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A NEW NONPARAMETRIC ESTIMATOR OF THE CENTER
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By E. F. SCHUSTER AND J. A. NARVARTE
The University of Texas at El Paso

Let Fu(x) be the empirical distribution function based on a random
sample of size n from a continuous symmetric distribution with center 4.
As a nonparametric estimator of ¢, we propose a* where a* is chosen so as
to minimize the function 2 where A(a) = max, |Fa(x) + Fa((2a — x)7) — 1].
In this paper we present an algorithm for constructing the interval of all a
which minimize #. We show that if a* is chosen as the center of this in-
terval then a* is an unbiased estimator of § which converges to ¢ with
probability one at a rate of n/2=% for § > 0. We then use the large or
small sample distribution of A(¢) given by Butler (1969) to construct con-
fidence intervals for # and show how one can test for symmetry when the
center is not specified under the null hypothesis.

1. Introduction. Let F,(x) be the usual empirical distribution function based
on a random sample x,, - - -, x, from a continuous symmetric distribution func-
tion F with center 6. Since F is symmetric with center 0, F(x) + F(20 — x) —
1 = 0 for all x. Tt is well known that F,(x) converges uniformly to F(x) with
probability one (w.p. 1) and hence F,(x) + F,((20 — x)7) — 1 will converge
uniformly to 0 (w.p. 1).

In this paper we consider the nonparametric estimation of ¢ based on the

information contained in x,, - - -, x,. As an estimator of #, we propose a* =
a*(x, - - -, x,) where a* is chosen so as to minimize the function » where
(1.1) h(a) = max, |F,(x) + F,((2a — x)7) — 1].

We present an algorithm for constructing the interval of all @ which minimize
(1.1). We show that if a* is chosen as the center of this interval then a* is an
unbiased estimator of @ which converges to 6 with probability one at a rate of
n2=% for 6 > 0. We then use the large or small sample distribution of 4(¢) given
by Butler (1969) to construct confidence intervals for ¢ and show how one can
test for symmetry when the center @ is not specified under the null hypothesis.

The main properties of the estimator a* are given in Section 2. The proofs
of the theorems are deferred to Section 3.

2. Main properties of a*. Let x,, - - -, x, be the order statistics of a random
sample of size n from a continuous distribution function F and let F,(x) be the
empirical distribution function basedon x,, - - -, x,; i.e., nF,(x) equals the number
of x, < x where 1 < i < n. Let[x]denote the greatest integer less than or equal
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to x and for each pair (i, j) with 1 <i < j< n, let x;; = (x; + x;)/2. Then for
eachk=0,1, ..., n — 1 we define

stky ={x;: 1 <i<[(n—k+1)2,j=n—k+1—1i},
Sk)y={x;:k+1=<i<[(n+k+1)2,j=n+k+1-—1},
m(k) = max {x e s(k)},

and
M(k) = min {x e S(k)} .

The following Theorem 1 indicates that the set of all @ which minimize (1.1)
(the set of minimax solutions) is an interval. The theorem gives an algorithm
for finding this interval and indicates the corresponding value of k(a) for any
minimax solution a. )

THEOREM 1. The set A = {k: m(k) < M(k), where 0 < k < n — 1} is nonempty
and if k* = min {k € A}, then the following are equivalent:

(i) a minimizes (1.1).
(il) m(k*) < a < M(k*).
(iii) nh(a) = k*.

REMARK. The referee has indicated that a* can be obtained by a modification
of the graphical procedure given by Jaeckel (1969, page 44). Concerning the
method which is employed to define our estimate, he has pointed out three
further references of interest, Wolfowitz (1957), Kniissel (1969) and Fine (1966).

Let k* be as in Theorem 1 and let us assume that the sample x,, - - -, x, is
from a continuous symmetric distribution function F with center 6. As an
estimator of § we propose the statistic a* where a* = (m(k*) + M(k*))/2. We
then obtain

THEOREM 2. The distribution function of a* is symmetric with center 0.

