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CENTRAL LIMIT THEOREM FOR WILCOXON
RANK STATISTICS PROCESS

By JaANA JURECKOVA
Charles University, Prague

The rank statistics S,y = N-1 ZY, ¢, RY;, with R}, being the rank
of Xy: + Adys, i = 1,2, -+, Nand Xy1, - - -, Xy being the random sample
from the basic distribution with density function f, are considered as a
random process with A in the role of parameter. Under some assumptions
on cyi’s, dys’s and on the underlying distribution, it is proved that the
process {Say — Sox — ESan; 0 < A < 1}, being properly standardized, con-
verges weakly to the Gaussian process with covariances proportional to the
product of parameter values. Under additional assumptions, Aby can be
written instead of ESsy, where by = XY evsdyi § f2(x) dx. As an appli-
cation, this result yields the asymptotic normality of the standardized form
of the length of a confidence interval for regression coefficient based on
statistic San.

1. Summary and introduction. Let (X,, X, - - -, Xy) bean independent random
sample from a distribution with finite Fisher’s information and let us consider
the statistics

Syy = N2 ¢, Ry,

where RS, Rﬁn, ..+, R%, is the vector of ranks for random variables X, + Ad,,
X,+Ad,, -, Xy + AdN, A,c,and d;, i =1, , N are real constants. Then
{Sav; 0 < A < 1} can be considered as a random process with realizations being
right-continuous functions of A. The residuals S,y — S, for more general scores
were investigated recently and their uniform asymptotic linearity in A was proved
(see [7]); this result is of a law of large numbers type. This result was then
extended by this and by other authors to the multiparameter case, to the stronger
type of convergence and to other types of rank test statistics. The results are
applicable in estimation theory, where they represent the main tool for proving
the asymptotic normality of the estimators of regression coefficients based on
rank tests statistics (see [8] and [9]).

The present paper represents a further step in the investigations of residuals
S.v — Soy; the main result is that the process {S,y — Sy,; 0 < A < 1}, being
properly standardized, converges weakly to Gaussian process with covariances
proportional to the product of parameter values. The result can be extended
without difficulties for A € [— M, M]. The author succeeded in proving the weak
convergence for Wilcoxon rank statistics only, but she believes a similar technique
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would yield analogous results for a wider class of score-generating functions, at
least of those with bounded second or third derivative; the difficulties to be
overcome are rather of a technical type. Similar theorems would hold also for
signed-rank statistics.

As an application, a confidence interval for regression parameter based on
statistic S, is considered and the asymptotic normality of the standardized form
of its length is deduced.

2. Notation and basic assumptions. We shall consider for any positive
integer N:

1° an independent random sample (X, Xy, - -+, Xyy) from a distribution
whose cdf F has finite Fisher’s information, i.e.

T [f(OFS(x) dx < oo
where [ is the density of the distribution;
2° a real vector (cy;, Cygs -+ -» Cyy) Of Tegression constants such that

(2.1) Diien =0, Lich=1,
2.2) limy... Max,z,cy ¢ = 0;

3° areal vector (dy,, dy,, - - -, dyy) such that
(2-3) Ihdyn=0, XLdu=1,
(2.4) lim,,_,, max,c,<y dy; = 0.

4° We suppose that the vectors (cy,, - « -5 €yy) and (dyy, - - -, dyy) are such that

(2.5) limy_ ., (XY, cyidy) =02 >0
and that
(2.6) lim, . [max, <y (ki dy (XD chidii) '] = 0.
5° A is a real parameter, 0 < A < 1.
6° Let
(2.7) Ry, = 2V u(Xy;, — Xy; + A(dy, — Nj))
where

u(x) =1 for x=0
=0 for x<O0.

