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LOCALLY MOST POWERFUL SEQUENTIAL TESTS!

By RoBerT H. BERK
Rutgers University

Sequential tests that are LMP for certain one-sided testing problems
are discussed. In all cases considered, the stopping rule is the first time a
certain random walk leaves a bounded interval. (Thus various inequalities
and approximations due to Wald can be utilized in obtaining properties of
these tests.) For models in a one-parameter exponential family, each
LMP sequential test is shown to be a Wald SPRT for a family of paired
(conjugate) simple hypotheses.

1. Introduction. Consider the following one-sided testing problem. We have
a model, a family of pdf’s f(x|6) (with respect to a o-finite measure 2 on the
sample space (2, .%)). The parameter § ranges in ©, a subinterval of the real
line. X, X,, --- is a (i.i.d.) data sequence drawn from the model. Based on
X,, X,, - -+, we wish to test sequentially the hypothesis H,: § = §* against the
one-sided alternative H,: 8 > 6*. It is well known that there is no one “best”
sequential test for this problem, in general. Even among non-sequential tests,
UMP tests do not necessarily exist. However, under certain regularity condi-
tions, there are LMP non-sequential tests which (for a sample of size n) are of
the form: reject H, if
(1.1) S, =2trX) za,
where r(x) = 0 log f(x|6)/26];-ps-

We show that a similar phenomenon persists in the sequential case. Under
regularity conditions, we delineate a certain class of sequential tests that are
LMP for testing H, vs. H,. That is, given a test in the class, let a denote its
(exact) level and v < oo its expected stopping time under 6*. Then among all
level a sequential tests whose expected stopping times under * do not exceed v,
the given test is LMP. These LMP tests are a sequential analog of (1.1); their
stopping times are of the form
(1.2) o =inf{n: S, ¢(—a, a)}.

Typically, a, and a, are both positive. The terminal decision is, as one would
expect: reject H, if S, > a,. For short, we shall refer to the sequential test as ¢
and denote by .&; the class of such tests. The boundary points @, and a, are
determined (in principle) by specifying a and v. That is,
(1-3) i) P(S,za)=a

(i) Eo=wv.
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374 ROBERT H. BERK

(Probabilities and expectations, unless otherwise specified, are computed under
6*.) Since such sequential tests are of the form studied by Wald (1947), the
various inequalities and approximations for the SPRT are available. Indeed (as
shown below in Section 5), for one-parameter exponential models, f(x|6) =
e’”=*® an LMP sequential test is a Wald SPRT of H,: § =6, vs. H/: 0 = 0,,
where 0, < 6* < 6,. Inthe usual way, one argues, under suitable monotonicity
conditions, that the tests in .&” are LMP for testing H,: 6 < 6* vs. H,: 6 > 6*.

This work solves a problem raised by Abraham (1969) in his thesis. He studied
sequential tests of the form (1.2) and showed that in the symmetric binomial
case, they are LMP. He left open the question of whether such tests are LMP
more generally; a question to which we give here an affirmative answer. The
class & was earlier considered by Dresselaers and Gilles (1951). They correctly
surmised that such sequential tests are LMP, but their demonstration is heuristic,
as it “neglects overshoot.”

In the considerations below, we consider only sequential tests for which the
stopping time, say ¢, satisfies Et < oo. Together with the regularity conditions
(on f(+]+)) assumed below, this entails that such sequential tests have power
curves differentiable at 6*. Hence a (level a) LMP test is one whose power curve
has maximum slope at 6*. (One can, of course, consider only right-hand deriva-
tives, but we do not pursue that issue here.) If, on the other hand, the require-
ment Et < oo is dropped, some very curious phenomena can occur, even for the
most regular of models. For example, in testing a normal mean, Darling and
Robbins (1968) (see also Robbins (1970)) exhibit (level a < 1) sequential tests
of H,: 4 < 0 that have power 1 at all x > 0. The expected stopping times of
these procedures are infinite for < 0 (in fact, for 4 < 0, they terminate with
probability not exceeding «). Clearly the Darling-Robbins tests qualify as being
LMP (in fact, UMP) if the expected stopping time is unrestricted. Thus the
requirement Ef < co eliminates from contention certain sequential procedures
possessing features that, in some circumstances, may be deemed undesirable.

