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PAIRED COMPARISONS WITH ORDER-EFFECTS

By WILLEM SCHAAFSMA
University of Groningen

Suppose n tea-tasting ladies are asked to compare two brands of brandy.
Each lady drinks two cups, one of each brand. The order is determined by
coin-tossing. The lady is forced to state whether she prefers the first or the
second cup. Thus each lady provides one out of four possible outcomes:
which brand did she try first, did she prefer the first or the last cup. One
usually summarizes this information by telling for each lady which of the
brands she preferred. This paper shows that by doing so some relevant
information is lost. One obtains a theory for a 2 x 2-table where no
UMP unbiased test exists. Several modifications and generalizations are
considered.

1. Introduction and summary. Aiming at an “efficient design” for comparing
two treatments, say a genuine treatment and a placebo, one often uses the in-
dividuals as their own control: both treatments are assigned to each individual.
Sometimes there is no difficulty with respect to the order in which both treat-
ments are assigned because they are assigned at the same time: a housewife is
asked to state which of two packages of a certain product she likes best. In this
paper we are interested in situations where both treatments are assigned in a
certain order which may have an effect upon the outcome. There may exist a
learning or an adaptation effect: the second glass of Dutch gin tastes better than
the first glass, most of the time and no matter the brand. The order-effects have
to be “counterbalanced” by the design.

One often uses the coin-tossing design. This is a randomized design where the
order is determined by tossing a fair coin for each individual separately, “head”
indicating that the genuine treatment is tried last and “tail” that the placebo is
tried last. This paper will show that the usual techniques for treating the data
thus obtained tacitly apply a reduction of the data where relevant information is
removed. How to use this relevant information is another, very complicated,
problem. A detailed analysis will be given (Sections 2—7) of the simple situ-
ation where each individual ranks the two treatments: the individual is forced
to state whether he prefers the treatment tried first or that tried last. One usually
applies the sign test. The outcomes are determined of the rv’s S, - .-, S, where
S, = 1 if the /th individual prefers the genuine treatment (the ith tossing
provided “head” and the ith individual preferred the last treatment, or “tail”
appeared and the first treatment was preferred), S, = 0 otherwise. Next the sign
test is carried out by rejecting for large values of S = S, 4+ ... + §,. This test
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is obviously UMP among all tests based on (S, ---, S,). But (S, ---,S,) is
not a sufficient statistic.

Reduction by means of a necessary and sufficient statistic (Section 3) leads to
a new problem for a 2 x 2 table. Contrary to the classical situations, there now
does not exist a UMP unbiased size-a test (if 2-" < @ < 1 — 2-"). One can
consider some particular tests like the sign test and Fisher’s exact test (Sections
4 and 5) though they may be inadmissible (Section 7). One can also construct
the class of all SMP unbiased size-a tests (Section 6). In practice one will use
Fisher’s exact test if n is large and the sign test if n is small (Section 5).

Apart from the coin-tossing design, some other designs will be considered
(Sections 8, 9 and 10). Here Fisher’s exact test will always turn out to be UMP
unbiased size-a. Also other modifications and generalizations can be considered
(Section 11).

2. The precise formulation of the testing problem. Consider the following
classical experiment for comparing a drug and a placebo. Each of n individuals
is asked to compare the effects of two drugs which are administered to him in
an order which is determined by tossing a fair coin for each individual separately
(this is the coin-tossing design; in Sections 8, 9 and 10 other designs will be con-
sidered). The individual is forced to state whether he prefers the first drug tried
or the second one (other possibilities will be discussed in Section 11). By
performing the experiment it becomes known for each of the n individuals (i)
whether he tried the genuine drug first or the placebo, (ii) whether he preferred
the first drug tried or the last. Accordingly the outcome space .2~ of our experi-
ment may be described as the space of all 2*" possible sequences x = (x;, - - -, X,)
of zeros and ones, x,,_; = 0 (or 1 respectively) if the ith individual tried the
placebo (genuine drug) first, x,, = 0 (or 1) if the ith individual preferred the
drug tried first (or last) (i = 1, - - -, n).