Remark. For simplicity of notation, we shall omit indices N in X, ¢y, dy;
and R, in the sequel; we hope that this simplification will not cause confusion.
We shall consider the statistics

(2.8) Say =NT'TXN RS
Let us denote

(2.9) A2 = SN c2d? + AN(DV, ) .

i=1%1 "1
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We are prepared to formulate the first result of the paper.
THEOREM 2.1. Under assumptions 1° through 6°, the random process
(2.10) Fan = Ay Say — Sow — ESyy]
= Ay [Say — Soy = N X2 ¢ DY S [F(x + A(d, — d;))

1=1

— F(x)] dF(x)]
converges weakly for A € [0, 1] to the Gaussian process {G(A): 0 < A < 1} with
(2.11) EGA) =0, Cov (G(4)), G(A,)) = CAA,
forany 0 < A < A, < 1, where
(2.18) C = § fox) dx — (§ f4x) ).

3. Proof of Theorem 2.1. It follows from the proof of Theorem 2.1 of [7] that
S,yarefor N=1,2, ... step functions with probability 1, so that their defini-
tion may be completed at the points of discontinuity so as to be right-continuous.
The realizations of S,, and also of .57, then will belong to the space D[0, 1] of
functions on [0, 1] that are right-continuous and have left-hand limits. By
Theorem 15.1 of [3], {&,,: 0 < A < 1} converges in distribution to {G(A):
0 < A < 1} if the sequence of distributions of &, is tight and if all finite-
dimensional distributions of ./, are asymptotically normal with corresponding
parameters. For this, the most convenient sufficient condition is provided by
Theorem 15.4 of [3].

The proof of Theorem 2.1 thus consists of two steps. The proof of the as-
ymptotic normality of finite-dimensional distributions is based on Hajek’s pro-
jection method (see [4]) and the proof of tightness is based on an extension of
Theorem 12.1 of [3].

(i) Proof of asymptotic normality of finite-dimensional distributions of .&,.

Let us denote for any fixed A and any fixed N

(3-1) SAN = 2L E(Syn | X3) — (N — I)ESAN .

For any fixed positive integer K, let (4, 4,, - - -, 4;) be any vector of real numbers
and (A, A,, -+, A;) be the vector of parameter values such that 0 < A, <
A< oo <A< 1. Let

(3-2) Zy = 2 AlSa,w — Sow)

and

(3.3) ZN = 21k 'Zv(SA,N - Sozv) .
By Lemma 4.1 of [4], we have

(3.4) EZ, = EZy = Y, ,ES, ,

and

(3.5) E(Z, — Zy)? =Var Z, — Var Z,,.
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If we are able to prove
(3.6) lim,._., [(Var Z, — Var Z,)(Var Z,)"] = 0
then the asymptotic normality of Z, with parameters (EZ,, Var Z,) will imply

the asymptotic normality of Z, with the same parameters.
First of all, let us compute Var Z,. We have

(3.7 Var Z, = 31, 4, Var (SA,,N — Son)
+ 2 KL AR, Cov(Sy,y — Sows SAPN — Sow) -

v#EN
Let us denote for fixed A
(38)  By=u(X,— X; + Ad, — d)) —u(X, — X)5  ij=1,2,,N
and
(3.9) H; = 2. Bi; -
We may then write
(3.10) Var (S,y — Soy) = N2 33X, ¢,;* Var H,
+ N2 §y=.1¢k211cv=1 ¢;c, Cov (H;, H,) .
2
It holds that

(3.11) B,; = —Bj, with probability 1
and
B,=0, i,j:1,2,~~-,N.
Further,
B;; =1 if and only if —A(d, —d)< X, —X;<0
(3.12) = —1 ifand only if 0 < X, — X; < —A(d, — d))
=0 in other cases.

