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ON A CLASS OF UNIFORMLY ADMISSIBLE ESTIMATORS
FOR FINITE POPULATIONS

By RM. SEKKAPPAN AND M. E. THOMPSON
University of Waterloo

Let C’ be a class of sampling designs of fixed expected sample size n
and fixed inclusion probabilities z; and C be the subclass of C’ consisting
of designs of fixed size » and inclusion probabilities z;. Then it is estab-
lished that the pair (e*, p*) where p* e C and e*(s,X) = Yies bixs, b; > 1,
and ¥ (b:)! = E(n(s)) = n, is strictly uniformly admissible among pairs
(e1, p1) where p; € C’ and e; is any measurable estimate.

1. Summary and introduction. Admissible estimation in relation to survey-
sampling has been studied in great detail by Godambe and Joshi [4] and Joshi
[6], [7]. Joshi [7], Godambe [3] and Ericson [1] have established the uniform
admissibility of some classes of estimator-design pairs for a finite population
total or for a finite population mean. In particular, Joshi [7] showed that the
sample mean and a sampling design of fixed sample size n are uniformly admis-
sible for the population mean, when the competing designs have expected sample
size not less than n.

In this paper, we consider the pair (&, p’), where ¢ = };,., b,x, is a linear
estimator of the population total. The important Horvitz-Thompson estimator
is a special case of &. The estimator ¢ is shown by Joshi [6] to be admissible
(with respect to a given sampling design) when the sampling design is of fixed
sizenand Y, 6,7 = n, b, = 1. It might be supposed that, as a generalization
of Joshi’s result concerning the sample mean, any pair (&, p’) would be uniformly
admissible among estimator-design pairs with expected sample size n, provided
that p’ had fixed size n. We are able here to prove this, when the competing
estimators are measurable and the competing designs have the same inclusion
probabilities as the fixed size design p’. Moreover, we show by an example that
the (expected) more general extension of Joshi’s result does not hold; the pair
(€, p') need not be uniformly admissible if the competing designs are allowed to
have inclusion probabilities differing from those of p'.

The notation and definitions follow those of [3], [4] and [6]. The population
consists of N units denoted by the integers i = 1,2, ..., N. Let x; be the real
(unknown) value associated with the ith population unit; then x = (x,, - - -, x)
is a vector in the N-dimensional Euclidean space RY. The population total T(x)
is )%, x;. Any subset s of the integers 1, 2, ..., N is called a sample. If S is
a subset of the set of all possible samples s and p is any real function on S such
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that 0 < p(s) < 1 for all se S and ¥, p(s) = 1 then (S, p) is called a sampling
design. For a sample s, n(s) will denote the number of distinct elements in the
sample. A fixed size design of size n is one for which se S implies n(s) = n.
Any real function e(s, x) on the product space S x R”, such that e depends on
x only through those x, for which i € s, is called an estimator of T(x).

DEFINITION 1.1. A pair (¢, p’) consisting of an estimator ¢’ and a sampling
design (', p’) is said to be uniformly superior to another pair (e, p) if for all
xe RY

(1) Zs P'O)NE (s x) — TX)] = Zsp(s)le(s, x) — T(X),
strict inequality holding for at least one x; here S’ and S denote the sets of all
possible samples s for which p’(s) = 0 and p(s) # 0 respectively.

DEFINITION 1.2. With respect to a class C* of sampling designs of fixed ex-
pected sample size, a class D of estimators and a squared error loss function, a
pair (¢/, p’) of an estimator ¢’ e D and a sampling design (S’, p’) € C* is said to
be uniformly admissible if no other pair (e, p) such that (S, p)e C* and ec D is
uniformly superior to (¢’, p’).

2. Uniform admissibility of the estimate. We shall prove the uniform admis-
sibility for a general class of estimates of which the Horvitz-Thompson estimate
(H.T. estimate for short) is a particular case. As an intermediate step in the
development of the argument, we prove a weaker type of uniform admissibility.

