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ESTIMATION IN SAMPLING THEORY WITH EXCHANGEABLE
PRIOR DISTRIBUTIONS

By V. P. GopaMBE AND M. E. THOMPSON
University of Waterloo

Godambe (1955) and Godambe and Joshi (1965) established the joint
optimality of the Horvitz-Thompson estimates and the corresponding
sampling designs with respect to a class of prior distributions which were
‘‘product measures.” In the present paper the optimality is established
replacing the “‘product measures’” by prior distributions which are ex-
changeable in appropriately transformed variates. Furthermore, the opti-
mality criterion is justified in terms of Chebychev’s inequality.

1. Introduction and notation. Inrelation to estimating the total of a finite popu-
lation, a criterion for optimality jointly of ‘an estimator and a sampling design’
was proposed by Godambe (1955). Thus ‘an estimator and a sampling design’
are said jointly to be optimal if they provide the minimal expected variance for
a given class of prior distributions, for all sampling designs of a fixed sample size
and corresponding unbiased estimators of the population total. According to
this criterion, it was proved (Godambe (1955), Godambe and Joshi (1965)), that
the Horvitz-Thompson estimator and a sampling design with corresponding
inclusion probabilities were jointly optimum for a certain class of prior distri-
butions consisting of product measures on R, (Euclidean N-space), N being the
size of the finite population. The optimality corresponding to the class of all
exchangeable (exchangeable in appropriately transformed variates) prior distri-
butions is established in this paper. Some partial results in this direction are
previously due to Kempthorne (1969), Rao (1971) and Thompson (1971). A
further discussion of the optimality criterion referred to above is also included
in this paper.

Following the notation in the literature on the subject we denote the finite
population of size N, i.e. one consisting of N individuals i, i = 1, ..., N, by &,
Let S denote all the subsets s of 7, so that § = {s, s ¢ FH}

DEFINITION 1.1. Any se S is called a sample.

DEFINITION 1.2, Any real function p on Ssuch that 1 > p(s) = Oforallse S
and 3 ¢ p(s) = 1 is called a sampling design.

DEeFINITION 1.3. The real function v on S, where v(s) = total number of in-
dividuals i (i = 1, - - -, N) such that i e s is called the sample size.

DEeFINITION 1.4. A sampling design p (Definition 1.2) is said to be a fixed
sample size design if for some fixed number n the probability p(s) = 0 whenever
v(s) # n for se S.
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Now let S, be the subset of S, S, C S, such that [se S,] < [s5i]. That is, all
samples s in S; include the given individual / and if any s in S includes i then s
is in S,. Then we have

DeriNITION 1.5. For any sampling design p (Definition 1.2) the number a, =
s, P(s) is called the inclusion probability for the individual i (i = 1, - .-, N). The
inclusion probabilities a; in Definition 1.5 satisfy for any fixed sample size design
(Definition 1.4) p such that [v(s) # n] — [p(s) = 0] the following well-known
relationship:

(1) xia;=n,
(Godambe, 1955).

Now the problem of estimation is as follows: With every individual i (i =
1, ..., N) in the population is associated a real variate x, (i = 1, - .., N).

DEfFINITION 1.6. The vector x = (x,, - - -, xy) is called the population vector.
We suppose that before any sampling is done (for the present occasion) this
population vector x is unknown except for certain types of prior knowledge
referred to later. With the considerations of this prior knowledge and the cost
of the survey, the statistician employs a sampling design p (Definition 1.2) and
draws a sample s. The values x,: i € s are then observed by him. The problem
we consider here is of estimating (on the basis of p, (s, x;: i€ s), and the prior
knowledge) a function of population vector (Definition 1.6) called the population
total defined by

(2) T(x) = >¥x,, XeR,.

DEeFINITION 1.7, An estimator (for T(x)) is a real-valued function e(s, x) on
S x Ry which depends on x only through x,: i € s. We shall use the more precise
notation e(s, x;: i € 5).

To see how the foregoing framework is general enough to study most of the
estimation problems arising in relation to sampling finite populations, one may
refer to Godambe (1965, 1969).

