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UPPER AND LOWER POSTERIOR PROBABILITIES
FOR DISCRETE DISTRIBUTIONS

By ROBERT KLEYLE
University of Massachusetts

Dempster (1966) defines two sampling models which he labels struc-
tures of the first and second types. In this paper we consider the application
of the type one model to the problem of finding upper and lower posterior
probabilities when sampling from discrete univariate distributions whose
support consists of the set of nonnegative integers. Specific results are
obtained for the Poisson and geometric distributions.

1. Introduction. The basic components of the inference system proposed by
Dempster (1966), (1967) consist of a population space U, an observation space
X, and a class _# of measurable mappings of U onto X. As is usually the case
with type I structures, the population space can be taken to be the unit interval
U = (0, 1) (cf. Dempster (1966)) and in this application the observation space X
consists of all nonnegative integers. The random sampling process is governed
by the uniform probability measure y over the Borel sets of U. The distributions
over space X induced by the measure ¢ over U are assumed to be in one-to-one
correspondence with the class .

Let © denote a space which is in one-to-one correspondence with _ so that
¢ € © if and only if my e _#. © is the parameter space indexing the class _# and
also the family of probability distributions induced on X by x and _# Now
for each 6€0 let {I(x,60),x =0,1,2, ...} denote a countable partition of U,
where I(x, 0) = (a(x — 1, ), a(x, 0)], and

0=a(—-1,0)<a0,0)< --- <ak,0) < -.. <1 for all 0.
The functions a(x, 0) are picked so that, given x ¢ X,
my: u— x<uclx,0) for all @,

where m, denotes the mapping corresponding to . Thus, if p(x, 6) denotes the
probability function of the distribution over X induced by x and m,,

p(x, 0) = p(I(x, 0)) = a(x, ) — a(x — 1, ) forall 0c0O,
and
a(x, ) = F(x,0), x=0,1,2,...,

where F(x, f) denotes the distribution function of the induced probability dis-
tribution.
Let us now assume that a(x, 6) is continuous and strictly monotonic in ¢ for
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all xe X. Without loss of generality we can assume that a(x, 0) is strictly de-
creasing in ¢ since, if the opposite were the case, we could reparametrize in
terms ¢ = 1/6. Since a(x, 0) is strictly decreasing in ¢ for each x e X, there
exists an inverse function b(x, ¢) which is itself continuous and strictly decreas-
ing in 6 for each x € X and has the property that for any 7 ¢ (0, 1),

(1.1) a(x,0) < t=0> b(x,1),
a(x,0) >t =0 < b(x, 1).

Now suppose that a random sample of size n is drawn. That is, a sample point

(455 + -+, u,) is drawn from U" in accordance with probability measure p", and
the corresponding data point (x;, - - -, x,) is observed. Given the observed data
(X -+, x,) and an arbitrary sample point (u,, -- -, #,), we wish to determine

the values of 6 for which the sample point is consistent with the data. (For a
definition of consistency see Dempster (1966).) Recall that for given 4,

my:u—xe=alx—1,0)<u<a(x, ).
Referring to (1.1), we see that the above line can be rewritten
my:u—x=bx—1,u) <0< bx,u),
and for any given (4, - - -, ,) and (x,, - - -, x,) the set of consistent ¢ is given by
Ly, -+, u,) = {0: max; b(x, — 1, u,) < 6 < min; b(x,, u;)} .

It is possible that max; &(x; — 1, #,) > min; b(x;, u;). In thiscase I' = @. For
notational convenience we define

(1.2) Y = max, b(x, — 1, u), Z = min; b(x;, u;) .

Thus, for given (x,, - - -, x,) and (uy, -- -, u,),

(1.3) r={:vy<o<2zy, for Y<Z,
=, for Y>Z.

Furthermore, if T denotes the set of all sample points which are consistent with
the data for some 0,

T={(, ) 0<Y<Z< o}

All upper and lower probabilities will be conditional on T.

