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A CLASS OF NON-PARAMETRIC TESTS FOR HOMOGENEITY
AGAINST ORDERED ALTERNATIVES

By PETER V. TRYON! AND THOMAS P. HETTMANSPERGER

The Pennsylvania State University

In this paper, the c-sample location problem with ordered or restricted
alternatives is considered. Linear combinations of Chernoff-Savage type
two-sample statistics computed among the ¢(c — 1)/2 pairs of samples are
proposed as test statistics. It is shown that for each linear combination of
two-sample statistics there is another linear combination, using only the
¢ — 1 two-sample statistics based on adjacent samples as determined by the
alternative, which has the same Pitman efficacy. If the ordered alternative
Is restricted further by specifying the relative spacings in the alternative,
then the weighting coefficients can be chosen to maximize the Pitman
efficacy over the class of linear combinations. It is also shown that the
statistics proposed by Jonkheere [4] and Puri [9] have maximum Pitman
efficacy when the alternative specifies equal spacings.

1. Introduction and summary. LetX,,kx =1,...n,i=1,...,c berandom
samples from populations with absolutely continuous distribution functions
Fy(x) = F(x —0,),i =1, --.c. This paper is concerned with testing the null

hypothesis H,: 6, = - .. = 6, against one of the following restricted alternatives:
H,:0, < ... <60, with at least one strict inequality or H,,: 6, < ... <6,
with at least one strict inequality and & = (d,, ---, d,_;) specified where

0y = (0iy — 02’)/(0c — 0).
Let N = 3¢, n,. For testing H, against H,, Terpstra [10] and Jonckheere [4]
proposed the statistic

(1) JN = Zf;% Z§=i+1 M

where M,;, is the Mann-Whitney statistic [6] computed from the ith and jth
samples for testing the alternative ¢, > ¢,. The Mann-Whitney statistic is one
member of a broad class of two-sample statistics studied by Chernoff and Savage
[1]. Puri [9] generalized Jonckheere’s statistic by replacing M,;, with any
Chernoff-Savage statistic. Following the approach suggested by Hogg [3], Puri’s
family of statistics is generalized by including weighting coefficients to form
arbitrary linear combinations

(2) Ty = 20001 XSeim a;T,;y a,; >0,
where T, is any Chernoff-Savage statistic. Denote by I' the class of statistics
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defined by (2). From the results of Puri [9] it follows that statistics in I', when
properly standardized, are asymptotically normally distributed.

Let I'* be the subclass of I' consisting of linear combinations of (T, Ty, - - -,
T,_,); then, assuming equal sample sizes, it is proved that for each T, in I' there
corresponds an “‘equivalent” statistic T,* in I'*, where

_ -1 Nk
Ty* = 20, Thpaw and A, = 215 DGk iy
k=1,2,--.,¢c—1.

The “equivalence” refers to the fact that the difference of T, and 7',*, when
standardized, converges in probability to zero under H, and that, for testing H,
against H,,, the Pitman efficiency of 7',* with respect to T’ is one. In addition,
T,* is a much simpler statistic, requiring the computation of ¢ — 1 rather than
(¢) two sample statistics.

If the alternative H,, is considered, the additional information in 8, the vector
of relative spacings, can be used to choose the weighting coefficients to maximize
the Pitman efficacy of statistics in I'. It is proved that, if the spacings are equal,
Puri’s family of statistics and their “equivalents” attain the maximum Pitman
efficacy within the class I'. The method of obtaining the optimum weighting
coefficients is given.

The alternative H,, provides a practical alternative to the assumption of equal
spacing which is generally made by default in applying Jonckheere’s statistic.
This alternative requires no more justification than the assumption of equal
spacings. Furthermore, the methods developed in this paper provide the means
to study the robustness of the Pitman efficacy of the statistics to errors in the
choice of relative spacings.

Haller [2] has considered a different class of statistics consisting of a linear
combination of the ¢ two-sample statistics formed by comparing each sample
against the combined sample. The two-sample statistic used may be of the
Chernoff-Savage type. He derives the weighting coefficients which maximize
the Pitman efficiency for a specified relative spacing in the ordered alternative.
Although the class of statistics considered by Haller and our class I" are disjoint,
Haller has proved that, for equal spacings, the efficiency of Puri’s statistic with
respect to the optimal statistic in his class is one. It follows that the statistics
in I'* “equivalent” to Puri’s statistics are as efficient in the Pitman sense as
Haller’s optimal statistic.