2. Minimum expected variance. Due to the general non-existence of uni-
formly minimum variance unbiased (UMVU) estimates in survey-sampling
(Godambe (1955)), most often in the literature unbiased estimates with minimum
expected variance are investigated. The intuitive appeal of this procedure in
general can be further strengthened by recourse to the usual Chebychev’s in-
equality: if £(. [#) denotes expectation given a parameter 6, for any estimator
and for all oc, 4 and k,

3) Pt — oc| < k|0) 21—

E((t — oc)|0)
ke
This inequality suggests that the smaller the value of E((r — oc)?|6), the higher

will be the probability concentration of ¢ at o, given 6. Thus, for example,
requirement that the probability concentration of ¢ should be no less at the true
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value A(f) of a certain parametric function # than at the false value (") is ap-
proximately the requirement that E((r — h(0))*|6) < E((t — h(6"))*|0) for all 6
and ¢’. This, under rather trivial assumptions (such as connectedness of the
range of A(f)), is equivalent to unbiasedness of ¢, i.e.

(4) E(t|6) = h(®)  forall 4.

Moreover, from all unbiased estimates + one might wish to find one for which
the probability concentration at the true value 4(6) is maximized for all §. This
would in a similar approximate sense lead to the search for a UMVU estimator.
But when, as is usually the case in survey-sampling, the UMVU estimate does
not exist, and a prior distribution ¢ is available for #, we may integrate (3) with
respect to £ to obtain

(5) Plt — hO) < k) = 1 — B —kf(ﬁ))zlﬁ) ‘

Here ¢, denotes expectation with respect to &, and the left-hand side of (5) is the
probability of the interval [r — k, ¢ + k] covering the true value A(f) in a well-
defined random experiment, namely the drawing of # with distribution ¢ followed
by the drawing of  (Godambe (1969)). Thus in this situation it would seem
natural to find an unbiased estimator ¢ for which the average variance ¢, E((t —
h(0))*| 6) is minimum.

Even this recipe of minimising expected variance is recommended only when
no more appropriate mode of inference is available. One such mode, for instance,
would be the use of the mean of the Bayes posterior distribution of # obtained
on the basis of the data and the prior distribution ¢. This Bayes estimator,
however, would usually be very sensitive to the variations of the prior distribution
¢; and yet generally the prior knowledge on the part of the statistician is so vague
that it can more naturally be characterised by a rather broad class C of prior
distributions £ than by any single prior distribution. On the other hand, for the
problem of estimation stated in Section 1, there exist classes C of prior distri-
butions large enough to represent adequately the statistician’s vague prior knowl-
edge concerning the population yet having the property that there exists a unique
unbiased estimate providing the minimum of the expected variance for all & e C.
This result, with a certain class C of prior distributions, was established by
Godambe (1955) and Godambe and Joshi (1965). In the subsequent paragraphs
we discuss this in detail, in relation to another class of prior distributions,
generalising some related results.

In relation to sampling a finite population, for a given sampling design p, an
estimator e is said to be an unbiased estimator with respect to the population
total T in (2) if

6) 2ise(s, x, i ies)p(s) = T(x), XeR,.

For the given p, let B, denote the class of all unbiased estimators e for the
population total T. Further the variance of any unbiased estimator e, e e B,, is
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denoted by V (e|x) where

(7 Vel x) = s (e(s, x,: ies) — T(x))p(s), XeR,.
Now it is a well-known result (Godambe (1955), Godambe and Joshi (1965)) that
except for some very exceptional sampling designs B, does not contain a UMVU
estimator e*. Hence one may proceed to obtain an estimator e*, e* € B,, having
a minimum expected variance as described above. Some general results (Godambe
(1955), Godambe and Joshi (1965)) in this connection which would be required
in the sequel are as follows:

Let a;, i =1, --., N be some given numbers such that 1 > a, >0 and
¥ a; = n, an integer. Further let C be the class of prior distributions £ on R,
defined by

j (i) x,, ---, x, when distributed as & are
8) C=¢: probabilistically independent and
l (i) § x, dé = ka, where 0 < k < oo

Next we define a class D of sampling designs p determined by C as above

© D={p: T pls) =a,=ayi=1--,N},

a, i=1, ..., N as before denoting the inclusion probabilities (Definition 1.5).
Now if we define an estimator e* as

(10) e*(s, X, 1€ 8) = Yie, /Ay,

then it is easy to see that e* € B, for all the sampling designs pe D in (9). In
connection with e* in (10), Godambe and Joshi (1965) proved that the expected
variance

(11) e Vy(e*[x) < e V,(e|x) forall peD, §eC, ecB,.