It now follows that a* is unbiased for § whenever E(a*) exists. In Lemma 6
of Section 3 we show that for n > 3, x, 5 < a* < X,_[,/5),, and hence E(a*) = 6
whenever E(x, ) exists. Theorem 3 now formulates this result in terms of the
natural necessary and sufficient condition for E(x,,)) < oo, for n sufficiently
large, given by Bickel (1967). In this theorem we assume that the distribution
F has a density f which is continuous on {x: 0 < F(x) < 1}.

TueorEM 3. Iflim, ., [x|*F(x)(1 — F(x)) = O for some a > O then E(a*) = 6
for n sufficiently large.

If we are sampling from a Cauchy distribution with center 6, then the ex-
pected values of x, through x,_, exist. So the above indicates that if n > 6
then E(a*) = 0, so that a* is unbiased for ¢ for all the well-known symmetric
distributions.

The following Theorem 4 indicates the rate at which a* converges to 6.
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THEOREM 4. If r, = o(nt~?) for some 6 > 0, then r,(a* — 0) converges to zero
with probability one.

The small and large sample distributions of n*x(f) are given by Butler (1969).
In Theorem 5 we show how this distribution can be used to set confidence limits
for the unknown 4.

THEOREM 5. (Confidence limits for 6.) Let d, be such that

lim, ., Pr{nth(0) = d,} = « .

If k = [n*d,] then
lim, .. Pri{mk) <0 < M(k)} =1 — «.

REMARK 1. Using Butler’s result (1969) (it contains a misprint i.e.,
exp —((2n + 1)’z*(8x*) should be exp—((2n + 1)’z%/(8x%))) we see that
lim,_, Pr {n*h(6) = 2} ~ 0.910. Hence k = [2n!] in Theorem 5 yields a (con-
servative) 9194 confidence interval for 6. This also says that 919 of the time
k* < 2nt. In practice we have found k* and a* rather easy to obtain both
manually for moderate sample sizes and on a computer for large sample sizes,
and in the examples we have studied the estimator a* performs quite well.

REMARK 2. Butler has noted that the statistic £(f) = max_ |F,(x) + F,((20 —
x)7) — 1| can be used in the usual manner to test the hypothesis of symmetry

(2.2) Hy: F(x) + F(20 — x) — 1 =0, all x

against
H;: F(x) + F20 — x) — 1+ 0, some x,
when @ is completely specified under the null hypothesis H,. He rejects H, at
level « if the computed value of nth(0) = d,, where Pr {nth(0) = d,} = «a.
If we want to test the hypothesis of symmetry in (2.2) when @ is not specified
under H, then we propose the statistic

h(a*) = max, [F,(x) + F,((2a* — x)7) — 1
= min, max, |F,(x) + F,((2a — x)7) — 1].
Since k(a*) < h(#), we can use the above d, as a conservative test, i.e., we reject

H, at level « if the computed value of nth(a*) = d, where Pr {n*h(¢) = d,} = «a.
If the hypothesis of symmetry is accepted, then we use a* as our estimate of 4.

REMARK 3. One result which we have not been able to obtain is the asymptotic
distribution of n}(a* — #). Hence a comparison of a* with other existing esti-
mates is not yet possible on this basis. P.J. Bickel has pointed out that one
can argue as follows. Take 6 = 0, then,

m(Fo(x) + Fo((2a — x)7) — 1)
= n{(F,(x) — F(x)) + F,((2a — x)7) — F(2a — x)}
+ 2ntaf(x) + o,(1)
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at least in n~* neighborhoods of a = 0 (F’(x) = f(x)). The right-hand side
behaves like

WYF(x)) + WY(F(2a — x)7) + 2ntaf(x) ~ 22W(F(x)) + 2n%af(x)

where W, W are used generically for Wiener and Brownian bridge processes.
Hence Professor Bickel has conjectured that nta* has the same distribution as
0* where

24 F(x(0%))) + 20*f(x(0*))] = min, sup, <, [22W(F(x)) + 20f(x)| .

So far we have been unable to prove this conjecture.

3. Proofs of theorems. Letx, --., x, be the order statistics of a random
sample of size n from a continuous distribution function F, F,(x) the empirical
distribution function based on x,, - - -, x,; and let g(x, a) = F,(x) — G,(x), where

G,(x) =1 — F,((2a — x)7) as before. We proceed to the proofs of Theorems 1
and 2 via the following four lemmas.