2. Equivalent linear combinations of Chernoff-Savage statistics. Let N,; =
n, + n;, N = Y n and let F,,(x) be the empirical distribution function of the
sample from the ith population. Let y,; = (n,/n,)* and 4,; = n;/(n; + n;).

It is assumed that 7,; is a constant, independent of N and not equal to 0 for
any pair i, j. That is, the relative proportions of sample sizes are held constant
as N tends to infinity. Let H,;,(x) = (1 — 2,;)F;y(X) + 4;; F;,(x) be the empiri-
cal distribution function of the combined ith and jth samples. Similarly, let
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H;(x) = (1 — 4,;)F,(x) + 4;; F;(x) be the combined population distribution func-
tion for the ith and jth populations. Define

(3) Tijy = §Ze v ;[Hijy(%)] dF;(x)

where Jy (k) is constant on the intervals (k/N,;, (k + 1)/N;], k =0,1, ...,
N,;; — 1 and depends on i and j only through n, and n;. This implies that all of
the (5) two-sample statistics are of the same type: Mann-Whitney, Normal
Scores, etc.

Let T, = (Tians Tiaws ** *> Trews Taaws ** *» Taows * + *» To_1oy) D€ the (5) dimensional
random vector with elements 7,;,, | < i < j < ¢, where
“) Tijn = "jé(l — A ) Ty — V2 J[H;(X)] dFj(x)}

and suppose J(h) = lim,_.,Jy (k) exists for 0 < & < 1.

Suppose that for each pair i, j, 1 <i < j < ¢ the four conditions of the
Chernoff-Savage [1] Theorem 1 hold. Puri [9] in the proof of his Theorem 4.1
proves that for any fixed F(x), i =1, 2, - .-, ¢ the random vector =, converges
in law to a random vector having a multivariate normal distribution with null
mean vector and covariance matrix H.

Under the null hypothesis F,(x) = F(x), i = 1,2, .- -c, so that the elements
of H are

hij.=0 all subscripts different
hijis = o1 +77)) 1<j

5) hy=0° i<, j<lI, i#j
by = 1157150 I<i, I<j, i#]j
hip; = hju = —7,0° i<Ii<j

where ¢ depends on the particular Chernoff-Savage statistic in question.

In the remainder of the paper we will assume that the sample sizes are equal.
An examination of the non-full rank covariance matrix H for equal sample sizes
under H, shows that the linear combination 7,;, — iz} 7, 1,y IS asymptotically
degenerate. This suggests using >1iZ} 7, ,,,y as a replacement for z,;,. Thus,
define for

(6) Ly=Ary= 321 25mi1 95 Tijw a; =0
the random variable L,* where
(7 Ly* = 336010 X=ii Q45 253 T ke a; = 0

and r,;, is given by (4).
THEOREM 2.1. An equivalent expression for L* given in (7) is:
(8) Ly* = 2 @ty ppaw where a, = 3t 25k @y -

Proor. The triple summation in (7) is over all triples (i, j, k) such that 1 <
i<k i<j=Zcandi<k < jorequivalentlyl </ < k < j<c. From (8) the
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triplesum is over all triples (i, j, k) such that | <k < j, 1 < i< kandk <j< ¢
or equivalently 1 < i < k < j < ¢. Thus the summations are identical.

THEOREM 2.2. Suppose the sample sizes are equal. L, and L,* converge in law
to L and L* respectively having univariate normal distributions with zero means.
Furthermore, under H,, L, — L.,* converges in probability to zero and hence
Var (L) = Var (L*).

Proor. Let A*" = (af;, af;, - - +) be the (;) dimensional vector with elements
af =0if j# i+ 1 and a},,, = a, defined by (8). From Puri’s theorem and
the continuity theorem it follows that L, = A’z, and L,* = A*'t, converge in
law to L and L* having univariate normal distributions with zero means and
variances A’ HA and A*' HA*, respectively. Similarly, L. — L, * = (A — A*)'7,
is asymptotically normally distributed with zero mean and variance (A —
A*)'H(A — A*). Note that L, — L,* = A’S where S;; = 7,y — 212! T4 pyaw
1 £i<j< e Similarly, S = Br, where B is a () by (5) matrix of zeros and
plus or minus ones. Thus, (A — A*)’H = A’BH. From the structure of H under
H, it can be shown that BH is the null matrix. Thus, under H,, for equal sample
sizes L, — L,* converges in law to a random variable degenerate at zero.