2. The main theorem. A sequential test of H, vs. H, is given by a stopping

time, ¢, defined on X, X,, - .., together with terminal decision rules {¢.}. Here,
for each n, ¢, is a possibly randomized (measurable) test function depending on
X, -+, X,. As mentioned above, we restrict attention to stopping times satisfy-
ing Et < co. For a given sequential test, its level is

(2.1) a = Ep,

and more generally, its power at @ is

(2.2) B(O) = Ey0. 1 icay = 2T Stemm Pufuo»

where f,, , denotes the joint pdf of X), ..., X, under . The expression in (2.2)

allows for the fact that we do not a priori require P,(t < co) = 1 for 6 # 6*.
In so doing, we interpret sampling forever (+ = oo) as neither accepting nor
rejecting H,. (We get the same result if ( = oo) is included in the acceptance
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region for H,.) Assuming differentiability, the local slope (the slope of the power
curve at 6%*) is

(2.3) m = 0E;@;1(;ccy[00]5-ps -
We refer to (a, m, Et) as the local characteristic (LC) of the sequential test.

We impose the following conditions on f{(+ | ) which, as shown by Abraham
(1969), are sufficient to insure that the derivative in (2.3) exists. Let

24) 1(016*) = Elog [f(X|0%)[f(X]0)] -
ASSUMPTION 1. limsup,_,. I(6|6*)/(0 — %) < co.
ASSUMPTION 2. f(X|+)is w.p. 1 differentiable at 6*.

AssuMPTION 3. The power function of every non-sequential test (of H, vs. Hy)
is differentiable at 6* under the integral sign.

As above, let
(2.5) r(X) = 9 log f(X|6)/36],_p« .

ASSUMPTION 4. 0 < Er¥(X) < co.
(Various conditions that insure Assumption 3 are presented in the literature.
Two that suffice are (i) For each ¢ in a bounded neighborhood U of 6*, f(X]| +)
has, w.p. 1, a continuous derivative at 4. (ii) Sup{§ |9f(x|0)/00|dA(x): 0 € U}< 0.
Note that condition (ii) holds if § sup {|df(x|6)/00|: 6 € U} dA(x) < oo or, more
generally, if {0f(X]6)/00: 6 € U} are uniformly integrable. For similar condi-
tions, with further elaboration, see Bickel (1971, page 234).) We note that As-
sumptions 3 and 4 entail
(2-6) Er(X)=0.

We have, then, the following result due to Abraham (1969).

1. PROPOSITION. Suppose Assumptions 1,2 and 3 hold. Then any sequential test
(t, {.}) with Et < oo has a power curve differentiable at 6*. Moreover, the local
slope is given by

2.7 m = Eop,S,
where
(2.8) S, = nrrX)).

REMARK. Equation (2.7) is obtained formally from (2.3) by differentiating
across the expectation sign.

Since we are concerned only with tests for which Er < co, we assume in the
sequel that (2.7) holds. Our main result is

2. THEOREM. Suppose Assumptions 1-4 hold. Consider a sequential test o in &
and let (a, m, Ec) beits LC. If another sequential test of H, vs. H, has LC (a, 1, Et),



376 ROBERT H. BERK

then Et < Eo entails h < m. Moreover, if the first inequality is strict, so is the
second. Thus o is LMP among all sequential tests of level & < a and for which
Et < Fo.

We note that under our assumptions, P(r(X) = 0) < 1. Thus a theorem of Stein
(1946) insures that the mgf of ¢ is finite in a neighborhood of the origin. In
particular, Eo < co.

To prove Theorem 2, we proceed analogously to the way one establishes the
optimality of the Wald SPRT. That is, we reduce our considerations to solving
a certain auxiliary optimal stopping problem. We begin by associating to the
sequential test (¢, {¢,}), (for which Et < co), the value

(2.9) v(t, {@,}) = m — ba — cEt

= E¢p,S, — bEp, — cEt.
(Compare (2.1) and (2.7). Note that since Et < co and E|r(X)| < oo, the three
expectations in the last expression exist.) Herebe Rand ¢ > 0 and are otherwise

arbitrary; ¢ may be thought of as the cost per observation. Since 0 < ¢, =< 1,
we have

(2.10) v(¢, {¢,}) = E(S, — b)p, — cEt
< E(S, — b)t — cEt = v(t), say.

Our auxiliary problem is whether there is a stopping time for which v(f) is
maximal.