Lemva 1. If0 < k <[ <n — 1, then m(k) = m(l) and M(k) < M(l).

Proor. It suffices to prove the result for I = k + 1. If xe sk + 1), then
x = x,; for some i and j satisfying 1 < i < [(n — k)/2]and j = n — k — i. But
then j < n — 1 so that x; < x,,,, which implies that x,; < x, ;,;,. From this it
follows that m(k + 1) < m(k) once we observe that x, ,,, € s(k). The proof that
M(k) < M(k + 1) follows by a similar argument by observing that if x,;¢

S(k + 1), then x;; = x,_, ; where x,_, ;€ S(k).

LEmMMA 2. Foreachi=1,2, ---,n,let x! = 2a — x,_,,,, and for each k =
0,1, .--,n— 1, let s'(k), S'(k), m'(k) and M'(k) be defined for x/, ---, x,' as in
Section 2. Then m'(k) = 2a — M(k) and M'(k) = 2a — m(k).

Proor. Let x; = (x/ + x;/)/2e s'(k). Then 1 <i < [(n — k + 1)/2] and
j=(n—k+ 1) —i and

X =20 — (X X j41)[2 =20 — (X jin + Xein)[2 =20 — x50,
where i/ =n —j+ landj’=n— i+ 1. Then since j=(n — k 4 1) — i, it
follows that i’ = k + i and j’ = (n + k 4+ 1) — i’, which, together with 1 <
i <[(n — k + 1)/2], imply that k + 1 <" < [(n + k + 1)/2] and j' = (n +
k + 1) — i, so that x,; = 2a — x}, € S(k). Similarly, if x,; € S(k), it follows
that x,, = 2a — x},,,, where i’ =n—j+ 1 and j/ =n — i+ 1, from which
1< <[(n—k+ 1)2land j = (n — k + 1) — i’, so that x},;, = 2a — x;; ¢
s(k). Hence it follows that m’(k) = max {x € s'(k)} = max {2a — x: x e S(k)} =
2a — min {x € S(k)} = 2a — M(k). The proof that M’(k) = 2a — m(k) follows
in a similar fashion.

LemMA 3. If m(k) < M(k), then m(k) § a < M(k) implies that nh(a) < k.

Proor. Recalling that g(x; a) = F,(x) — G,(x) is a step function whose jumps
occur at the x;’s and y,’s, then k(a) = max, |g(x; a)| is realized at either an x;



1100 E. F. SCHUSTER AND J. A. NARVARTE

or y; = 2a — x;. Here we can assume that x;, = a for some i, for if otherwise,
then nh(a) = 0 and the result follows. In fact k(a) is realized at an x, or a y,
different from a, since x; = a if and only if y, = 2a — x, = a, in which case
one jump cancels the other. Suppose now that A(a) is not realized to the left
of a. We note that if 4(a) is realized at x, then g(x;; @) = 0 and if 4(a) is realized
at y, then g(y,;; a) < 0. If h(a) = |g(x,; a)| = 9(x,; a) for x; > a, choose % =
X, + & where ¢ > 0 is small enough to insure that % is strictly between X, and
any x; and y, to the right of x, . Since g(2a — x; a) = F,(2a — x) — G,(2a — x) =
F(x7) — G,(x7) = 9(x7; a), 9(2a — %; a) = ¢(%; a), and since h(a) = g(x,; a) =
9g(%; a), then h(a) is realized at 2¢ — x which is a contradiction, since a < x; < %
places 2a — x to the left of a. If h(a) = |9(y,; @)] = —9(y;,; @), then by choosing
J =y, + ¢ asimilar argument shows that h(a) = |9(2a — J; a)|, with 2a —
to the left of a. Hence A(a) is realized at an x, or a y, which is strictly to the
left of a.