Using Theorem 2.1, the weighting coefficients for the “equivalent” form of
Jonckheere’s statistic J,, defined by (1) are a, = k(c — k), k=1, ---,¢c — 1 s0
that J,* = Y7 k(e — k)M, i

Another statistic is defined by R,, = Y ., iR,,. This is Spearman’s rho statistic
[5], used as a test of correlation between the index i and R,,, the average of the
ranks of the items in the ith sample. Now
(e + 1)

4

= 1 . .
sz = 7 Zf;ll Z§'=i+1 (] - I)Mijzv + C(n +

and hence

Ry = Xt XD5en (J — DMy
may be considered. For this statistic a, = Y%, Y15_,., (J — i) = (¢/2)k(c — k);
thus, the “equivalent” form for R,’ is (¢/2)J,*. This shows that the correspond-
ence between a statistic and its “‘equivalent” is not one to one.

Note that so far the location parameters have been surpressed; the distribution
theory is valid for any set of absolutely continuous distribution functions F;(x),
i=1,2,--.,c, satisfying the conditions of Puri’s theorem. The random vector
T, is not a statistic since it depends on the unknown distribution functions. In
the following, the location parameter family is considered and the dependence
of the random variables, their moments and the covariance matrix H on @, the
vector of locations, is clearly specified.

Only equal sample sizes have been considered because in general the elements
of H and thus the weighting coefficients needed for an “equivalent” statistic
depend on the (5) ratios of sample sizes y,;.

3. Efficiency properties. Let Q ={0 = (0,, ---,0,): 0, < ... < 6,} be the
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parameter space and let v = {@: 0, = = 6,}; then the hypotheses to be con-
sidered are H,: @ € w against H ,: 6 ¢ Q — o.

Fix 6 ¢ Q — w and 0,¢ o and define 8, = 8, + N16. Note that when 6 is
chosen in Q — o, the relative spacings, 8, are fixed and remain constant as N
increases.

Since F,(x) = F(x — 0,),i = 1, . . -, cand assuming equal sample sizes, from (6)
wecan write Ly = A'ry = 2(N/c)Y(Ty — 1(6)) where p1(0) = 31621 2154115 12:,(0)
and

©) pus(0) = 2o g (FLF IO =00 Yapq

Now, L, is asymptotically normally distributed with mean O and variance
7%(@) = A’H(@)A. The Pitman efficacy for such statidtics is discussed by Puri [8].
The reader is referred to his paper for definitions.

THeorREM 3.1. If the statistic T, in T' and its “equivalent” T, * in I'* satisfy the
conditions for Pitman efficiency, then their relative Pitman efficiency is 1.

Proor. Let
7*(0) = A¥H(6)A* ,
b = (ct*(6)) V2. J'(F(2))F/(2) dF(2)[a,; — )] and

by = (ct(00)) § = S (F(2)F'(2) dF () it @ = X5=ima 5]
where, for convenience, ¢, = a, = 0 and a;;, = a,,,, = 0. The Pitman efficiency
of L,* with respect to Ly is e,(Ly*, Ly) = [>5_,6,%0,/> 5., b,0,]*. However

i, —a) = 3iZ1a(0,, — 0) and
i 2zl ay — e alj] = 2901 DGmin aij(aj —40).
From Theorem 2.2., since 7n(8,) = 5*(8,),
ep(LN*’ Ly =252 a0, — 00)/ 2255 DS a;(0; —0)T.

Recall that @, = X!, >15_,,, a;; and observe that (6, — 0,) = >}iZ} (0,,, — &)).
Making these substitutions yields

ep(LN s Ly) = 1 =141 aw(ﬂH—l 0))] 25 Diimit izt aij(ﬁl+1 —0,).
In Theorem 2.1 it was proved that these summations are equal. Thus
e,(Ly*, Ly) = 1 independent of 6.

We now consider the alternative hypothesis H,,. Recall that H , specifies
0cQand 8 = (0, -+ -, d,_,), where d; = (0,,, — 0,)/(6, — 0,), is assumed to be
known. It has been shown that for any linear combination of Chernoff-Savage
statistics L, in I" there is an “equivalent” linear combination, L,*, in I'*. The
statistic L,* has Pitman efficiency one with respeét to L,. For this reason, only
the class of statistics I'* need be considered in deriving the weighting coefficients
a, k=1,2,...,¢c — 1, which give maximum Pitman efficacy for testing alter-
natives H,,.
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The Pitman efficiency of one statistic with respect to another is the ratio of
two efficacies. The Pitman efficacy of L,* is e(L,*) = (3¢, 0,6,*)* where b,*
is given in Theorem 3.1. The efficacy of L * will be considered as a function
of the vector A’ = (a,, a,, - - -, a,_,) and maximized by selecting the appropriate
vector A. From the proof of Theorem 3.1 it follows that

oLy = e (V2 I FE)F (@) dFEPISE b0 — 0)F

_ O =0 (o (R F(2) dF(2))A'38'A
b~ O (= 1 (F)P () dF )

_ R ABOA
AHA

where R isa constant independent of A, H* is the full rank asymptotic covariance
matrix of (t},y, + -+, 7,_.y) and 8 = (9, - - -, 0,_,) the known vector of relative
spacings specified by H,.