3. An optimal stopping problem. The auxiliary problem formulated above
is, in different notation, precisely the following optimal stopping problem: Let
Y, Y,, ... beasequence of i.i.d. random variables with EY = 0,0 < EY? < oo.
(Subsequently we identify Y with r(X).) LetS, =Y, 4 --- + Y,. We define
a reward sequence by

3.1 w, = (S, — b)F —ecn.

The optimal stopping problem is whether there exists a rule (= stopping time)
defined on Y, Y,, --- that is optimal for the reward sequence {w,}. That is, if
C denotes the class of stopping time 7 (defined on Y}, Y, - - -) for which Ew,~ < oo,
we then wish to know whether there is a stopping time, say 7, in C, for which

(3.2) Ew, = sup,.; Ew, .
We restrict attention to rules that take at least one observation. The interested
reader will have no difficulty taking into consideration the possibility r = 0.

We note that although C could depend on 4 and c, in fact, it does not: For all
band ¢, C = {r: Et < oo}. To see this, note that for any ¢,

3.3 —ct = w, £ b 4 sup, (S, — cnf2) — ct/2.

It follows from a result of Kiefer and Wolfowitz (1956) (see also [3], Theorem
4.13) that the supremum in (3.3) has finite expectation under our conditions.
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Thus Ef and Ew, are finite or infinite together. Similar reasoning shows that
Esup,w,* < co and hence, as an immediate consequence of Theorem 4.5 and
the corollary to Theorem 5.2 of [3], there is an optimal rule for {w,} given by

(3.4) 0y, = inf {n: u(S, — b, c) < (S, — b)*},
where

(3.5) u(s, ¢) = sup,.q E[(S, + 5)* — ¢1].
Equivalently, we have

(3.6) 0y, =1inf{n: S, ¢ 4, + b},
where

3.7 A, = {s:u(s, c) > st}.

We see from (3.6) that 4, is the optimal continuation set when b = 0 and that
more generally, the continuation set for g, , is the translated set A, 4- 5. This
particular optimal stopping problem is an instance of the so-called stationary
Markov case. A good account of the known general results is given in Chapter
5 of [3].

We may characterize the optimal rule, via its continuation set, more specifi-
cally as follows.

3. THEOREM. Under the conditions EY = 0and 0 < EY* < oo, the continuation
set A, is a bounded open interval containing zero. Moreover, given any bounded open
interval A, there are constants b and ¢ so that A is the continuation set for o, ; that
is, A= A, + b.

REMARK. Making the identification Y = r(X), we see that the stopping times
of tests in .&” are optimal in the present sense.

Proor. We first establish some properties of
(3.8) u(s, ¢) — st = sup,cq E[(S; + 5)* — st — ct]

as a function of s. For arbitrary values of # and §,, the expression in brackets
is convex increasing (= non-decreasing) for s < 0 and convex decreasing for
s = 0. (Note that for s > 0, (S, 4+ s)* — s = max (S,, —s).) Since these prop-
erties are preserved in taking the indicated expectation and supremum, they hold
for u(s, ¢) — s*. Itfollows that A, is empty or an interval containing zero, open
because the above properties of u(s, ¢) '— s+ ensure it is continuous. If 4, were
unbounded, then Eg, , would be infinite (since EY = 0), contrary to the fact
that ¢,,€ C. (A more direct demonstration that A, is bounded is given below
in Lemma 35.)

We next establish some auxiliary results that give further properties of A,.
These enable us, inter alia, to prove the last part of Theorem 3. Let y = EY™.

4. LEMMA. A, isempty forc = 7.
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Proor. Clearly u(s, c) is decreasing in ¢, so that 4, is also decreasing in c.
(If c<d, 4, © A,;.) Tt thus suffices to show that 4. = 0. Since S, — yt <
i (Y;Y — ), it follows from Wald’s lemma that for ¢t e C, E(S,* — 1) < 0,
hence #(0, y) < 0. In fact, (0, y) = 0 since u(0, y) = E(S,* — rt), which van-
ishes for t = 1. As is easily checked, u(s, ¢) < u(0, ¢) + s*, hence u(s, ) — st <
u(0, 7) = 0. It follows that 4, = @. [

5. LEMMA. A, C (—EY?/c, EY?|c). Also, there is a constant K > 0 so that for
¢ sufficiently small, (—K/c, K[c) C A,.

ProoF. To establish the first assertion, we note that
(3.9) E[(S; + $)* — ct] — s = E[max (S,, —s) — ct].
ForteCand s > 0,
Emax (S,, —5) < {5,2-0 5 = — Vi5,<-0 St = ES?[s = EY?Et/s.