DEFINITION 2.1. A pair (e, p) of an estimator ec D and a sampling design
(S, p) € C* is said to be weakly uniformly admissible if there exists no other pair
(¢, p'), where ¢’ € D and (§', p’) € C*, such that the inequality (1) is satisfied for
almost all (Lebesgue measure) x € R”, the strict inequality in (1) holding on a
non-null subset of R”.

To distinguish the uniform admissibility defined by Definition 1.2 from weak
uniform admissibility the former will be called strict uniform admissibility. The
argument is then completed by proving that weak uniform admissibility implies
strict uniform admissibility.

THEOREM 2.1. Consider the class of sampling designs

(i) Zsn(s)p(s) = n,

(i) 2,00 p(5) = 7,

., being the inclusion probability for the individual i, and let C be the subclass of C’

consisting of fixed size designs of size n and inclusion probabilities w,. Let e*(s, X)
be an estimate given by

) c =

(3) e*(s, X) = Xlies biX;
where the coefficients b, satisfy
4) i b6,>1 i=12,...,N and

(i) X3 (b)7 = En(s)) = n.
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Then the pair (e*, p*) where p* belongs to C is weakly uniformly admissible among
pairs (ey, p,) where p, € C' and e, is any measurable estimate.

Proor. If possible, let (e;, p;) be a pair satisfying
() L P)e(s, x) — TX)P = X p*(5)[e*(s, X) — T(X)P

for almost all x € RY (Lebesgue measure), with strict inequality holding for a
non-null (Lebesgue) set in RY. Putting

(6) xi:zbf’ i=1’2"“aN,
(7) f(s,y) = ey(s, y) — z:ie,-ybi_,
®) A6) = Tios = 7 = Tiese
8 bZ €8 bi
) 3(s) = [z 1 — -;—i)yi]/ﬂ(s),
where
(10) B = Zeea(1 =)

A

in (5), we have

2 2
A Bap@[ 6.9 = T2 [ £ Do p ©[ 460560 = Zua 2 [

(We note that B(s) = A(s) in the R.H.S. of (11).)

We now take expectations of both sides of (11) with respect to a prior dis-
tribution on R¥, under which each variate y, i = 1, 2, ..., N is distributed in-
dependently and normally with common mean 6 and variance ¢, = K/(1 — 1/b,),
K > 0; and we get

(12) g pOE[ fis¥) = 4@ — Bep, |

[

< S PO 4050 - A0 = T 20T

1

Simplifying (12) we have

13) X PO AWELI(s, ¥) — OF < K p*(s)A5)ELF(s) — OF,
where
(14) o(s, y) = ;%f@, y).

It is easily seen that for j(s) in (9)
- K
15 E — 0P =-———.
(15) ) = O = 55
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Now inserting
(16) 9(s, ) = J(8) + k(s y)
in (13), we get
(A7) Zs, PS)LS)E[R(s, Y)] + 2 s, pu()A()ELA(s, ¥)(F(s5) — 0)]
+ s, PASE[I(s) — OF
= Yo pH(5)L(HE[F(s) — 6T
By (8), (10) and (15) we have
Zs, PS)ANS)E[I(s) — 0
(18) = K X5, pi) [ 1 = Teeay- | [BO)

= K Zis, Pu(8)(n — n(8))*/ B(s) 4 Lis P*()AXS)E[F(s) — O -
Substituting (18) in (17) and noting that the first term in the R.H.S. of (18)
is positive, we get by cancelling out the common term
(19) X5, PS)AS)E[R(s, ¥)] + 2 s, pu(5)L(S)ETA(s, ¥)(F(s) — 0)] = 0.
Adding the term Y5 p,(s)A*(s)E[J(s) — 0] to both sides of (19), we get
(20) L5, PAS)ANS)ELG(s, ¥) — OF = s, P(S)A(S)E[F(s) — 6T -

We may now proceed using the Cramér-Rao inequality in the manner of Joshi
[6], or apply the following argument. The above inequality simplifies to