Further the expected variance ¢, V,(e* | x) is the same for all the sampling designs
peDin (9)ie. we may write,

(12) e V(e |x) = ¢ Vy(e¥|x).
Now let C be the subclass of C in (8) defined by

(i) the same as in (8)
(13) C = {&: (ii) the same as in (8)

(iiiy § (xfa)ydé =m*i=1,...,N,0<m < oo
And we enlarge the class of sampling designs D in (9) to, say, D by allowing the
inclusion probabilitiesa,, i = 1, - - -, Nto vary holding the sample size (Definition
1.3), namely >\¥ a, (= n), fixed as in D. Thus denoting by a,(p), i=1, .-, N
the inclusion probabilities for the sampling design p and using (1) we write
(14) DZ{P: (i) a(p)>0,i=1,...,Nand }
B (i) X a(p) = L7 a; (= n fixed)

With the above notation, (12), (13) and (14), a further result proved by Godambe
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and Joshi (1965) is that
(15) e Vpe* [x) < e Vi(e]x)
for all pe D in (14), for all estimators e € B,, and for all é ¢ € in (13). In the
subsequent sections we shall have occasion to refer to a special case of the in-
equality (15) obtained by restricting the prior distributions & to a subclass C of
C, where

B When x,, i = 1, ..., N are distributed as &
(16) C = {&: then x,/a,, i = 1, - .., N are distributed

independently and identically

3. Independence and exchangeability. A situation when the prior knowledge
is characterizable by the class C in (13) of prior distributions may be when the
population consists of a number (= N say) of agricultural farms, and the variate
value x; associated with the ith (individual) farm is its produce. Here the stat-
istician may from a previous census possess the knowledge of the acreages (or
some proportional numbers a, (i = 1, - - -, N)) of the different farms. Without
any further prior information, this prior knowledge may suggest that the prior
distribution & of the population vector x = (x,, - - -, x) (Definition 1.6) is such
that for some (unknown) constant of proportionality k, the variates (x, — ka;)/ka,,
i =1, ..., Nhave zero means and a common variance. Thus here the prior
knowledge is just enough to impose some constraints on the marginal distributions
of the different components x;, i = 1, ---, N, for the possible prior distribution
&. The condition that there is no more prior knowledge could be formalised by
saying that subject to the above constraints on the marginal distributions the
prior distribution & should be most uniform on R . Using the information theory
criterion for uniformity of distribution, one may note that for given marginal
distributions, the function — { [£(x) log §(x)] dx is maximised for the variations
of & when the joint density ¢ is equal to the product of its given marginal densities
(Reza (1961)). Hence maximal uniformity is justification for the independence
assumed in the classes C in (8), C in (13) and C in (16) of prior distributions.
An analogous result holds for discrete distributions &.

In the above justification of independence, we have emphasised the negative
aspect of our prior knowledge, namely that it does not tell us anything beyond
certain constraints to be imposed on the marginals; hence the otherwise uniformity
of the prior distribution. However, if we emphasise the positive aspect of the
same situation we may require symmetry instead of uniformity of the prior distri-
bution. For instance in the population of agricultural farms considered in the
previous paragraph the prior knowledge may say that the marginal distributions
of the variates (x; — ka,)/ka;, i =1, - .., N are identical. Here without invoking
the argument of uniformity (which as seen before leads to independence) one
may emphasise the symmetry, implying that the prior distribution should be
exchangeable in the variates (x, — ka,)/ka,, i = 1, - .., N. This exchangeability
is studied in the subsequent sections.
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4. Optimal estimator and design for exchangeable priors. If the statistician’s
prior knowledge about x is symmetric in the transformed co-ordinates y, = x,/a;,,
i=1, ..., N, he may want to express this prior knowledge in terms of some
subclass of the class C* of priors defined by

When x,, i = 1, ..., N are distributed as &
17 C* = {¢: then x,/a;, i = 1, - - -, N have an exchangeable | .
(symmetric) joint distribution

Clearly the class C in (16) is a subclass of C*. Moreover, C* contains all priors
which are obtained by averaging the elements of C with respect to prior distri-
butions 8 on C itself (cf. Ericson (1969)). That is, C* contains all priors & of
the form

(18) §(x) = Vze(x)dp .
Integrating both sides of (15) with respect to 8 gives us immediately
(19) e Vole* %) = < V(e %)

for all p e D of (14), whenever e € B,.