(The first equality follows from Wald’s first lemma: ES, = 0; the second, from
Wald’s second lemma.) Thus E[(S, + $)* — ¢t] — s < E{(EY?[s — ¢) < EY?[s —
¢ < 0if s > EY?/c and then u(s, ¢) — s+ < 0. Similarly, for s < —EY?/c,

E[(S, + 5)* — ct] = V(5,5-0 S: — cEt
< —ES}Pls —cEt < —EYs—c¢<0.

Thus for |s| > EY?/c, u(s, ¢) < s*, which entails 4, c (—EY?/c, EY?[c).
To establish the second part of the lemma, we see from (3.9) that for s < 0,
E[(S, + 5)* — ct] = E[S," — ct] + s, or that

(3.10) u(s,¢) = u(0,c) + s, s<0,
while, since u(s, ¢) is monotone increasing in s,
(3.11) u(s,c¢) — s =z u(0,c¢) — s, s>0.

It follows that 4, 5 (—u(0, ¢), u(0, c)) for ¢ < y. Moreover, u(0,¢) = sup, (ES,* —
cn). This lower bound may be approximated as follows. Since S,/n* —_ Z ~
N0, EY?) and S, /n? is uniformly integrable, it follows that ES,*/nt — EZ*+ =
(EY?2m)t. Hence for some k > 0, ES,* = kn?, all n = 1. Therefore #(0, ¢) =
max, (knt — cn) > K/c for some K > 0, if c is sufficiently small. Thus for suf-
ficiently small ¢, 4, © (—K]/c, K/c). [T

We now establish the last part of Theorem 3. Since b merely translates the
continuation set, it suffices to show that |4,|, the length of A4,, increases con-
tinuously from 0 to oo as ¢ decreases from 7 to 0. We note ﬁrst that |4,| in-
creases as ¢ decreases. Then from the proof of Lemma 5, we see that u(s, ¢) —
st < EY?[s — ¢ < 0if |s| > EY?/c. By convexity, it follows that as a function
of s, u(s,c) — s* is strictly increasing on {s < 0: u(s, ¢) — s* > —c} and is
strictly decreasing on {s > 0: u(s, ¢) — s* > —c}. Since also u(s, c) — s* is
(jointly) continuous in s and c, it follows that |A4,| increases continuously as ¢
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decreases. It follows also from Lemma 5 that [4,| = O(1/c) and in particular,
lim,_, |4,] = co.

4. Proof of the main theorem. We now establish Theorem 2, using the results
of Section 3. Let ¢ be a test in & with continuation interval 4 = (—a;, a;)
and let («, m, Eo) be its LC. Making the identification ¥ = r(X), by Theorem 3
there are numbers 5 and ¢ > 0 so that ¢ is the optimal rule for {w,} and 4 =
A, + b. Since 0e A4, be 4; i.e.

(4.1) —a,<b< a.

The terminal decision rule associated with ¢ is 15 .., and since w.p. 1 either
S, < —a, or S, = a,, we see from (4.1) that w.p. 1

(4.2) (S, =a)=(S,>0b).
Then, in view of (4.2), it follows from (2.9) that
4.3) m — ba — cEe = E(S, — b)l (5,54, — cEo

= E(S, — b)* — cEo .

Let (¢, {p,}) be another sequential test having LC (a, 7, Et) with Et < Eo.
From (2.9) and (2.10) we obtain

4.4) m — ba — cEt < E(S, — b)* — cEt
< E(S, — b)* — cEc = m — ba — cEo .

The second inequality follows because o is optimal for {w,} and the final equality
is (4.3). Since cEt < cEg, we see that i < m and moreover, if Et < Eg, then
# < m. Thus among level a tests satisfying Et < Eo, 0 isLMP. Ifa sequential
test has LC (&, m, Et) with Et < oo and @ < a, the power function of this test,
being differentiable at 6* is necessarily continuous there. Thus, trivially, o is
more powerful locally. This completes the proof of Theorem 2.