@) Zs )AL GE9E, ¥) — F))

= 2 X5, PASYASEL(T() — 9(s, ¥)(F(s) — O)] -
Using (20) and (15) we get, by Schwarz’s inequality,
(22) X5, PAS)AG)EL(F() — 9, :F(s) — O] = 2K Zis, pal5)4(5)/ B(5) -
Clearly

(23) T(0) < 4K Y15, pi(5)A*(s)/B(s) »
where
(24) T(0) = X5, P(S)AX(S)E[9(s, ¥) — F(O)I*

and K is a constant. Thus T(6) is a bounded function of . Let —oo < a <
0 < b < 4oco. Integrating both sides of (21) with respect to 4, we get

Vo T(6)d6 < 2§z s, pu(s) A (S)E[(H(s) — 9(s, Y))(P(s) — )] dO
(25) =2 25 A)AE) Y - - - § () — 905, ¥))

x[1206) = 0 Tees ]
o132}

i
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After simplification, the R.H.S. of (25) works out to
1 -
(26) 2 X5, () A()C() e § o $O() — 905 ¥)

(2ro?)t
«[enn] =4 B[22 T] — o =t B[22 T Tt

where C(s) = 1/(3 e, 1/0,%) < M for all s.
Replacing C(s) by N and applying Schwarz’s inequality to each term separately
in (26) tells us that

(27) 12 T(0) df < 2M(Ls, p(s) (N0 + (T(@))?) -
From (23) and (27), it foliows that
(28) (¢ T(6)d6 is bounded.

If for ¢ > O there is a b, such that for all b = b,, (T(b))! = ¢, then
(¢ T(0)do = §¢ T(0)d6 — oo as b— oo,

which is impossible on account of (28). Hence lim inf,_, T(b) = 0. Similarly
lim inf,_,_, T(a) = 0.

a——

These two together imply that {¢ T(d) df = 0 and hence
(29) 9(s, y) = J(s) a.e. forall sesS,.

Now it follows from (16) that
(30) h(s,y) =0 a.e. forall seS,.
Combining (30), (17) and (18), we have that

n(s) =n for all ses,.
Hence by (14), (7), (9) and (29)
ey(s, X) = e*(s, X) a.e.in RY forany sesS,.

This leads to
31 Zslpl(s)[e*(s, x) — T(X)]* < Dse p*(s)[e*(s, X) — T(X)] a.e.in R~Y.

By (18) it follows that the strict inequality does not hold in (31) on a non-null
set either. The theorem is thus proved.

3. Strict uniform admissibility. The method of this proof utilizes Theorem
5.2 of Joshi [6].

THEOREM 3.1. Weak uniform admissibility of the pair (e*, p*) in Theorem 2.1
implies its strict uniform admissibility.

ProoF. Suppose
(32) Ts, Pi9)le(s, X) — TR < Do p*(s)le*(s, ¥) — TP
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for all x € R¥ with strict inequality for at least one x € R¥. By (31), we have
Zs, P3)e*(s, X) — T = Xse p*(S)[e*(s, x) — T(X)J

a.e. in RY. Using (2), (3) and (6), the computation of (31) leads to

(33) 2 2yl — 7)) =0 a.e.in  RY,

where 7,; = 31,5:,; pu(s) and s = 3,.; ; p*(5)-

Moreover, from continuity considerations (33) must be true everywhere in R".

Consider the inequality (33) at points y € R¥, at which only two particular co-
ordinates y, and y; differ from zero; then we have

(34) VidiTig S iyl in RY.

Since (34) holds for both positive and negative values of the product y,y;, we
get

(35) T = T for each pair i,j.
Hence
(36) 2is Pr(s)(E*(s; X) — T(X))* = Zige p*(s)(€*(s; X) — T(x))*

for all x e RY.
Using (36) in (32) we have
(37) s, Ps)a(s, X) — T(X))* = Zis, pa(s)(e*(s, X) — (T(x))?
for all x € R¥, with strict inequality holding for at least one x € R¥. By Theorem

5.2 of Joshi [6], we have e (s, X) = e*(s, x) for all x ¢ R, s € S;. Thus the proof
of the theorem is complete.