(3.9), (3.11) and (3.12) imply
EH; = 3, § [F(x + A(d; — d;)) — F(x)] dF(x)
(3.13) EB:, = { |F(x 4+ A(d;, — d;)) — F(x)| dF(x)
E(B;;By) = § [F(x + Ald; — d;)) — F(x)]
X [F(x + A(d, — d,)) — F(x)] dF(x) for j =+ k.
It follows from (3.13)
Var H, = 37, {§ |F(x 4+ A(d;, — d;)) — F(x)| dF(x)
X [1 = § |F(x + Ad, — d;)) — F(x)| dF(x)]}
(3.14) + Zﬁl;:kz:ﬁ:l {§ [F(x + A(d; — d;)) — F(x)]
X [F(x + A(d;, — d,)) — F(x)] dF(x)
— V[F(x + A(d;, — d;)) — F(x)] dF(x)
X § [F(x + A(d; — d,)) — F(x)] dF(x)} .
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(3.13) together with the independence of B,;, B,, for i, j, k, | being different
numbers further implies
Cov (H;, Hy) = LAY [F(x + A(d; — dy)) — F(x)]
X [F(x 4 A(d, — d,)) — F(x)] dF(x)
— V[Fx + A(d; — d))) — F(x)] dF(x)
X § [F(x + A(d, — d))) — F(x)] dF(x)}
— §1F(x + A(d; — dy) — F(x)| dF(x)
X (1= § |F(x + Ad, — dp)) — F(x)| dF(x)]
(3.15) — Zlan () [F(x + A, — d)) — F(x)]
X [F(x + A, — d)) ~ F(x)] dF(x)
— S [F(x + M(d; — d) — F(x)] dF(x)
X § [Flx + A(d; = dp)) — F(x)] dF()}
— iy {§ [F(x + A(d, — d,))) — F(x)]
X [F(x + Ad, — d;)) — F(x)] dF(x)
— §[F(x + A(d, — d)) — F(x)] dF(x)
X § [Flx + A(d, — d;)) — F(x)] dF(x)} .
From (3.10), (3.14) and (3.15), we get the variance
Var (S,y — Son)
= N7 L Dia (6! — e ){§ [F(x + A(d; — d))) — F(x)| dF(x)
X [1 = §|F(x + A(d; — dy)) — F(x)| dF(x)]
(3.16) + N2 Y ﬁy=l_;§llcv=1 (e — e)(e; — )
XS [F(x + A(d; — ;) — F(x)]
X [F(x 4 A(d; — d})) — F(x)] dF(x)
— §[F(x + A(d; — d))) — F(x)] dF(x)
X § [F(x + Ad; — dy)) — F(x)] dF(x)} .
Now we shall deal with the covariance term in (3.7). Analogously, we define
H» = Bia By = 2L [u(X — X; + A(d, — d)) — u(X, — X))],
v=1,..., K.
It holds that for v &= ¢
E(Bfy - BiY) = { [F(x 4+ min (A,, A )(d; — d;)) — F(x)| dF(x) and
(G.17)  EB - Biy) = § [F(x + A(d; — d)) — F(x)]
T X [F(x + A(d, — dy) — F(x)] dF(x) .
Regarding the equality
(3:18)  El(Sun — S)(Ss,y — Sow)]
= N3N, cE(HYH") 4 N-* ﬂ;ﬂZi":lCjCkE(Hj‘”Hk"“)
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we get that the covariances are

(3.19)

Cov (SA,,N - SON’ SA,,N - Sozv)

= N2 3L, (e — ¢c))

X {§ |F(x + min (A,, A, )(d; — d;)) — F(x)| dF(x)
— § [F(x 4+ A(d;, — d;)) — F(x)] dF(x)

X § [F(x + A (d; — d;)) — F(x)] dF(x)}

+ N2 RL ;_V=;$;’1‘V=l (c; — ¢e;)(e; — )

X {5 [P + A,(d: — ) — F(9)

X [FGx + Ay(d, — d) — F()] dF()

— §[F(x + A(d; — d;)) — F(X)] dF(x)

X § [F(x + A,(d; — dy)) — F(x)] dF(x)} .