Suppose now that h(a) = g(x,;a) with x, < a, and suppose further that
nh(a) > k. Since ng(x,; a) equals the number of x; < x; less the number of
Vi £ x;,, then we must have i, > k + 1. Furthermore, to account for possible
ties at x,, we require that i, = max{i:'x; = x,}. Then by the original hy-
pothesis, a < M(k) = min {x € S(k)}, so that in particular x, < a < x;;, where
i=[(n+k+1)2]landj=(n+ k + 1) —[(n 4+ k + 1)/2] = [(n + k)/2] + 1,
and since x;; < x;, it follows that k + 1 < i, < [(n + k)/2]. But if j = (n +
k + 1) — iy x;; €S(k) and since a < M(k) < x,; we then have y, = 2a —
x;, = x;. Thus the number of y; < x, must be at least n — j, + 1, which equals
i, — k, since j, = (n + k + 1) — i, Moreover, by the choice of i,, the number
of x; < x, is precisely i, so that ng(x,;a) < i, — (i, — k) = k. But this says
that nh(a) < k, which contradicts the supposition that nh(a) > k, so that the
result follows providing that A(a), which is always realized at an x; or a y,
strictly to the left of a, is in fact realized at an x,.

Suppose then that A(a) is realized at some y;, < a. Then letting x," = y,_;,,
and y/ = x,_,,, foralli=1,2, ..., nas in Lemma 2, we observe that g(x; a),
which is the number of x; < x minus the number of y;, < x, is exactly equal to

the number of y,/ < x minus the number of x,” < x. Thus g(x; a) = —g'(x; a),
where ¢’(x; a) is the corresponding step function for x/, ..., x,’, so that A(a) =
19():; @) = —9(yiy @) = 9'(X1_s,415 @) s also realized at an x,” < a. Moreover

by Lemma 2, we have that m'(k) = 2a — M(k) and M’(k) = 2a — m(k), so that
if m(k) < a < M(k), it follows that m’(k) < a < M’(k). But here we can appeal
to the first part of the present proof to conclude that ni(a) < k which completes
the proof of the lemma.

LemMA 4. If a < m(k) or M(k) < a, then nh(a) > k.

Proor. Suppose a < m(k). Then there exists an x,; € s(k) for whicha < x,,,
with l i< [(n—k+ 1)/2] and j = (n — k + 1) — i. But then, y, = 2a —
x; < 2x;; — x; = x,;, from which it follows that nG,(x,7) = n —j+ 1 =i + k.
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But this says that ng(x,7;a) = nF,(x,7) —nG(x7) < (i—1)—(i+ k)=
—(k + 1), so that nk(a) = n - max, |g(x; a)] = n - max, |g(x~; a)| = n|g9(x;”; a)| =
k 4+ 1. If M(k) < a, then there exists an x,; € S(k) for which x;; < a, with
k+1<ig[(n+ k+1)2]and j = (n + k + 1) — i. But again, y; = 2a —
x; > 2x,; — x; = x;, sothat n — nG,(x;) = j, from which it follows that nG,(x,) <
n—j=1i—k— 1, and thus
nh(a) = n - max, |F"(X) - Gn(x)l Z nFn(xi) - nGn(xi)
>i—(i—k—-1)=k+1.

REMARK. Using the above lemmas one can easily show that if m(k) < M(k)
(i.e., k = k*), then nh(a) = k + 1 if and only if m(k + 1) < a < m(k) or
M(k) < a < M(k + 1). This result could be used to compute #(6).

With these lemmas we can now formulate the proof of

THEOREM 1. The set A = {k: m(k) < M(k),0 < k < n — 1} is nonempty and
if k* = min {k € A}, then the following are equivalent;

(i) a minimizes (1.1).
(if)y m(k*) < a < M(k*).
(iii) nh(a) = k*.