5. Exponential models. We have noted above that an LMP sequential test
(given by (1.2)) is like an SPRT (in that ¢ is the first time a certain random walk
leaves an interval). For one-parameter exponential models, the LMP sequential
tests are SPRT’s. To show this, we parametrize the model so that f(x|6) =
exp{0x—c(f)} and denote by ©, the natural parameter set: @={: | e’*dA(x)< co}.
O is necessarily an interval (which, to avoid trivialities, we assume is non-
degenerate). For a given 6* in the interior of ©, r(x) = x — ¢’(6*), where ¢'(f) =
de(0)[d6. (1t is well known that ¢(+) is infinitely differentiable (on the interior
of ©) and strictly convex (unless 2 is a degenerate measure, a case we exclude
from consideration). Thus ¢’(+) is strictly increasing. As an aside, we note that
¢(6) = E, X, so of course Er(X) =0.) As these exponential models have a
monotone likelihood ratio, it follows in the usual way [9, page 101] that a level
a LMP sequential test of H,: 6 = 0* vs. H;: 6 > 0* is also level « LMP for test-
ing H;: 6 < 0*vs. H,: 6 > 0*. Given an LMP sequential test of Hy: 0 < 0* vs.
H,: 6 > 6*, we show that there is a continuum of parameter pairs (6,, 6,) in &
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for which an SPRT of H,': @ = 6, vs. H,: 6 = 6, coincides with the given LMP
test.

We begin by noting that for given 6, < 6, in ©, an SPRT of H,' vs. H,' stops
the first time ;7 log[f(X;|0,)/f(X;|6,)] leaves a certain interval. However,
log [ f(x|0,)/f(x|6,)] = (6, — 6,)x + ¢(6,) — c(0,), so equivalently, the SPRT ter-
minates when } ;7 X; — n[c(6,) — c(0,)]/(6, — 0,) leaves a corresponding interval.
The LMP sequential test of H, vs. H, stops the first time };7 X; — nc’(6*) leaves
a certain interval. We establish the desired result by showing that there is a
continuum of pairs (6,, 6,) of points in © for which

(5.1 [e(02) — c(@)]/(0; — 6,) = ¢'(0%) -

The following argument was suggested by Professor R. A. Wijsman. Let f(6) =
c(0) — c(6*) — (0 — 0*)c'(6*); f(+) is strictly convex since ¢(+) is. The problem
is solved if it can be shown that there is a continuum of pairs (6,, 6,) with 8, <
0* < 0, so that f(6,) = f(6,). For then it is easily verified that (5.1) holds for 6,
and 6,. Letf, and f, be frestricted to (— co, 6*) and (6*, oo0), respectively. Since
f(6*%) = f'(6*) = 0, f, and f, are strictly monotone and tend to co as # — +co.
Thus f;~* exists on (0, co0). Thus for any y > 0, 6, = f,7*(y) provides a conjugate
pair.

The above device of introducing f(+) is essentially the same argument used
by Girshick (1946), who considered the phenomenon of conjugate pairs from a
slightly different point of view. His motivation was to obtain the OC curve of
an SPRT. In this context, see also Lechner (1964), who apparently rediscovered
the idea of conjugate pairs and indicated that all such pairs lead to the same
SPRT. Iu the context of SPRT’s, 6* is the exceptional point of the SPRT, the
parameter value under which the random walk defining the SPRT has zero drift.
The observation that an LMP sequential test is an SPRT thus has a dual formula-
tion: For one-parameter exponential models, an SPRT of two simple (or one-
sided) hypotheses is an LMP sequential test for its exceptional point.

Still in the context of one-parameter exponential models, Lechner further
observed that if a given SPRT has stopping time ¢ and power function §(-) and
if (6,, 6,) is a conjugate pair for this test, then for any other sequential test, having
stopping time ¢ and power function f(.), say, the optimality property of the
SPRT entails

(5.2) B(6) < B(6,)  and B(qz) = B(0:) = E, 6 2 E, 0, i=12.

Lechner also stated (without proof) that for the exceptional point, #*, of the
given SPRT, if f(6*) = B(6*), then it cannot happen simultaneously that

(5.3) m>m and Eé < Eo.

Here m and i denote the slopes of the respective power curves at 0*. A proof
of this last statement could presumably be based on (5.2) and the fact that there
are conjugate pairs arbitrarily close to 6* (y near zero). The argument appears
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to require the fact that if a sequential test satisfies E¢ < oo, then its ASN func-
tion is continuous at #*. The author is unable to locate any general results to
this effect in the literature, even for SPRT’s. Note that the negation of (5.3)
does not rule out the possiBility that #2 > m and Eé¢ = Es. Thus although
tempting, it is not clear that the existence of conjugate pairs can be used to
establish the LMP character of the tests (1.2) for one-parameter exponential
models.
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