The finite result follows from (3.7), (3.16) and (3.19):

(3.20)

Var Zy = N2 110 A0 1 D (ef — ecy)

X {§ |F(x 4+ A,(d; — d;)) — F(x)| dF(x)

X [1 = §|F(x + A(d; — d;)) — F(x)| dF(x)]}
+ N7 2K 2 ?:;*:z:i”:l A e, — e)(e; — ¢i)
X {§ [F(x + A,(d; — d;)) — F(x)]

X [F(x 4+ A,(d; — dp)) — F(x)] dF(x)

— §[F(x + A(d, — d;)) — F(x)] dF(x)

X § [F(x + A,(d; — dy)) — F(x)] dF(x)}

+ N2 f=1;§§=1 A4, T B (e — €;¢;)

X {§ |[F(x + min A,, A,)(d; — d;)) — F(x)| dF(x)
— §[F(x + A(d; — d;)) — F(x)] dF(x)

X § [F(x + A (d; — d;)) — F(x)] dF(x)}

AP I D S Y S B Y 2 (e —¢j)(e; —
vEp i#k

X A{§ [F(x + A(d; — d})) — F(x)]

X [F(x + A(d; — d,)) — F(x)] dF(x)

— §[F(x + A(d; — d;)) — F(x)] dF(x)
X § [F(x + A(d; — d)) — F(x)] dF(x)} .

'Now we shall find Var Z,. We may write

(3.21)

A N _ N K (v)
Zy = Zi:l Yiw=2% 2t 4, Yy

where Y,,, i = 1,2, ..., N are independent random variables and

(3.22)

Yy =N {(e — e)[F(X, + A(d; — d))) — F(X))]

—¢; §[F(x + A(d; — dy)) — F(x)]dF(x)} .

1051
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Regarding (3.21) and (3.22), we get by direct computation
VarZ, = N2 T, 2 70, 30, By (e — ¢;)(e =€)

X A§ [F(x + A(d; — d;)) — F(x)]
X [F(x 4 A(d; — d,)) — F(x)] dF(x)

— V[F(x + A(d; — dy)) — F(x)] dF(x)

(3.23) X §[F(x + A (d - d,,» — F(x)] dF(x)}
+ N2 D$#Z‘u =1 ,, Zk 1(c - CJ)(C - Ck)

X AS [F(x + Av(dz‘ - dj)) - F(X)]

X [F(x + A(d; — d})) — F(x)] dF(x)

— {[F(x + A(d; — d;)) — E(x)] dF(x)

X §[F(x + A (d — d,)) — F(x)] dF(x)} .

We are now able to prove (3.6). By (2.4), it holds

(3.24) A~d; — d)[F(x + A(d; — d))) — F(x)] = (%)
for N tending to infinity for any A # O uniformly in i, j = 1,2, .-, N for which
d, — d; + 0. On the other hand, assumption 1° implies that f(x) is bounded for
x € (— o0, ), so that, in view of the mean value theorem, there is a positive
constant C* such that
(3.25) |A~Y(d; — ;)" {F(x + A(d, — d))) — F()]| = C*
for N=1,2, ..., xe(—o0, co)and uniformly foralli, j =1, ---, N for which
A(d, — d;) #+ 0. (3.23), (3.24) and (3.25) together with Lebesgue’s theorem and
with the boundedness of

AN B (B (e — e)d — d))))

imply
lim,_., [4,"* Var Z,]
(3.26) = (0K, A ) - limy_ o (AN B, (D (6 — ep)(ds — d)))
= (X 48))".
By (3.5) and (3.26),
(3.27) liminf[Var Z, - 4,7CY(LE,24,A)7* = 1.
If we prove
(3.28) lim sup [Var Z, - A4,72C (1K, 4,4)7°] =1

then (3.6) will follow.
For the first member of the right-hand side of (3.20), we have in view of
(3.24) and (3.25)
0 < limsup [4, N2 K, 42 10, e — ¢cy

X § |F(x + A(d; — d;)) — F(x)| dF(x)

(3.29) X (I = §|F(x + A(d, — dy)) — F(x)| dF(x)}]
= DA, § () dx

X limy . [N72 4,7 T8, BV (e — cic;)(dy — dy)[] =0

(see assumptions 2°, 3° and 4°).
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The upper limit of the product of 4, and of the second member of the
righ-hand side of (3.20) is

(C XK, 22 limsup [N~24,72 31V, j."ikz,ﬁ":l (e; —c¢))
J

(3.30) X (€ — e)(d; — dy)(d, — d)]
= CMEL A

The upper limit of the 4,~*-product of the third member of the right-hand
side of (3.20) is
5%1*# A4 min (A, A) § f*(x) dx

(3.31) X limN_.w []\,_21‘1N_2 N _11‘V=1 (sz - clcj)l(di - dJ)l]

1=1

— A A,(§f*(x) dxy*
X limy o, [N72A4,7 $%, 319 (2 — c,e;)(d; — )]} = 0.