ProoF. The fact that 4 is nonempty follows by observing that m(n — 1) = x,
and M(n — 1) = x, and since x, < x,, then (n — 1) € 4. Suppose that a mini-
mizes (1.1), and let nk(a) = k for some k satisfying 0 < k <n — 1. Since
k* = min {k € A} € 4, then m(k*) < M(k*) and hence by Lemma 3, nh(m(k*)) =<
k*,sothatk < k*. Thusby Lemmad4, nh(a) = k < k* implies that m(k*) < a =
M(k*) so that (i) implies (ii). Now suppose that m(k*) < a < M(k*). Then by
Lemma 3, nh(a) = k < k*, and by Lemma 4, nh(a) = k implies that m(k) =
a < M(k) from which it follows that k € 4. But k* = min {k € 4} so that nk(a) =
k = k*, and hence (ii) implies (iii). Finally, suppose nk(a) = k*. If a does not
minimize (1.1), then there is an a* for which nh(a*) = k < k*, which implies
by Lemma 4 that m(k) < a* < M(k), so that k € A, which is a contradiction.
Therefore a minimizes (1.1), so that (iii) implies (i) and the proof of the Theorem
is complete.

In the remainder of the paper we will assume that the ordered sample x;, - - -, X,
is from a continuous symmetric distribution function F with center ¢, and that
k* is as in Theorem 1. As an estimator of § we have proposed the statistic
a* = a*(x,, - - -, x,) where a* = (m(k*) + M(k*))/2. We now proceed to the
properties of a*, the first of which is Theorem 2. This theorem follows im-
mediately from Lemma 2 and we omit its proof. Theorem 3 can then be obtained
using Lemmas 5, 6, and Theorem 2.1 (a) of Bickel (1967).

LEMMA 5. For n = 2, nh(a*) = k* < [(n 4 1)/3].

ProoF. Let n > 2 and let k = [(n 4 1)/3] (observe that k < n). It suffices to
show that m(k) < M(k), for then k* = min {k: m(k) < M(k)} < [(n + 1)/3].
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This would follow if x e s(k) implies x < y for any y in S(k) (recall m(k) =
max {x € s(k)} and M(k) = min {x € S(k)}). Suppose then that k = [(n + 1)/3],
x € s(k), and y € S(k). Then x = x,; for some i, j with 1 < i < [(n — k + 1)/2],
j=n—k+4+1—iandy=x,, forsome i, withk + 1 < < [(n + k + 1)/2],
jf=n+k+1—i. Nowk=/[n+1)3]=(n—1)/3. Then2k +2=n—
k+1, sothat k +1>=(n—k + 1)/2=[(n — k 4+ 1)/2]. Hence i < [(n —
k4+1DR21<k+1<Z10. Also k= (n— 1)/3 implies 4k +2>n 4+ k + 1, so
that 2k + 1 = (n+ k + 1))2=[(n+ k + 1)/2]. Butthen j<n—k < (n+
k+1)—[(n+ k+ 1)2] £ ). Since i < i’ and j < j’ it follows that x,; < x,.;
and the proof is complete.

LEMMA 6. Forn = 3, Xp 5 < @* < X, _(uss141

PrOOF. Suppose a* < x;,,5. Then n — nF,(a*) — nF, (a*)~ > n — 2[n/3] =
[(n + 1)/3]. But this contradicts Lemma 6 and hence a* > x, ;. Suppose then
that a* > x,_(,/s5;.;- Then nF,(a*) + nF,(a*)~ —n=2n —2[n/3] +2 —n=
n—2[n/3]+ 2 =[(n+ 1)/3] +2 > [(n + 1)/3]. But this also contradicts Lemma
6. Hence a* < x,_,,;; and the desired conclusion follows.

COROLLARY. E(a*) = 0 whenever E(x[n/ag) exists.
Our Lemma 7 is needed in the proof of Theorem 4.

LEMMA 7. Let C, > Oand let b, = C,n* where k > — 4. If ¢, = sup, (F(b, +
x) — F(x)) where F is a continuous distribution function then 3,7, exp(— C,ne,?)
converges for all C, > 0.

Proor. If k = 0 then b, = C,. In this case ¢, equals some positive constant
a =a(Cy, F). When k >0, b, — oo and ¢, — 1. Hence there exists an N =
N(C,, k, F) such that for n = N, ¢, = min (4, a) = b > 0. The desired conclu-
sion now follows for k > 0 by observing that for n > N,

exp(—C,ne,?) < exp(—C,ynbd?)
and
2w exp(—Cn) converges for all positive C.

