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ON SYMMETRIC COMPOUND DECISION RULES
FOR DICHOTOMIES

By J. B. Copras

University of Essex

When an admissible symmetric compound decision rule is applied to a
sequence of simple hypothesis testing problems, the decisions are shown to
exactly reflect the ordering of the component likelihood ratios. This leads
to a characterization of admissible procedures which is closely related to
the method ordinarily used in constructing compound decision rules. The
extension to estimation problems is indicated.

1. Introduction. Consider a simple dichotomy hypothesis testing problem of
testing # = +1 on the basis of an observation x whose probability density (or
probability function) is ¢,(x). If # = +1 is the decision reached, the loss is taken
tobezeroif tr=0,aif 0 = +1 and t= —1, and bif 0 = —1 andt = +1
(a, b > 0). Define the likelihood ratio z = ¢_,(x)/¢_,(x). This paper discusses
the non-sequential compound decision problem formed by n problems of this
type. We index the components by the suffix i, i = 1, 2, - . -, n, and denote the
vectors of observations, likelihood ratios, parameters and decisions by x, z, 6,
and t, respectively. Asusual the x,’s are assumed independent and the compound
loss is taken to be the arithmetic average of the component losses. General
discussions of the compound decision problem can be found in [1], [4] and [6].

A (randomized) compound decision rule ¢ is characterised by a vector 8(x)
of functions d,(x), where d,(x) is the probability (conditional on x) of reaching
the decision #, = +1 in the ith component, i = 1, 2, ..., n. The rule 9 is said
to be symmetric if for almost all x
(1) 9(g%) = 9(3(x)) » all geQ,
where Q is the set of permutations of the integers 1,2, ..., n, and where gy,
for any g € Q and any n-vectory, is defined by [gy]; =y, k =¢q7Y, j=1,2,---,n.
Additionally it is said to be simple symmetric if §,(x) = d°(x,) for some function
0°(x).

Now define f to be the proportion of +1’s in @, namely f = f(0) =
(2n)"' 3 (1 4+ 6,). It is clear that the risk r(d, @) of a symmetric rule  can
depend on @ only through the value of f, and it is shown in [2] and [5] that
when this parameter f is given an a priori probability distribution the corre-
sponding symmetric Bayes procedure gives decisions of the form

(2) tiZSgn(Zi—Z(X(i))), i=1v2v""n,
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(sgn (0) may be arbitrarily randomized between 4 1) where x;, = (x;, - - -, X,_;,
X110+ s X,) and A(x,)) is @ symmetric function of the (n — 1) values x;, j +# i.
An explicit expression for A(x;,) in terms of the a priori probability distribution
is given in those two papers but is not repeated here.

If it happened that the value of f were known, the optimum simple symmetric
rule would give decisions

tizsgn<zi—_b(_l___ﬁ>, i=1,2,...,n,
af

which suggests the approach adopted in the literature of estimating f by some
function f(x) and then substituting to give the (non-simple) rule

3) tizsgn(zi_?ﬂ_ﬂ), i=1,2,---,n.
, af(x)

For example, if A(x) is an unbiased estimate of # in the component problem and

h(x) = n~' 3] h(x,), one possible estimate of f is

fix)y=0 if A(x) < —1
) =31+ h(x)) if |Ax)| <1
=1 if A(x) =1

The rule (3) with f(x) given by (4) is considered in [2], [3] and [5], but despite the
favourable asymptotic properties proved in these papers the authors of [2] and [5]
suggest that this rule is inadmissible. We show that every admissible compound
decision rule is of the form (3), although the appropriate estimates of f cannot
in general be identified with (4). This result was quoted without proof in [1].

2. An ordering property of admissible rules and the possible admissibility of
(3). A compound decision rule is said to be ordered if, for almost all x,

5) 2, < z; and d(x) >0 imply d;x)=1, 1<i,j<n.
We prove
THEOREM 1. If a symmetric compound decision rule is admissible, then itis ordered.