1=1

Finally, the limit of the 4,~*-product of the last member of the right-hand
side of (3.20) is

c ZI{;I Z,’f:l 21« 'IpAuA,u limN—»w {lAN_zN_2 {V=1 _{iv=1 kN=1 (Ct - cj)
v#Ep J*k
(3.32) X (¢ — e)(d; — d;)(d, — d,)}
=CYE, S5, 42,04, .
v#E
(3.29)—(3.32) imply ’
(3.33) limsup [4,7%- Var Z,] < C(3K 4,4,

and this together with (3.27) implies (3.6).
It remains to prove that Z, has asymptotically normal distribution (EZ,,
VarZ,). If ¥, 2,4, = 0, then A4,~* Var Z, — 0 and the criterion of degenerate

convergence is satisfied for the sequence Z,, — EZ, (see[11]). Let X5, A A, = 0
and denote

(3.34) o} =VarZ,;
then the Lindeberg condition (see [11]) for Z, = ¥, Y,, takes on the form
(3‘35) oyt 2 Smgea,v x*dP(Y,y — EY,;y < x)—0

where Y, are given by (3.21) and (3.22). By (3.26), there exists N, such that
for all N = N,

(3.36) AVCEL AL ) S0y < §4C(E, 44,y
so that (3.35) will hold if 7
(3'37) ZAN_zc_l(Zl{(;l ZVAV)_z Z7€V=l Slzl;eBN x2 dP(YzN - EYiN é x) g 0

where B, = A4,(C[2)}| 3K, 2,4.
Let us investigate integration domains in (3.37). By (3.21), (3.22) and (3.25),
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there exists a constant C, > 0 such that
AN—II YiN - EY I

= N7 D A B (6 — ){IF(X, + A(d; — d))) — F(X))]
(3-38) — §[F(x + A(d;, — d;)) — F(x)] dF(x)}|

= NG DL 1A B (e — e)(d; — d))]

< 2C A DKL |AANTYNed? + ¢ 33V, d}?

+dr Rl + Nl

The right—hand side of (3.38) tends to zero for N tending to infinity uniformly

fori=1,2, , N in view of (2.2), (2.4), (2. 5) and (2.6), so that there exists
N, such that for all N > N,

(3.39) max,gy |Yiy — EY Ay < (¢2)(C2)H T, 4,4,]
and thus
(3.40) P{|Y,y, — EY,y] = ¢B,} =0

for N> N andi=1,2, ..., N. It means that Lindeberg’s condition (3.35) is
trivially satisfied, and this together with (3.6) and (3.26) implies that
(3.41) LA NZy — EZy)} — NO, C(E, 4,A)Y,
and thus the asymptotic distribution of (&} v, F,x + * +» F4,w) is K-dimensional
normal with null means and covariance matrix (s,,)%,., with ¢, = CAA;
v,p=1,2,...,K.

(ii) Proof of tightness of the sequence of distributions of .&7,.

By Theorem 15.4 of [3], this sequence is tight if for each positive e and » > 0
there exist a 6, 0 < 6 < 1 and an integer N, such that

(3.42) Pw'(Fy, 0) = e} <7, N = N,, where
(3.43) WSy 0) = SUpmin ([ Sy — Sl [Fapy — Fianl)

where the supremum extends over A}, A and A, satisfying

(3.44) A <A<, A, —A <0

For proving (3.42), we shall need the following slight generalization of Theorem
12.1 of [3].

