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PROPER BAYES MINIMAX ESTIMATORS OF THE MULTIVARIATE
NORMAL MEAN VECTOR FOR THE CASE OF COMMON
UNKNOWN VARIANCES!

By WiLLiaAM E. STRAWDERMAN
Rutgers, The State University

We investigate the problem of estimating the mean vector 8 of a multi-
variate normal distribution with covariance matrix equal to ¢%Ip, ¢® un-
known, and loss ||6 — 8||2/s%. We first find a class of minimax estimators
for this problem which enlarges a class given by Baranchik. This result
is then used to show that for sufficiently large sample sizes (which never
need exceed 4) proper Bayes minimax estimators exist for 8 if p = 5.

1. Introduction. Given a random sample of size n (X, ---, X,) from a p
variate normal population with mean vector # and covariance matrix ¢*/, (where
¢* is unknown and 7, is the p x p identity matrix), we consider the problem of
estimating @ when the loss function is given by

(1.1) L6, 6) = ||6 — B]]*/o* .

Stein [3] established that the usual estimator X is inadmissible for p > 3 (for
the case ¢° known) and later with James [2] produced estimators which beat X
for the cases of known or unknown common variance and for other cases as
well. Baranchik [1] produced a class of minimax estimators which contained
those of James and Stein. Strawderman [4] used the result of Baranchik in the
case where ¢° is known to produce for p > 5 proper Bayes minimax estimators
of 4.

In canonical form, X ~ N(@, ¢°I), s is independent of X and distributed as ¢*
times a y* variable with m degrees of freedom. We extend the Baranchik class
of minimax estimators to the following family

3(X, s) = (1 — r(F, 5)|F)X

where F = ||X||*/s. The function r(F, s) is assumed to be increasing in F for fixed
s and decreasing in s for fixed F and bounded between 0 and 2(p — 2)/(m + 2).
We then produce proper Bayes minimax admissible estimators for p > 5 which
are members of this extended class. The sample sizes required for our result are
as follows: for p = 5 n must be at least 4; for p = 6, n must be at least 3; for
p = 7, n must be at least 2. To the author’s knowledge these are the first known
admissible minimax estimators for the case of unknown common variances.

Section 2 is devoted to the extension of Baranchik’s result. The main result
is proved in Section 3 and some remarks are given in Section 4.

2. A class of minimax estimators. We extend the result of Baranchik [1] as
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follows: Let X be a p dimensional (p > 3) normal random vector with unknown
mean vector @ and covariance matrix of the form ¢%/, and, let s be a statistic
which is distributed as ¢? times a * random variable on m degrees of freedom.
Setting F = X’X/s we establish the following generalization of Baranchik’s result.

THEOREM. Relative to the loss function 1.1 an estimator of the form ¢(X, s) =
(1 — r(F, 5)/F)X is minimax if

(i) (a) For each fixed s, r(+, s) is monotone non-decreasing.

(b) For each fixed F, r(F, +) is monotone non-increasing.

(i) 0 r(e,+) £2(p — 2))(m + 2).

In Baranchik’s result the function r(+) is allowed to be a function only of F,
otherwise the results coincide.

Proor. We follow Baranchik’s proof and notation making the obvious changes
in the definitions of r(F) and g(F) to r(F, s) and g(F, s). The computations up to
(1.11) all being conditional on s, no changes are required to that point other
than notational ones. Expression (1.11) in our notation then becomes

(L1 E[ ok PO 2k U’ TXn®) — 4K sax/2n’> 02n’) — P + 2K]
and we must show for each K = 0, 1, - .. that this expression is not positive.

Since the argument leading from (1.11) to (1.17) in Baranchik is conditional on
¥, we have that our estimators will be minimax provided that

ary E{r (3R 2550 =+l + 2D

is less than or equal to zero. But by condition (i), (1.17)’ is bounded above by

P(PEAL 22 (4 2)0%) =1 + 2+ 2)] 2" < m 2]
m4 2

2K +p—2
P[y.? 2 s re— 2 2)o®
X Plaat < m+ ]+r( e )o)
X E{x =1 + 2 (m + 2)]| 2n> = m + 2} - Ply," = m + 2]

_ 2K—|—p—2 e of 2 =
_%*??Tﬁm+%>ﬂh[l+MWHﬂm—o

which completes the proof.