Let us then consider the case when —4 < k < 0. We claim there exists an
a=a(C, k, F) >0 and an N = N(C,, k, F) such that ¢,/b, = a for n = N.
Suppose not, then there exists a subsequence {e, } (with increasing indices) such
that e, /b, — 0*. But this says that the derivate (D*) of the function (—F) is
everywhere nonnegative on each finite interval [c, d]. It then follows from an
exercise in Royden (1963, page 84) that F(d) < F(c), which means that F(d) =
F(c). Since ¢ and d are arbitrary F must be constant, but this is not possible
since F(—oo) = 0 and F(+o0) = 1. :

Hence there exist @ and N such that ¢,/b, = a for n = N, so that

exp(— Cyne,?) = exp(—Cynb, % 2[b,")
< exp(—GC,nba’) .
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If ¢ =1+ 2k, then nb}? = nC?n* = CPn*** = C?n’. Since —} < k<0,
0 <0< 1. The proof of the theorem is then complete if one notes that
exp(—G,ne,’) < exp(—C,C%a’n’) forn = N and that } 7., exp(— Cn®) converges
for any C > 0.
We now prove
THEOREM 4. If r, = o(n*~?) for some 6 > 0, then r,(a* — ) converges to zero
(w.p. 1).
Proor. By the Borel-Cantelli Lemma it suffices to show that
Zia Prirja* — 0] > ¢
converges for each ¢ > 0.
Let b, = ¢/r,. Then since the distribution function of a* is symmetric about
6 (Theorem 2)
Pr{r|a* — 0| = ¢} = Pr{la* — 0| = b,} =2Pr{a* — 0 =b,}.
Let ¢, = sup, (F(2b, + 20 — x) + F(x) — 1). Then
Pr{a* — 0 = b,} = Pr{2a* — x = 2b, + 20 — x, all x}
= Pr {F(2a* — x) = F(2b, + 20 — x), all x}
= Pr{F(2a* — x) + F(x) — 1 = F(2b, + 20 — x)
+ F(x) — 1, all x}
< Pr {sup, |F(2a* — x) + F(x) — 1| = ¢,}.
Since a* is a minimax solution (it minimizes (1.1)) and F(x) + F(20 — x) =1,
it is easy to see that
sup |F(2a* — x) + F(x) — 1|
< sup |F (x) + F,(2a* — x) — 1| + sup |F(2a* — x) — F,(2a* — x)|
+ sup [F,(x) — F()|
< SUp [F,(x) + F,(20 — ) — 1] + 25up [F,(x) — F(x)|
< 4sup|F,(x) — F(¥)| .
It now follows from Dvoretzky, Kiefer and Wolfowitz (1956) that there exists
a universal constant C such that

Pr{a* — 0 = b,) < Pr{sup |F,(x) — F(x)] > ¢,/4} < Cexp(—¢,/8),

where ¢, = sup, (F(2b, + 20 — x) + F(x) — 1) = sup, (F(2b, + x) — F(x)). If
we let k = 6 — } and ¢ = 2¢ then 2b, = cn* where k > —4. An application
of Lemma 7 completes the proof.

Finally, Theorem 5 follows directly from Lemma 4.
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Note added in proof. R. C. Littell and P. V. Rao have recently informed us
that the estimator a* was considered as a one sample application of their work
on the estimation of shift in the two sample shift problem which appears in
“Robust estimation of shift parameters’based on Kolmogorov-Smirnov statis-
tics,” Technical Report Number 30, 1971, Department of Statistics, University
of Florida. The main overlap in our work and theirs is in the computing al-
gorithm. Although their discussion in this direction (page 4) appears to contain
a minor error (the procedure they outline estimates —¢ instead of #), the com-
puting algorithm of our Section 2 is implicit in their subsequent two sample
work. However, our work is of independent interest in that we do not make
the assumption that our data points are distinct. Hence the (practical, not
theoretical) problem of ties need not be considered separately. In addition, our
algorithm exhibits the computational simplification inherent in the one sample
case. Littell and Rao have also established some results concerning bounds on
the asymptotic length of the confidence intervals and Schuster (Abstract 138-36,
IMS Bulletin, May 1973) has proved Bickel’s conjecture for all the well-known
symmetric distributions.