COROLLARY. The pair (&, p*), where p* ¢ C and & is the H.T. estimate, is strictly
uniformly admissible in the class of all pairs (e, p) with e in the class of all measurable
estimates and p e C'.

Proor. We may take b, = 1/x,in (3) and (4). This gives e*(s, X) = >,c, b,x, =
ies Xi/7;, which is the H.T. estimator.

4. Possible extensions of the main result. Upon examination of the condi-
tions of Theorem 2.1, several questions, such as the following, naturally arise.

Q.1: Need the design (S*, p*) have fixed sample size?

Q.2: Isitnecessary that the inclusion probabilities of competing designs should
coincide with those of (S*, p*)?

Q.3: Should the same results hold with fewer restrictions on the 5,?

Q.4: Is the measurability restriction on competing estimators necessary?

Q.1 has been answered affirmatively by Godambe and Joshi [4], who show
that if e* is the Horvitz-Thompson estimator corresponding to p*, and if (S*, p*)
has varying sample size, then except in trivial situations one can find an estimator
which has smaller mean square error than e* for all x, without altering the
design.
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Q.2 can also be answered affirmatively, in a somewhat weaker sense. For
suppose that the population consists of just two units 1, 2. Let $* = {{1}, {2}},
so that & sampling design defined on $* may be written p* = {p,*, p,*}. Then
the mean square error of e* with respect to p* is

M(e*, p*) = pr*[bix — (0 + )P + p*[0yx, — (4 + %)
Setting x;, = y,/b, and noting that 1/b, + 1/b, = 1, we may write

Mer,p?) = [ B+ B | 0n =

Case (i). Suppose b; = b,. Then whatever P, p.* we choose, the mean square
error is the same for all y in R?, and in fact Joshi’s result of [7] guarantees that
(e*, p*) is uniformly admissible.

Case (ii). When the b,’s are different and p,*, p,* > 0 we can choose another
design p = {p,, p} so that M(e*, p) < M(e*, p*) for all ye R®. For example,
suppose b, = 3, b, = 4, p,* = p,* =4, py =14, py=$. Then M(e*, p) < M(e*, p¥).
Thus for N = 2, b, +# b,, the pair (e*, p*) is not uniformly admissible if compet-
ing designs are allowed to have inclusion probabilities different from those of
(S*, p*). Of course, it may be conjectured that if the competing design is required
to have inclusion probabilities not less than those of (S*, p*), the pair (e*, p¥)
is still uniformly admissible.

With regard to Q.3, we may note that Godambe [3] has shown the following
result. With respect to the class C, = {p: X5 n(s)p(s) = n} of sampling designs
and all estimators the pair (e*, p*) is uniformly admissible, where e* is the esti-
mator given by

€*(8, X) = Zlieo Xi + Diestis
Ay, +++, Ay being any fixed numbers. Moreover, Ericson [1] has proved that
with respect to the class of designs D, = {p: n(s) # n = p(s) = 0} and all esti-
mators the pair (e*, p*) is uniformly admissible where

€X(8, X) = @, Yijeo X; + B8,
a, and B being fixed values such that 1 < @, < N/n. These results suggest that
it might be possible to establish uniform admissibility for (e*, p*) if b, = 1 for
alliand ;¥ 1/b, = n, and this uniform admissibility has in fact been established
by Sekkappan [9] when b, > 1 and };¥, 1/b, > n. The proof involves showing
that e* is a Bayes estimator with finite Bayes risk.

Finally, in connection with Q.4, it is easy to see that the uniform admissibility
of the estimate e* in Theorem 2.1 can be proved directly by an algebraic method
when the sample size n is equal to one, so that no measurability restriction
applies. It seems likely that the result may be true also when the sample size is
greater than one.
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