3. The main result. We now apply the result of Section 2 to obtain a class
of proper Bayes admissible minimax estimators of 6 in the original formulation.
The following notation will be used:

_ 1 _ -
X, = (X Xpgo -5 X)) X = - e X, =X Xy, -, X))

(2

$= N e (X, — Xy F=alX|fS 5= Sn.

Letting 7 = 1/o* we consider the following class of prior distributions: con-
ditional on 7 and 2, @ is normally distributed with mean 0 and covariance matrix
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n~'27')~*(1 — A)I,. The density of 2 is given by

[y =1 —ar, 0<i<la<t,
independent of that of », which has density
g(n) = Cp7*F, T<y< o0, K>L51>0.

The Bayes estimator of # with respect to the above prior for the loss function
(1.1) is given by

51(X1’ ce, Xn)
= E@O.7)[ Xy, - X)E() [ X -+ X,)
= [§d ST dyp (2 - oo §2.,.d0 0,(7) 27 (7) A7) (L — 2)r
(3.1 X (exp{—3(7)A(1 — A)7n||6|PH (")

X (exp{—3[nl|X — O[] + S'I[7']))]
+ [SodA T dy §2e - §2. d6 ()27 ()R A ()1 — A7
X (exp{—=3(7)A(1 — A)7n|| 0| (7)™
x (exp{—3{n[X — O] + S)[7"]H] -
Completing the square in the exponent of the integrands of (3.1), integrating,
and letting 4 = np/2 — K 4 1 and B = p/2 — a yields

(3.2) Xy, - X,) = [1 = r(F, 5)/F]X where
(3.3)  A(F,s) = [§ duy dy () "u" exp{—4p(ns + nsu))]
= [§¢ du §3 dy (") u” exp{—g7*(ns + nsu)}] .
LeMMA 1. K(F, s) is non-decreasing in F for fixed s (F = 0, s = 0).

Proor.

DM 9) = (18 du §5 dy (77)'” exp(— Jrp(ns + mu)]

X [§7 dy () F* " exp{—g*(ns + nsF)}]
— [§¢" du §7 dyp () "u”*" exp{—g*(ns 4 nsu)j]
X [§7 dn(y?)*F” exp{—gy¥(ns + nsF)}]}
= [§¢ du §7 dy () 'u” exp{—gn’(ns + nsu)}J .

The numerator of the above expression is equal to

[F? §7 dy (7*)" exp{—gn*(ns 4 nsF)}]
X [§4 du § dy () w(F — ) exp{—47(ns + nsu)}] = 0.
This establishes the lemma.
LEMMA 2. r(F, s) is non-increasing in s for fixed F, (F = 0, s = 0).

ProoF.

,a%r(F, §) = —inCov (U, H(U + 1)) = —4in Cov (U, E(HY(U + 1)| U))
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where the joint density of (U, H) is given by
9u.u(, 1) = C(p*)*u” exp{—n*(ns + nsu)} Ofu<F,r<y<oo.
To complete the proof of the lemma it suffices to show that g(u) =
E(H (1 4 U)| U = u) is non-decreasing in u.
Write the integral expression for E(H*(1 4 U)| U = u), make the substitution
v® = 5*(ns ++ nsu) in each of the integrals of this expression and differentiate with
respect to u. The numerator of the resulting expression is nonnegative, which

completes the proof.
The above lemmas imply that

0 < r(F,s) £ r(e0,0)
= lim,_ .., 7(F, $)
iy {88 i §, 1 d0(07) 07 exp{—30°(1 + w)}]
= (85 du § o d0(v?)*u” exp{—3v%(1 4 u)}]}
(3-4) = [ du 7 dvo(v?)*u”* T exp{—3v*(1 + u)}]
+ [§5 du §5 dv(v')"u” exp{—3v*(1 + w)}]
= $odu(l + u)y A=ty PR e du(l 4 w)~ A~ u®
= [Sody y (0 = P dy y* 210 = )17
—BfA—B+L—2,B+2)f(A—B+L1—1,B+1)
=(p—2a+2))((n—1)p—2K+ 2a—1).
Since X ~ N(@(¢*/n)I) and s ~ (¢*/n)y%,_,, the theorem will imply minimaxity
of the estimators (3.2) provided we can find a and K such that
(3.5  (p—2a+2f(n— p — 2K — 1 + 22) < 2(p — 2)/(p(n — 1) + 2).