Since any given sample point may be consistent with the data for more than
one ¢, the concept of consistency sets up a one-many mapping of U into ©.
Consequently, a set S < © will not have a unique preimage in U". However,
upper and lower preimage can be defined (cf. Dempster (1967)). Given any set
S c 0, let

(1.4) S* = {(uy, -+ u,): C(uy, -, u,) 0 S = @},
Sy ={(y --su): @ Tuy, ---,u,) < S}.
Let C denote the class of sets S C @ such that both S* and S, are Borel subsets
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of U*. Then for any set Se C,
PX(S) = P(S*)/P(T),  Py(S) = P(S,)/A(T),
where P = p".

A system of upper and lower posterior probabilities, rather than a unique
posterior probability for each event on ©, may seem cumbersome at first, but
it offers greater flexibility in representing the degree of certainty in a particular
situation. If the experimenter were in a state of total ignorance, the set of con-
sistent § would be O itself, resulting in an upper probability of one and a lower
probability of zero. On the other extreme, perfect knowledge of the nature of
a given situation implies that there can be only one consistent mapping for each
sample point. This results in the U* — © mapping being one-to-one, and the
system of upper and lower probabilities collapses into a single posterior proba-
bility. For a fuller discussion of these points the reader is referred to Dempster
(1968).

2. Upper and lower posterior distributions. Let us assume that 6 < (0, o)
and consider events of the types {# < 4} and {1, < 6 < 2,}. It is straightforward
to check that these events are members of class C. Now if S = (4;, 4,),

S* = T — A(A,, 00) — A0, 2,), S, = A(2y, 4y) ,
where
(2.1) A(Ay ) = {(uyy -5 1,): 4, <UL Z < 45}

The calculation of upper and lower posterior probabilities for both types of events
is seen, therefore, to be essentially the problem of calculating P(4(4;, 4,)) since
T = A(0, o), and

{0 < 2} =lim, _,{4 <60 <1}.
However, as will be shown later in this section, it is virtually impossible to cal-
culate this probability directly when 0 < 4, < 4, < oo.
Let us first consider one-sided events. Define
(2.2) AI(Z):{(ul,---,un):0<Y<Z<,2},
AfA) = {(up + -5 1,): 0 Y <AL 2},
and note that if S = (0, ), (1.3), (1.4), and (1.5) imply that
S* = A,() U 4,(2), S, =A%) .
Thus, '
(2.3)  P¥(0 < 2) = [P(A()) + P(A))][P(T), P60 < 2) = P(A(2))/(T) -
Now suppose that S = (4, 4,). In this instance,
S* = Ay(;) U Ay(2) — A2)
and from (2.3),

(2.4) P2, < 0 < 2) = PO < 4,) — P(0 < 4y) .
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We find the lower probability of S(4,, 4,) by finding the upper probability of its
complement § since it is easily demonstrated that
(2.5) P.(S)=1—P*S8) forall SecC.
Definition (1.4) implies that

§% = A(3) U Ah) U Ahy) U [A(Z) — AR A)],
where
(2‘6) A3(2)={(ul’ "”un): '2< Y< Z}’

A A)) = {(Uyy -+, 1,): 0L Y < 4 < 4 < Z} .

Note that the sets in the above union are mutually disjoint and that 4,(4,, 2,) C
Ay(2;). Thus,

(2.7)  P(S*) = P(4(4)) + P(Ay(4)) + P(Ay(4)) + P(Ay(s)) — P(A(Ay, 4y)) -

The next step is to determine the P measure of sets 4,(1), i = 1, 2, 3, A,(4;, 4,),
and T. Recall from (1.2) and (2.2) that

Af(A) = {(uyy -+ -5 1) b(x; — 1, 1) < 2 < b(x;, w;) forall i}.
It therefore follows from (1.1) that
Ay = {(uy, -+ -5 u,) s alx; — 1, 2) < uy < a(x;, 2) for all i},
so that
(2-8) P(Ay(2)) = Tl [a(xis 2) — a(x; — 1, H] = [T p(xis 4) 5
where p(x, 1) denotes the probability function of the distribution over the obser-

vation space.
By a similar argument, we derive

P(A4(21, '22)) = [lia [a(xi’ '22) - a(xi -1, '21)] ’
(2.9) for a(x;, 4;) < a(x; — 1, 2) for all i
=0, otherwise.