However, not every element of C* in (17) can be obtained as such a mixture
of element of C. (See Hewitt and Savage (1955) for a thorough discussion of ex-
changeability.) For example, it is easy to see that in general the discrete prior
&, giving equal probability to all permutations of some fixed vector y =
(J1s ** 5 Yx)s Vo = X;Ja;, is not a mixture of independent priors. It is the purpose
of the following theorem to extend the result (19) to the rest of the prior distri-
butions in C*.

THEOREM 4.1. Let & be any element of C* in (17), and let e* be the estimator
defined by (10). Then ¢,V (e* |X) is the same for all p € D of (9); and if this common
value is denoted by ¢,V (e* | x) then

(20) Vo€ X) = e Vy(e|x)
forall pe D of (14) whenever e € B,.

Proor. It is sufficient to prove (20) for any prior &, giving equal probability
to all permutations of the co-ordinates of some fixed vectory = (y,, - - -, yy)
where y, = x,/a,; then (20) will follow for general é € C* by integration.

Now let e be an unbiased estimator for the population total, given a sampling
design pe D in (14). Then

D P(s)e(s, x;ties) = ¥ x, forall xeR,.
Putting x, = a,y,, i =1, ---, Nand e(s, x,: i €5) = f{(s, y,: i € 5) gives

21 2P,y ies) = ¥ ay,  forall yeR,.

The right-hand side of (20) is obtained by taking the average of the variance of
Sf(s, y;: ies)over all N! vectors y, = (V. - +» Vzy) (MOt necessarily distinct)
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obtained from our fixed vector y by permutations = of the co-ordinate indices.
That is,

@) eVl l%) = o DT POy 1€9) — (S )]

1 . 1
= W!— ZI [ZSP(S)F(S’yx(i) tle S)] - W!— th (Zi\' ai.yl)z ¢
Taking the same kind of average of both sides of (21), we have

(@) T Dy 9 = T T ar

N — 1!
= A D e nr
Noting that V" a, = n, and putting y = 3% y,/N we may write (23) more
simply as

24) 2B fls,ypiies) = ny.

Now from (24) we see that f{(s, y.,, : i € 5) is an unbiased ‘estimator’ of ny if the
sampling design consists of drawing the sample s from {1, ..., N} by the sampling
design p and observing y_,: i € s for a randomly chosen permutation = of the
vector y. We may denote this sampling design by (p, r).

(REMARK. This usage of the word ‘estimator’ is extended somewhat outside
the restrictions of Definition 1.7, in the sense that the value of f depends in
addition to s on the particular permutation = chosen at random. While this
extended usage helps in accomplishing the proof of Theorem 4.1, the discussion
in Section 5 of Godambe and Joshi (1965), shows that otherwise restriction to
Definition 1.7 does not in any way affect the generality of results in the paper.)

The variance of the estimator is evidently
(25) e 2 s,y i€ ) — ()

Suppose for the moment that the co-ordinates y, in the fixed vector y are all
distinct. (A similar argument can be carried through if they are not.) The sum
2,5 in (25) contains N! ¥C, terms, since for each of the N! permutations = we
sum over ¥C, samples s. If we consider corresponding to each term the set y’
of the unlabelled (i.e. without the individual index =(i)) values [y, : i € s], the
number of distinct sets y’ is ¥C,, so that we may regard the index j as running
from 1 to C,, and each y/ is the set of values used in N! terms of Y ,. Now
consider the estimator g(s, ., : i € 5) obtained as the conditional expectation of
S(8, Yzt i € 5) with respect to the sampling design (p, #), given that the unla-
belled values [y, : i ¢ s] are y?. That is, if