LemmA 3.1. For any pair of positive integers N, m, let the sequence of rv’s

o, ey e, &) be given. Let 8§ = &) 4 .. E (ST = 0) for k =1,
2,--.,m, andput
(3.45) M), = max,g,.,, min {|S7)|, |Si — S|}
For each m, let there exist nonnegative numbers u,'™, ..., u,'™ such that

(3.46) lim sup P{|S{; — S¥'| = 4, Sy — SVl =2 4 = 47 (Zimise ™)
0<i<j<k=m
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holds for all 2 > O uniformly for m = 1,2, .. .. Then, for all positive 2 and uni-
formly in m, it holds that
(3.47) limsup P{M,,, = 2} < K21 ¥u,™ + ... + u,'™)?

where K is a constant independent on m.
Let us apply this lemma to the system of rv’s

(3.48) ) = A(A + (i/m)o) — (A + ((F — 1)/m)d) , i=1,.-.,m
where &7, (A) is written instead of &/, ,; A and ¢ are fixed numbers from [0, 1].
Let
(3.49) My, = max min {|&(A + (j/m)d) — (A + (i/m)d)|,

| + (k[m)d) — (B + (j/m)d)l}
where the maximum extends over 0 </ < j < kK < m. In view of (3.28) and
(3.33)
(3.50) limy_, Var (&,y — Fw) = C(4; — A
and it follows from the proof of (3.33) that the convergence (3.50) is uniform
for 0 < A, A, < 1. Regarding Schwarz’s inequality, we see from (3.50) that

lim sup P{|.73(8, + (j/m)d) — (8o + (i/m)d)| = 4,
(3.51) |58 + (kjm)d) — (B0 + (JIm)d)| = 2}
< Cl(k — i)fmPaer

uniformly for A, €[0,1],0<i<j<k<mandm=1,2,.... ByLemma3.1,
(3.52) : lim sup P(M?,,, > ¢) < CKe™*3*

which implies (3.42). Theorem 2.1 is proved.

4. Modification of means. Under additional assumptions, we can give a simple
form to the asymptotic center of the process S,, — S,y. Namely, we suppose

1°° (Xy1» Xy ++ +» Xpyy) is an independent random sample from a distribution
with cdf F and density f such that the integrals

4.1) § (Lf"(x = OTIf(x)) dx

are bounded for |7 < 6 for some d > 0.
2°° (Cyp> Cyas +* > Cyy) s @ vector of regression constants such that

4.2) ¥y oeyi=0, N=2,3,...
(4.3) limy ., [max, <y h( L ch) 1= 0.
3°° (dyp, dyyy -+ -5 dyy), N=1,2, ... are vectors such that
(4.4) Didy =0,
(4.5) N max,gcy dy( L dy) ™ = O(1),

(4.6) Y,dy, = O(N-1) where 0 <9 <1.
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4°° The vectors (¢, Cygs * - +» Cyy) and (dy,, dys, - - -, dyy ) satisfy the conditions

(4.7) lim, . (X, eydy (D NN di)] =6 >0
and
(4.8) lim,_, [max, g, oy (ch:dy) (2 ¢hidy) 1 = 0.

We shall prove the theorem.

THEOREM 4.1. Under assumptions 1°°—4°°, 5° and 6°, the random process
4.9) = Ay Sy — Soy — Aby) 0<AL1
with A, given by (2.9) and
(4.10) by = (X1 cwidy) § f(x) dx
converges weakly to the Gaussian process {G(A): 0 < A < 1} satisfying (2.11) and
(2.12).

Proor. Let us denote
(4.11) chi=cy D)t dh = dy(Diadi)

Then c,,’s and d,,;’s satisfy assumptions 1°—4°, so that all steps of the proof of the
Theorem 2.1 are valid for them. On the other hand, all convergences contained
in the proof of Theorem 2.1 except (3.29) and (3.31) are also valid for c,,’s and
d,,’s satisfying 1°°—4°°, as may be shown by reducing the corresponding frac-
tions by (31X, ¢%.) - (XX, d3,;). As for (3.29) and (3.31), the convergence
(4.12) lim,_, [N724,"2 SV I e — ¢,¢l|d, — dj]] = O
has to be proved forc,,’sand d,,,’s satisfying 1°°—4°°. Butassumptions 1°°—4°°
together with (4.11) imply
(4.13) NZ2A = 0, BN e — efe*)(d* — di¥)| = O(N7Y)
where A,** = 3V, (c;*d*) + 3N X, ¢;*d;*)?, so that