Furthermore, since

Ay2) = T — Ay(R) — A,(2),
and

AN A =@,

(2.10) P(Ay(2)) = P(T) — P(A(2) — P(Ay(2)) -
From (2.10), we may rewrite (2.7) as
(2.11)  P(§*) = K(T) + P(A(4)) + P(Ay(4)) — P(A(4)) — P(A(Ass )
and using (2.3), (2.5) and (2.11), we have
(2.12) P (A, <0 < A) =Py (0 < 2) — P*O < 4) + P(A(4, 4,))/P(T) .
It remains only to find P(A,(4)), but this task is much more difficult than that
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of finding the probabilities of 4,(4) and A4,(4;, 4,). The reason for this difficulty
is that unlike 4,(4) and 4,(4;, 4,), there is no 2 separating Y and Z in the defini-
tion of A4,(2).

The first step in finding the P-measure of 4,(4) is to derive the joint density
of (Y, Z). We see from (1.1) and (1.2) that

PY<y,Z>2)
= P(b(x; — 1,u;) <y forall i, b(x;,u;) >z forall j)

(2.13) = P(a(x; — 1,y) < u; < a(x;, z) for all i)
= [Ir, [a(x;, 2) — a(x; — 1, )], for (y,2)eR
=0, otherwise,

where

R={(y,2):a(x,—1,y)<a(x;,z) forall i=1,...,n}.
The joint distribution function of (Y, Z) is
C)=PY=y,Z<2)
=T —a(x — L] — Il [a(xs 2) —a(x, — 1L, y)],  (1,2)eR
= Il [ —a(x — 1L, ))], (»2) &R,
and the joint density is

9(y, 2) = —=@[dy 9z [} [a(xis 2) — a(x, — L p)Il, (1, 2)eR

=0, (»y,2)¢R.
Now

PA) = §4 55 90, D) dy dz = 3 20| az,

y=z
and using the product rule along with (2.13), we obtain

0G(y, 2)[9z = — L @' (%, 2) [T jri [@(x5, 2) — a(x; — 1, 7)), (., 2)eR

=0 ) (.y’ Z) ¢ R 4
where a’(x, z) = da(x, z)/0z. Thus, since a(x; — 1, z) < a(x;, z) for all j,
(2.14) P(A2) = — o i 112 s P(x55 )0 (x5 2) 2,

where p(x, z) denotes the discrete probability function defined in Section 1.

To obtain a more explicit expression for P(4,(4)), one must know the exact
form of a(x, z). In the next section we consider examples in which a(x, z) denotes
the distribution functions of the Poisson and geometric distributions.

Before proceeding to the next section, we note that if the above approach were
applied to the problem of finding the P-measure of A4(4,, 4,) given by (2.1),

oG
P(A(A, 4,)) = Z1—_ 11_ dz.
(Al ) = $3 57| de = S 5| s
The second term on the rhs of the above line is cxtremely difficult to calculate,

even if the exact form of a(x, z) is known.