Zg fixed Zfr’j fixed means Zs Z (zr:[y,[(i):ies]=yj)
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then
(26) g(yj) Zg’ﬁxod Zig fixed |:,%(;_):l — Zgﬁxed Zi.jﬁxed [[%i)]f(s’ Vet ie s) X

Certainly, g(s, y.,,: i € 5), which may be written as g(y’), is an unbiased estimator
of ny with respect to (p, =): and its variance must be no greater than that of f,
by an argument similar to the one used in proving the Rao-Blackwell theorem.
Hence

@ YL CRANE EDES SO FOR

Moreover, it follows from the fact that the “order statistic” y’ is complete
(Royall (1968)) that if (21) is to hold for all y € R,, then g(y’) must in fact be
the sample total 37,., v, the sum of all elements of y/. Hence

(28) Zn,sp]—s;!) [Zzesy:(z)]z é Zn,s E]_S/s!_)fz(s’ yfr(‘t) . ie S) *

But the left-hand side of (28) may be replaced by

29) A YRS

for any sampling design p’, in particular a design with size n and inclusion prob-
abilities a, = «; (Definition 2.5). Subtracting (1/N!) >} . [> ¥ a,y,]* from each
side of (28) and using (22) gives

(0 2 PO [Sirl g DB a0l S @ Vel

Finally, the left-hand side of (30) is just ¢, V', (e*|x) for e* defined by (10) and
any design p’ € D of (9); explicitly, it is

G R () + —]’;—E”ﬁf_—% T ®Xofaa, — o0 B [DE X
Thus the theorem is proved.

In practical terms, what we have shown is the following: If the statistician’s
prior knowledge can be approximated by C* and his resources limit him to taking
a sample of size n, then for estimation of the population total it is advisable for
him to select a design from the class D in (9) and the estimator e* of (10).

Some very special cases of this result have previously been established. The
proof that

(32) s Vy(e*]x) = eV (e] x)

was given by Kempthorne (1968) under the conditions that p (on both sides of
(32)) is simple random sampling without replacement with n draws; e*(s, x,: i € 5)
is (N/n) X, x;; the prior £ is exchangeable with respect to the x,; and e is any
estimator which is homogeneous linear in the sampled x;, ‘origin invariant’ and
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unbiased with respect to p. Rao (1971) proved (32) under the more general con-
ditions that p is a sampling design with inclusion probabilities a;; e*(s, x,: i € s)
is },c, x,/a; the distribution ¢ is exchangeable in the variates x,/a,; and e is
homogeneous linear and unbiased with respect to p. Thompson (1971) showed
that the assumption of linearity of e could be dropped. The Theorem 6.1 contains
all these results, and establishes the optimality of a sampling design with inclusion
probabilities «, as well as optimality of the estimator },., x,/a;.

5. Necessity of fixed sample size design. In Section 4 we have proved joint
optimality of an estimator and a sampling design under the assumption that all
competing designs have (the same) fixed sample size. This assumption is used in
an essential way at the point where completeness of the order statistic y? is
invoked. The following example illustrates the fact that if variable sample sizes
are allowed in the design with inclusion probabilities «,, the estimator e* of (10)
need not have minimal expected variance with respect to a prior which is ex-
changeable in the x,/a;.

Let the population size N be 3, and suppose that a priori the variates y, = x,,
¥: = 3x, and y; = 3x, are exchangeable. Then the variable sample size design
defined by

p1h) = p({1,2)) = p({1,2,3}) = §
has inclusion probabilities @, = 1, @, = 4, @, = 1. The Horvitz-Thompson
estimator, which corresponds to e* in this situation, is given by

S y) = o AL 25y 32) = Y1+ yas
SAL 2,35y v ys) =i+ ya + s -

The average of its variance over all permutations of {y,, y,, y,} is

Vir = 547(}’12 + J’22 + J’32) + 527(}’1}’2 + y1ys + yey) -

Now consider the alternative estimator

S y) = o AL 25y p2) =y + 205
SAL 2, 35 v yos ya) = i+ 40 + s -

This has expected variance

O+ 2"+ 1)+ SO0+ 3y + s
which is sometimes less than V,,, for example when y = (1, —1, 0). Thus for
this sampling design, which has the proper inclusion probabilities as determined
by the prior knowledge, the Horvitz-Thompson estimator does not always have
least expected variance.
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