, assuming that the required expectations exist, we may apply Fubini’s theo-
rem to obtain

(3.10) | x4 dG(x) = {[{x! dF(x)] dP(F)
:/2]., j=0,1,2,~-.

The set {2y, i1y, f1, - - -} is therefore the moment set about the origin of the dis-
tribution G(+). Thus, denoting by K, the (n + 1) X (n + 1) matrix with entries
K,; defined by

(3.11) K=t i,j=0,1,...,n,

we see that |K,| is the nth Hankel determinant of the distribution G, and hence,
providing G has more than n points of increase, |K,| > 0, i.e. K, is invertible,
(see, for example, von Mises (1964)).

It follows that we can apply Theorem 2.1 directly. Here the sample space
S is the real line, the function to be approximated is p,(F), w(F) = 1 for all F,
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and the approximating functions are ¢, ¢, - - -, ¢t,. Comparing (2.4), (2.6) with
(3.6), (3.8) it is immediate that the matrix D defined in Theorem 2.1 is, in this
instance, K, (as defined in (3.11)). Provided G has more than n points of in-
crease, K, is invertible and the requisite condition of Theorem 2.1 is satisfied.
Further, comparing (2.4), (2.5) with (3.5), (3.8), the vector b defined in Theorem
2.1 is, in this instance, the vector

(3.12) b,' = (0 fliy10 =+ o Bin) -
Substituting the relevant quantities into Theorem 2.1, we thus obtain

THEOREM 3.1. (i) Given the observation x, the Bayes estimate for p,(F), with
respect to loss function (3.2), in the class A, is

(3.13) ()’ -a,
where n(x) = (1, x, x*, ..., x")" and
(3.14) a,’ =K,”b,’.

This holds for any integer n such that the prior distribution for x has more than
n points of increase, provided that the expectations detailed in (3.10) exist.
(if) The Bayes risk incurred by using the estimate n(x)’ - a,%, is given by

(3.15) o, 2 /1K)

5,

As a simple application of the above theorem, suppose we are in a parametric
framework where we know that the form of F is N(u, ¢%), with ¢® known. If
the prior distribution for x is N(0, z*) then, with respect to quadratic loss, the
Bayes estimate for y, in the class 4,, for each m > 1, is given by

(3.16) 2x)(* + ) .

For a more complicated example, suppose that, as before, our prior distribu-
tion for g is N(0, z*), but that the form of F is known to be N(y, ¢ + ku?),
k > 0. In the special case where ¢* = 7?, the Bayes estimate for y, in the class
A,, is given by

(3.17) x/(2 + k).
More generally, the Bayes estimate in A, is
(3.18) x(cy 4 x%c;)/cy

where, defining
b=1+k), b, = (3kK*+ 6k + 1), b, = (15k* + 45K* 4 15k 4 1),
a, = o+ b7?, a, = 3(by* + 2b,0%* + o%), "
a, = 15(z%, + 37'e®b, + 37%¢*b, + o%), a, = 1%,
a, = 3(d*c* + (b, + 2k)),

Il
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then

(3.19) ¢, = a,a, — at, ¢, = a;a, — a,ay, ¢, = a,a; — a,a, ;
so, for example,

(3.20) ¢; = 6kti(0® — %) .

For the majority of problems, of course, a complete specification of the prior
measure over % will be impractical and the prior values g, g, , will be esti-
mated directly. The extension to the case where an independent sample x =
(X5 Xy, - -+, x,) is drawn from F is immediate. We define

(3:21) Piay,eeeiom = § i 50 (F) dP(F) .

We wish to approximate the Bayes rule for g(F) by polynomials of order m
in x; i.e. by the set of functions

(3.22) iy, iom(X) = Tl x50, D j@ =m,

(j(P) is a nonnegative integer for each i).
Instead of (3.3) to (3.8), we have

§ Eiw,eiem(F) dAP(F) = By, i 5

(3'23) S i(j(l) ,,,,, F(n))(k(1),ee0, k(‘n))(F) dP(F) = ﬂf(l)-(-k(l) ,,,, J(n)+k(n) »
§ 5y, i) pl(F) AP(F) = 1, 500y, ey 5

and (3.10) becomes

(3.24) § I %70 dG(x) = £, jom -

So, in the statement of Theorem 3.1, we therefore replace b,‘ by the vector
bi, , whose (k(1), - - -, k(n)) entry is g1, ).... kn)» Dn by the matrix D, , whose
(k(1), - -+, k(n)) row, (j(1), -+, j(r) column entry is f;u4aqy,...,jom+rem> and
m(x) is replaced by m(x), whose (j(1), - - -, j(n)), entry is J]7, x,7 where we
have assigned some fixed ordering to the set of vectors (a(l), - - -, a(n)), (a(1), - - -,
a(n) are nonnegative integers), .7, a(f) < m. For example, if n =2, m = 2,
and our ordering is (0, 0), (0, 1), (1, 0), (1, 1), (0,2), (2,0), then

b = (fas Ly Fars Py Ps oo ﬂi,z)' and
m(x) = (1, x5, Xy, X, X5, X575 X%)" .
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