N72A™ 25 D l(e — ee)(dy — dj)|

= N4 7 0 D (e — e*e)(d* — d*)(ZLdh) ™ = O(N"7)

by (4.6), so that (4.12) is right. Theorem 2.1 thus holds also for ¢,;’s and dy,’s
satisfying 1°°—4°°, and all that it remains to prove is

#.14)  limy_, 47N TN ¢ DL {§ [F(x + A(d, — ) — F(x)]dF(x)
— A(d; — d)) § fi(x) dx}] = 0.
For A(d; — d;) = 0, we have
I§ [F(x + A(d; — d))) — F(x) — A(d, — d)f(x)] dF(x)]
(4.15) = 0% (§ [f(x + u) — f(x)f(x) dx) du|
= §o 4 {§5 (§ 1(x + 2)f(x)| dx) dz} du
= §6 9 (S8 [§ (L/"( + 2)PIf(x) dx - § f(y) dy] dz} du.
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In view of assumptions 1°° and 3°° it follows that there exists an integer N, and

a constant C* > 0 such that for N = N,
4.16) S [F(x + Ad; — dy)) — F(x) — A(d; — d;)f(x)] dF(x)]
< C*Ad, — d;)*.
For A(d;, — d;) < 0, we get an analogous conclusion.
(4.16) implies that for N = N,
AN—Z(ESAN - AbI\/)2
(4.17) < CRMA N[ TN, B [el(d: — 4P

= CUMAFNT L B e |(dX — d*)T - (D d7)

= O(1) - O(N-1+7 .

0

5. Application. In this section, we shall use the following notation: for any
positive integer N, let X, Xy,, - -+, Xy, be independent random variables, X,

having cdf
(5.1) F(x — A',), i=1,2,...,N
such that the integrals '
(5-2) §{L//(x — OF/f(x)} dx
are bounded for [7| < o for some 6 > 0.
Suppose that the constants d,;, i = 1,2, - - -, N are such that
(5.3) 2iidy; =0, rindy, =1, N=23,. ’
(5-4) max, .y |dy,| = O(N?)
and
(3-3) limy o [max,g;gy dy( 21, di)™] = 0.
Let us consider the statistics
(5'6) Sy(Xp, -5 Xy) = Sy(Xy) = N7 N dy; Ry,
where R, is the rank of X,,, i= 1,2, ..+, N, i.e.
(5.7 Ry, = 2V uX, — X,).
For any positive integer N, consider the confidence set
(5.8) Dy ={A:|Sy(X; — Ad)| £ ¢,} where
(5.9) 0, = 1270 (a + 1)/2), 0<a<l.

@1 s the inverse cdf of the standard normal distribution. We have the following

LeMMA 5.1. Under (5.1)—(5.9),
(5.10) lim,_, Po(Dy34% =«
holds for any a, 0 < a < 1.
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PRrOOF.
Py(Dy 3 A% = Puo(|Sy(X; — A%)| = ¢.)
= P(ISu(X)] = ¢o) = 2@(12%0,) — 1 = «a
where the convergence follows from Theorem V.1.6.a and Lemma V.1.6.a of [6].

Noting that the statistic S,(X; — Ad,) is a non-increasing function of A for
fixed X,, - .-, X, with probability 1 (see Theorem 2.1 of [7]), we can write

(5.11) D, = (Ty, Ty"), where
(5.12) Ty~ =supf{A: Sy(X; — Ad) > ¢,}

and

(5.13) Tyt = inf{A: Sy(X, — Ad) < —o,} .

The first result concerning the asymptotic behavior of the length T,* — T~
of the confidence interval is the following

LeMMA 5.2. Under (5.1)—(5.9),
(5.14) {(Ty* = Ty)207' (3 + 1))a,]™ — 1} =5, 0

for N — oo, where g,* is the asymptotic variance of the estimate of A’ of Hodges-
Lehmann type based on S,(X,), i.e.