PROOF. Let d be a symmetric compound decision rule which is not ordered.
Then there exists a set S of values of x within which the implication in (5) fails,
where P,(S) > 0 for some @ and where x € S implies gx € S for every g€ Q. We
shall construct a symmetric compound decision rule ¢’ which differs from 4 only
on S, and which satisfies

©) 1@, 6) < 1(6, 6)
for all @, but with strict inequality for at least one value of . Let, for any n-

vector &, A(e) = {x: x = ¢§, ¢ € 0}, and denote by L(#, d(x)) the expected loss
of ¢ conditional on x. Then (6) will follow if we can show that, given any gcsS,

() EJ{L(G, 5'(x)) — L(8, o(x)) | 4(§)} = 0



COMPOUND DECISION RULES FOR DICHOTOMIES 201

for all @ satisfying

(8) I17 @o,(x)) > 0 for some xe A(§).
For each § € S, the values of 8’ within A(§) are constructed from those of 3 as
follows.

Firstly note that as we are considering symmetric procedures, we may effec-
tively replace § by any member of 4(§) in view of (1), and so no generality is
lost by supposing that

&= ¢+1(51)/¢_1(€1) <& = ¢+1(52)/¢—1(52) ’
and that for x € 4(§),
0,(x) = a if x,=§

=1-38 if x,=§,, i=1,2,...,n,
with a, 8 > 0. Allowing for the possibility of ties in the components of §, sup-
pose that the value of &; occurs n; — 1 times in the remaining components
& -5 &, wheren; = 1,j=1,2. Choose ¢ with0 < ¢ < min (a, 8) and define
for x € A(§)

0/(X) = a — m~' if x,=¢
=1—8+n"1 if x, =¢
= 0,(x) otherwise , i=1,2,---,n

Now take any fixed @ satisfying (8) and define, for x € A(§), s;(x) to be the
number of components i of x with both x, = ¢, and 4, = 41, where 0 <
5{(x) < n;, j=1,2. Then when x € A(§)

) L6, 9'(x)) — L(8, 3(x)) = @ + b) (sl(X) sz(X)>

n, n,

_ s(a+b)n (s( ) — nls(x)>’

nnyn,
where n’ = n, + n, and s'(x) = 5,(x) + s,(x). If, for a given integer s,
(10) Py(s'(x) = 5"| 4(€)) > 0

and 0 < §;, {, < oo, it is easy to show that the conditional expectation (under &)
of 5,(x) given that x € A(§) and s’(x) = s’ is equal to

(11) 2B/ X B,

where
2 20 = ()0, Z0()
1\n, —1/\¢,)°
with the summation in (11) taken over all values of / for which (12) is defined.
In this case

(13) B9 | 4@), ) = 5) =17,
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since (§,/§,) < 1 and the right-hand side of (13) is the value (11) would take had
¢, and {, been equal. If (10) holds but {;, = 0 or {, = oo, then s,(x) can only
take the values 0 or s' — n, respectively, in which cases (13) is also true. Thus,
as (8) implies that (10) holds for at least one value of s, we have

which, together with (9), implies (7).
Now if s’ satisfies (10) and

(14) O<s <,

the inequality in (13) is strict. But to each § € S there corresponds at least one
pair @, s’ for which (8), (10) and (14) hold, since the possibility that the likelihood
ratios of & are either all zero or all infinite is ruled out by the definition of S.
Hence, as there are only a finite number of possible values of 8, and S is non-
null, there must exist # at which the inequality in (6) is strict.

A referee has pointed out that Theorem 1 can also be proved from the ex-
pressions for 4(x;) contained in [2] and [5], but the proof we have given above
is constructive and admits generalizations such as that of Theorem 3 below.

We now point out a consequence of the ordering property, and hence a
corollary of Theorem 1.

Let 6 be an (arbitrary) ordered symmetric compound decision rule, and define

C=Kx:z,z2z,=2-.--=212,}.

Then, by (5), there exists a unique pair of integer-valued functions 0 < ¢(x) <
d(x) < n + 1 such that g, (x) = 1 precisely when i < ¢(x) and d,(x) = O precisely
when i = d(x). Define, for x € C,

4(X) = Zymyaa if e(x) < d(x) — 1
(15) = 3Zeo + Zaw) if e(x)=d(x)—1, 0<c(x)<n
= oo if ¢x)=0, dx)=1
=0 if ex)=n, dx)=n+1.

Then, for almost all x € C, the decisions of § can be written in the form
(16) t,(x) = sgn (z;, — A*(x)), i=1,2,.-.-,n,

where sgn (0) indicates that the decision may be randomized.