THEOREM 3.2. A vector A which maximizes e(Ly*) for a given vector 8 is
A = H*13.

Proor. This result is a standard result in matrix theory.

THEOREM 3.3. When H, is true and when the sample sizes are equal aH*~' is
given by
b =2ic — ple i<

= 2j(c — i)/c =] where « is a constant.

For ¢ = 3 the solution for an arbitrary vector 8 can be easily obtained. Let
¢ =(,1—7),0<y< 1. Notethat 52} 9, = 1. However, it is convenient
to normalize 8 to place a 1 in the first position to obtain 8’ = (1, a), 0 < a < co.
Thus, A’ = (4 + 24)/3, (2 + 4a)/3). Note that for equally spaced alternatives
a=1and A’ = (2,2). This is the test equivalent to Puri’s or Jonckheere’s
statistics where each of the 3 two-sample statistics carried equal weight.

In the special case of equal spacings, 8’ = (1, I, - .., 1), the vector A can be
determined.
THEOREM 3.4. Whend = (1,1, - - -, 1), the vector A has elements a, = k(c — k),

k=1,2,...,¢c— 1.

CoRrOLLARY. In the class ' of statistics, linear combinations with equal weightings
proposed by Jonckheere [3] and more generally by Puri [8] for testing H, against H,,
with equal spacings have maximum Pitman efficacy for the Chernoff-Savage statistic
used.

Note that the statistic with maximum Pitman efficacy in I'* is unique up to
a multiplicative constant but is not unique in I'.  For example, if linear com-
binations of Mann-Whitney statistics are considered then J,, J,*, and R, de-
fined at the end of Section 3 have the maximum Pitman efficacy in I" for equal
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spacings. Note also that the class I is defined for an arbitrary, but fixed, type
of parent Chernoff-Savage statistic; however, the optimum weighting coefficients
are independent of the two sample statistics used.

Let 8’ = (0, 1,0). That is, it is hypothesized that for ¢ = 4 the first two
locations are equal and the last two are both equal but greater than the first
pair. The optimum weighting coefficients are A = (1, 2, 1) which specifies weight-
ing the statistic z,;, twice as heavily as r,, and z,,, which are weighted equally.
In this case an intuitive approach is interesting. The hypothesis suggests pooling
the samples from the first two and last two pairs of samples and computing a
single two-sample statistic. If this is done for the Mann-Whitney statistic, the
result is M., ,,, = My, + M, + M,, + M,, which, in the latter form, is in I’
and has the “equivalent” form with weights (2, 4, 2) wlgich, when normalized,
corresponds to the previous result. The Pitman efficiency of the optimum sta-
tistic in I'* with respect to Puri’s statistic is 1.25.

As an example of optimum weights and the resulting increased efficiency
Table 1 shows the weights for 5 different alternative spacings and the Pitman
efficiencies relative to Puri’s statistic (optimum for equal spacings) for values of
¢ =4,5,6,7. The alternative spacings considered are: (A) equal spacings,

TABLE 1
Optimal weighting coefficients
(the number in parenthesis is the Pitman efficiency of the optimal test to the test of Puri)

A B C D E
c=4 1.00 1.00 1.00 1.00 1.00
1.33 1.50 1.38 1.60 1.64
1.00 1.00 1.06 1.40 1.55
(1.000) (1.020) (1.002) (1.050) (1.087)
c=5 1.00 1.00 1.00 1.00 1.00
1.50 1.58 1.55 1.75 1.81
1.50 1.75 1.59 2.00 2.23
1.00 1.08 1.09 1.50 1.88
(1.000) (1.018) (1.003) (1.056) (1.148)
c=6 1.00 1.00 1.00 1.00 1.00
1.60 1.67 1.65 1.83 1.89
1.80 2.00 1.91 2.31 2.58
1. 1.67 1.74 2.29 2.84
1.00 1.00 1.12 1.57 2.26
(1.000) (1.012) (1.004) (1.059) (1.219)
c=17 1.00 1.00 1.00 1.00 1.00
1.67 1.71 1.71 1.88 1.94
2.00 2.13 2.11 2,50 2.77
2.00 2.25 2.17 2.75 3.36
1.67 1.79 1.86 2.50 3.48
1.00 1.04 1.14 1.63 2.68
(1.000) (1.010) (1.005) (1.061) (1.298)
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o,=1i=1,2,...,¢—1;(B)d,,=2if cisevenor d,,,, = 2 if cisodd and
d, = lotherwise; (C)d, =1 4 .1( — 1)i=1,2,..-,c — 1, (D), =14+ (i—1)
i=1,2,..-,c—1;(E)yo,=1,0, =29, ,i=2,3,.--,c— 1. The spacings