(5.15) g, = [12(§ f*(x) dx)']™ .
Proor. (For g% see e.g. [1] or [8].) We have for any real ¢
My Poo(Ty™ > 1) = limy_oo Puof(Sy(X; — 1)) > ¢}
(5.16) = limy_,, P{Sy(X; + (A° — 0)d)) > ¢,}
=1 — ®(12¥p, — (A" — 1) § f¥(x) dx])

(where we have used Theorem and Lemma V.1.6.a of [6]); thus T,~ is asymp-
totically normal

(5.17) (A% = @7 (er + 1)) - 1274(§ f2(x) dx) ™, (12[§ f(x) dx])7Y) -
Analogously, we can prove that T',* is asymptotically normal
(5:18) (A" 4 @7 (h(a + 1)) - 1274(§ f2(x) dx)™, (12[§ f2(x) dxT)77) -
T, and T,* are thus bounded in probability, and by Theorem 3.1 of [7] and
Theorem 2.1 of [5], it holds for any ¢ > 0 that
(5.19) lim,_,,, Pyf|Sy(X; — Ty~d,) — Sy(X;, — A%d))
+ (Ty~ =AY fA(x)dx| =2 e} =0

and
(5'20) limy_,, PAO{,SN(Xi - TN+di) — Sy(X; — Aodi)

+(Ty* — A) §f(x)dx| Z ¢} = 0.
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(5.12), (5.13), (5.17) and (5.18) then imply
(5.21) (Ty* — Ty7) § f3(x) dx — 21273071 ((a + 1)) —p,,0 . 0

The main result concerning the asymptotic behavior of T,* — T,~ is the
following

THEOREM 5.1. Under (5.1)—(5.9), the asymptotic distribution of the sequence

(5:22) ATy = Ty )P (F(a + 1)as)™t — 1]
is normal with the parameters
(5:23) (0, [§ f3(x) dx — (§ f*(x) dx)] - (§ f*(x) dx)7*)

where A\ = >, d* 4+ 3N~L. N

Proor. By Theorem 4.1 of this paper, it holds that for any », 0 < » < %, and
forany A, 4,, A, >0
(5.24)  lim,_, Pyo{N*74,1CHS (X, — (4, — A)N-+1d)
— Sy(Xy — A, N7¥7d) — A, N7HT§ f3(x) dx] < y} = P(y/Ay)
where
(5.25) C = § f3(x) dx — (§ f3(x) dx)*.
Now, using a technique similar to that of Chapter III of [2], we get from (5.24)
and Lemma 5.2
lim,,_,, Pu{N*74,'C-YSy(X; — T, N~#*7d,)
(5.26) — Sy(X; — Ty*N-¥d)y — N-¥0(T\+ — T\7) § fA(x) dx] < y}
= ©(y/B)
where B = 2®@-(i(a 4+ 1))o,.
Theorem 3.1 of [7] implies that
(5.27) lim,,_,., Pyo{max,_jo <o+ [Sy(X; — AN—#+7d)
— Sy(X; — A'N-¥71d)) + (A — AYN-#+7 § fA(x)dx| = ¢} =0
and
(5.28) limy_,., Pyo{max,_,0<ce NH7|S (X, — Ad))
— Sy(X, — M) + (A — &) § () dx| 2 ¢} = 0
hold for any ¢ > 0, C* > 0. (5.27) and (5.28) together with the boundedness
of T',~ and T,* in probability imply that
(5.29) lim,_., Pyof|[Sy(X; — Ty"N~tt71d)) — S (X, — T,*N-47d)]
— NHISy(X; — Ty~dy) — Sy(X; — Ty*d)]| =z ¢} = 0
holds for any ¢ > 0, and thus in view of (5.12) and (5.13) we get
(5.30) Ni_”[SN(Xi — Ty~N-ttd) — Sy(X; — TN+N—!+77di)] Py0 20, .
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The final result then follows from (5.26) and (5.30):
(5:31)  limy_o Po{Ay ' CTH(Ty" — Ty7) § (%) dx — 2¢,] < y} = P(y/B)

and the theorem is proved.
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