POSTERIOR PROBABILITIES 509

3. Examples.

The Poisson distribution. Consider the situation when the probability distri-
bution on the observation space is the familiar Poisson. In this case,

(3.1) a(x, 0) = e=? 35_,09[j! = (1/x!) (5 ue~"du,
a(x, 0) = —e%0%/x! .
It follows from (2.14) that
(32 P(A4,(2) = (#/]} x,!) §3 2= dz
= k(s -0 X+ 1)
where t = 37 x;, k,(x;, - -+, x,) = t!/n* T[%, x;!, and 7,(b) denotes the incom-
plete gamma function
7a(b) = (/L)) §§ u~le~" du .
Recalling that T = A4,(c0), we see from (3.2) that
P(T) = ku(xps -+ -5 x,) -
Furthermore, applying (2.8) we see that
P(Ay(2)) = [, e~ %2%/x,;! = k,e " (nd)[t!,
P(A) + P(AyR) = K [ra(t + 1) + e=X(n2)fe!] = K, 7,(0)
and from (2.3),
PO <) =1u(l), PO <2 =ra(t+1).
Finally, (2.4) and (2.14) imply that
PH(2, < 0 < A) = 1ua(1) — 1ua(t + 1),
while
Puhy <O < &) = 1ap(t + 1) = 7an(t) + 9o da Xy -5 %) 5
where
(A5 Ay Xy5 -+ o5 %) = [T5oa [12(X5) — 12,(%; + DIfka(x -+ 45 %)
for 7, (x;) <7ry(x;+1) forall j=1,...,n,
=0, otherwise.
From the above results, it is obvious that
lim, . [P*(h < 0 < 4) — Py( < 0 < 2)] =0  forall (i,4).

In fact, it is apparent from lines (2.4) through (2.9) that this result holds even
when a(x, ¢) is not a Poisson distribution function.

It is interesting to note that aside from ¢(4,, 4,: x;, - - -, x,), which is zero for
many data points (x, .-, x,) and 2 values and is asymptotically zero for all 2
values, all posterior probabilities depend on the data only through the statistic
t = Y,#x, which is sufficient for 6.
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The geometric distribution. For the geometric distribution,
px,0)=(1 -6, x=0,1,2,..., o0oglt,
and
a(x, 0) =1 — g=+1,
Thus, for 2¢€ (0, 1), (2.14) implies that
P(A(2) = Tt (x + 1) §§ (1 — 2~ dz
= Li(t + 1, n)/(**"7Y),
where t = Y7 x,, and I, denotes the incomplete beta function
Iy(a, b) = (1/B(a, b)) S} uY(1 — u)*~*du .
Furthermore,
P(T) = P(4y(1)) = 1/("*77Y)
and from (2.3),
PO < 2) = L(t + 1, n) + (**779)24(1 — 2)
= 4 (FIR(L = D — o+ m) R — A
while
PO <) =Lt + 1, 1) = D40, (594(1 — 2+

The second equality in both of the above equations follows from the well-known
fact that

Lk, n —k + 1) = 25 (A1 — 7.

Applying the above results to (2.4) and (2.12), we get

P <0< A) = L(t + Lin) — L(r + 1, n) + (2241 — 2,),
and

Pui <O < A) =Lt + 1,n) — L (t + 1, n) — (**2H2(1 — 2,)

+ P 430 Xy -0, X)),
where
DAy Ayt Xy w5 x,) = [[% (A% — 2%%Y) for 2,7+t < A% for all j,
=0, otherwise.
As in the Poisson example, the difference between the upper and lower prob-

abilities is asymptotically zero, and these probabilities depend almost entirely on
t = 2.1 x; which is again sufficient.

Acknowledgment. The author wishes to thank the referee for suggesting an
approach which greatly simplified the derivation of P(4,(2)).

REFERENCES

[1]1 DEMPSTER, A. P. (1966). New approaches for reasoning toward posterior distributions based
on sample data. Ann. Math. Statist. 37 355-374.



POSTERIOR PROBABILITIES 511

[2] DEMPSTER, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping.

Ann. Math. Statist. 38 325-339.

[3] DEMPSTER, A. P. (1968). A generalization of Bayesian inference (with discussion). J. Roy.

Statist. Soc. Ser. B 30 205-247.

DEPT. OF MATHEMATICAL SCIENCES
INDIANA UNIVERSITY/PURDUE UNIVERSITY
1201 EAST 38TH STREET

INDIANAPOLIS, INDIANA 46205