(B) represent the occurrence of a missing sample interior to an otherwise equal
spacing situation. The alternatives (C), (D) and (E) represent increasingly more
severe examples of increasing the relative spacings.

For ease in comparison the coefficients have been normalized so that the first
weight is unity. It is noted that, with the exception of the case mentioned
earlier, the optimal weights defy intuition.

It is further noted that Puri’s statistic seems quite robust against the violation
of equal spacings. Only for alternative (E), where the spacings are doubling,
is the optimal statistic a significant improvement.

In conclusion, the use of statistics in I'* equivalent to Puri’s family are sug-
gested for simplicity of calculation. Further adjustment of weighting coefficients
need only be considered if the assumption of equal spacings is grossly inadequate.

4. The exact and approximate null distribution of J*. Under the null hy-
pothesis, the means, variances and covariances of the Mann-Whitney statistics
Mg, i=1,2,...,c—1, j=i41,...,c computed from the ¢ samples are
EM;; = n;n;[2, Var (My;) = n;n;(n; + n; + 1)/12, Cov (M,;, My,) = 0 if all 4, j,
k, I are different and if i, j, k are all different

Cov (M,;, M) = Cov (M
Cov (M,;, M) = Cov (M

VR

M) = n;n;n, /12
M,) = —nn;n, /12

it
59 jis
Tryon [11] has given an elementary derivation of the covariances. It is now
easy to calculate the mean and variance of J*. These are listed in Table 2 for
¢ = 3,4, 5, 6 assuming equal sample sizes along with the necessary weights a,,
to construct J*. For equal sample sizes, under the null hypothesis EJ/* =
n*(c® — ¢)/12 and Var J* = n*(c® — ¢)(10n + ¢* 4 1)/360.

Hence using the standard normal table and a continuity correction the observed
significance level for J* can be approximated. The exact distribution of J* under
H, has been calculated by R. E. Odeh (in a personal communication) for various
combinations of ¢ and n. Exact probabilities nearest .05 and .01 are given in
Table 3 along with the normal approximation. The approximation is useful for
very small values of ¢ and n. From Table 3 it appears that for J*, under most
circumstances, the asymptotic distribution is adequate for constructing tests.

TABLE 2

c Weights for J* E(J*) : V(J*)

2n? n2(8n + 8)/12

2
4, 5n?
[
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TABLE 3
Exact values for P(J* = k) under Hy
[the number in brackets is the normal approximation]

c

k
n
3 4 5 6
3 28(.0345) 59(.0525) 112(.0516) 189(.0488)
[.0329] [.0537] [.0485] [.0495]
32(.0048) 66(.0094) 122(.0097) 203 (.0094)
[.0041] [.0073] [.0075] [.0082]
4 46(.0384) 101(.0471) 192(.0489) 324(.0518)
[.0375] [.0485] [.0465] [.0526]
50(0.115) 110(.0098) 206(.0094) 344(.0101)
[.0096] [.0084] [.0075] [.0089]
5 68(.0449) 153(.0492) 292(.0510) -
[.0446] [.0495] [.0495] -
76 (.0076) 165(.0104) 310(.0107) —
[.0062] [.0091] [.0091] —
6 94(.0524) 216(.0488) 414(.0491) —
[.0526] [.0495] [.0485] —
104(.0098) 232(.0095) 438(.0093) —
[.0084] [.0082] .[0079] —

5. Acknowledgment. We are indebted to Dr. Joan R. Rosenblatt for the
result in Theorem 3.2. Her result greatly simplifies the calculation of the optimal
weighting coefficients. We are also indebted to Dr. Robert E. Odeh for his
calculation of the exact probabilities of J*. A more extensive table for the exact
distribution in Table 3 may be obtained from Dr. Odeh, Department of Mathe-
matics, University of Victoria, Victoria, B. C.
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