It is obvious that if x’, x” € C with ¢gx’ = x” for some g€ Q, then *(x') =
2*(x""). Hence we may extend the definition of 2*(x) to all observations x by
defining 2*(x) = 2*(§) where § satisfies § = gx, § € C, ge Q. Thus, using (1)
and (16), we have for almost all x

17 f(x) = 1,(9%) = sgn ([gz],, — 2*(g%))
= sgn (z, — A*(x)), i=1,2,...,n.
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Of course, a complete specification of d requires the particular convention to be
adopted when sgn (0) is obtained in (17).

We see that the cut-off 2(x;,) in (2), which in general varies from one com-
ponent to another, has been replaced in (17) by the single function 1*(x). By
writing f(x) = b(ai*(x) + b)~*, Theorem 1 gives

THEOREM 2. If é is an admissible symmetric compound decision rule, it can be
expressed in the form (3) for some symmetric function f(X).

Note that, for a given ordered symmetric rule, there will in general be other
functions besides (15) for which (16) and (17) hold.

EXAMPLE. Suppose thatddecidest, =t,=--- =1, =+1ifz,2,.-- 2, 2K
andt, =t,= ... =t, = —1if z,z, - .- z, < K, where K is a positive constant.
This symmetric rule is Bayes against the a priori distribution P(f = 1) =1 —
P(f = 0) = b(aK + b)~'. For (17) to be valid in this case, it is necessary that
A*(x) satisfy
A¥(X) £ min (2, z,, -+, Z,,) if z2z,-.-2, 2K
and ‘

A¥(X) = max (zy, 2y, « - -5 Z,) if z,z,---2,<K,
and so A*(x), and hence any choice of f(x) in (3), must have a discontinuity at
(almost) all points x satisfying z, z, - - - z, = K. It follows from this requirement
that, at least when the distribution of z in the component problem is continuous,
f(x) cannot be of the form (4). Note that one possible choice of f(x) is

fix)=1 if zyz,---2,2K
=0 if z,z,-.-2, <K

which is simply a Bayes solution to the associated simple hypothesis testing
problem of testing f = 1 against f = 0.

3. Extensions. If a non-randomized compound decision rule is ordered, then
it operates by maximizing the likelihood conditional on the marginal frequencies
with which the possible decisions are made. As such, this concept extends to
other component decision problems in which the decision and parameter spaces
coincide. To avoid needless redefinition of terms we use the same notation as
above but extend it to more general decision problems in the obvious way.

Supposing the decision and parameter spaces to be identical, we say a non-
randomized compound decision rule giving decisions t(x) is ordered if, for almost
all x, and for 1 < i,j < n,

(18) Pu(X)P.(X;) = 6,(X)Pu(X;)
where
u = t(x), v = t;(X).
The desirability of this property depends on the particular loss function and

family ¢,(x). However, in many problems of interest, the analogue of Theorem
1 remains true, and we illustrate this by the following.
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THEOREM 3. Suppose that the components are estimation problems with continuous
observations and squared-error loss, and that the family ¢,(x) has the monotone
likelihood ratio property. Then if a symmetric non-randomized compound decision
rule is admissable, it is ordered.

The proof of Theorem 3 is very similar to that of Theorem 1 and is omitted.
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REFERENCES

[1] Coras, J. B. (1969). Compound decisions and empirical Bayes (with discussion). J. Roy.
Statist. Soc. Ser. B 31 397-425.

[2] HANNAN, J. F. and RoBsins, H. (1955). Asymptotic solutions of the compound decision
problem for two completely specified distributions. Ann. Math. Statist. 26 37-51.

[3] HaNNAN, J. F. and VAN RyziIN, J. R. (1965). Rate of convergence in the compound deci-
sion problem for two completely specified distributions. Ann. Math. Statist. 36 1743
1752.

[4] MarITZ, J. S. (1970). Empirical Bayes Methods. Methuen, London.

[5] Rossins, H. (1951). Asymptotically subminimax solutions of compound statistical decision
problems. Proc. Second Berkeley Symp. Math. Statist. Prob. Univ. of California Press.

[6] SaMUEL, EsTER (1967). The compound statistical decision problem. Sankhya Ser. 429 123-140.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SALFORD
SALFORD MS 4WT

ENGLAND