We remark that the theorem implies minimaxity with respect to the loss function
|6 — 6|]*/(¢*/n) which is sufficient to claim minimaxity for the loss (1.1) as well.

Since we want our estimators to be proper Bayes as well, we want K > § and
a < 1. It is clear from (3.5) that it is “‘easier” for an estimator to be minimax
if K is as close to } as possible. Hence we take K = (1 + ¢) for ¢ > 0. Con-
dition (3.5) then becomes

(p—2a+2)((n—1p—2+2a—¢) =2p—2)(p(n — 1) + 2)

which after a little algebra becomes a = a(p, n, ¢) where
(3.6) a(p,nye) = [—pi(n — 1) + 6np — 4 + 2¢(p — 2)]/[2(n + Ly —4].
Hence we wil be able to find values of @ and K which will give proper Bayes
minimax estimators of 8 for those p, n for which there exists an ¢ > 0 such that
a(p, n,¢) < 1. This is the case whenever n(p —4) > p — 2 and p = 3. For
p = 3, 4, the inequality cannot hold for any n. Forp = 5,n1 + 2/(p — 4),s0
that for p =5, n > 3,forp=6,n>2and forp =7, n = 2.

We summarize the results in the following.
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THEOREM. The estimator given in (3.2) is a proper Bayes minimax admissible
estimator of @ subject to the loss (1.1) provided that p, n, a and ¢ satisfy

@ pzs

(®) 1 > a = a(p, n, ) when a(p, n, ¢) is defined as in (3.6). In particular proper
Bayes minimax estimators exist for p = 5 provided the sample size n is at least 4 for
p =35, atleast 3 for p = 6, and at least 2 for p = 1.

4. Remarks. We note first that if we do not insist that a < 1 we can con-
struct generalized Bayes minimax estimators of @ for p = 3 and 4 and n > 2 as
well as for those values of n not covered by the theorem for p = 5. The basic
requirement in order for all expressions to make sense is that a < p/2 + 1 and
it can be shown that such an @ can be chosen to satisfy (3.5) provided p = 3
for any n = 2. Of course if we choose a > 1 the estimator is (probably) no
longer proper Bayes and hence no claim can be made as to its admissibility.

We also note that we can obtain estimators which are “conditionally” proper
Bayes minimax in the sense that the prior distribution conditional on ¢* is proper
for each ¢* but the prior on ¢* is not proper. To do this one considers the following
classs of “priors.” Conditional on 2 and ¢* let # be normally distributed with
mean 0 and covariance matrix n4~*(1 — A)¢~%*Ip. The density of 2 is proportional
to A7 as before and the “density” for ¢ is proportional to ¢°f on 0 < ¢ < co.
The estimators thus generated are easily seen to be

0Xy, -+, X,) = {1 = n(F)/F)X
where
P(F) = [ duw=et2)(1 4 uyo= ][5 du ur=2)(1 4 uyori=r+i]

which can be shown to be of the form (3.3) with y = 0.

These estimators, then, provided care is taken in choosing a and K, will be in
Baranchik’s class and hence minimax. Again, of course, no claim for admissi-
bility can be made.

We note also, that the analysis in Section 3 can be done for the problem in
canonical form. In this case, n~! would not be used in the covariance matrix
of the prior distribution. The Bayes estimator would be given by (3.2) and (3.3)
where A = (p+ m)/2 —k + 1, B = p/2 —a and when X replaces X and s
replaces ns. The lemmas remain true with the obvious notational changes and
we find that the resulting proper Bayes €stimator is minimax provided 1 > a >
a(p, m, €) where

a(p, m, ¢) = [—mp + 6(m + p) — 4 + 2¢(p — 2)]/[2(m + 2p) — 4].

We find that no such a and ¢ exist if p = 3 or 4, but that values can be found
if p=5and m > 2p/(p — 4).
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