It is convenient to introduce the coordinate representing random variables
X, %2 — {0, 1}, defined by X,(x) = x, if x = (x;, - -+, x,,). If the n individuals
may be regarded as successive drawings from the “large” population under
investigation, then one will accept the probabilistic assumption that the » ran-
dom vectors (X,;_;, X;;) (i =1, -- -, n) are independently and identically distri-
buted. We have to characterize the joint distribution of X,,_, and X,,. Introduce
the parameters
(2.1) 0, = P(Xy = 1| Xy, =) (j=0,1)
where 6, is the conditional probability that a randomly selected individual pre-
fers the drug tried last (here the genuine drug) if he tried the placebo first; 0, is
the conditional probability to prefer the drug tried last (now the placebo) if the
genuine drug is tried first. Now the probabilistic model can be defined. To the
value 6 = (6,, 0,) of the unknown parameter corresponds the probability distri-
bution P, over “2° which is determined by the probabilities

(2.2) Py({x}) = 27" T17o1 Po(Xay = Xou | Xooy = X5021)
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of the elementary events x = (x, - - -, X,,). The product in the right-hand side
consists of factors ¢, ,, 1 — 6,and 1 — 6,.

The meaning of ¢, and 6, makes clear that we shall be interested in testing the
null hypothesis H: 6, = 6, of no difference between drug and placebo, against
the one-sided alternative A: 6, > 6, that the genuine drug is preferred over the
placebo. The parameter space © is the set of all 6 = (6,, 6,)’s satisfying
0<6,<6,<1. The partitioning ® = 0, U O, is such that ©, corresponds
with the diagonal 6, = 6,. For a deeper-going discussion, see the beginning of
Section 8.

We restrict our attention to this testing problem (H, A), though other problems
are also of interest: (i) the corresponding two-sided problem, (ii) the problem to
test the null hypothesis 0, + 6, = 1 of no order-effects. *

3. A necessary and sufficient statistic. By introducing the random variables
(3.1) Sip = 2= (Xoiy — JI = D(| Xy — A — 1) (J,h=0,1)

we can count the numbers of different factors appearing in (2.2). By using (2.1)
we get

3.2) Py({x}) = 27(1 — B,)50= @ Su®(1 — 6,)S0®@ Su=

and (84,5, 81, Sy,) is a sufficient statistic for our family {P,; 6 € 8}. It follows from
21 2. S, = n that (5,8, S,) is an equivalent sufficient statistic (equivalence
means that the same partitioning of .27 is introduced). We apply reduction by
sufficiency and restrict our attention to randomized tests of the form ¢(Sy S, S,0:S1)
where ¢ is a function with all possible outcomes of (S, S,,S,,S,,) as domain and
with range [0, 1]. Remark that ¢ defines a test over the original outcome space
2 as follows

{0(S00 S0 S10S1HX) = @(Seo(%)5 Sea(%) Syo(%)5 Sia(x))

Thus our attention is restricted to tests which only depend on the following
2 x 2 table where the outcomes of ¥ = S, + S, and Z = S,, + S, are also
mentioned. It follows from elementary probability theory that (S,S, S;,S,)
has the multinomial Mf{n; §(1 — 6,), 30,, 3(1 — 6,), 16,} distribution in case
0 = (0,, 0,). Of course Z = S, + S, has the binomial B(n, }) distribution, hence
Ey(Se + Sy — 3n) = 0 for all 6 € © and (S, S, S),) is not a complete sufficient
statistic for the family {P,; 6 € ©}.

TABLE 1
Placebo first Drug first Total
First preferred Soo(x) S10(x) . Yx)
Last preferred Soi(x) S11(x) n— Y(x)

Total Z(x) n — Z(x) n
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LEMMA. (Syy Sy S10Sy) is necessary and sufficient for {Py; 6 ¢ ©).

Proor. We must show that the partitioning of -2~ introduced by (S, Sy, Sy, Sh)
is the coarsest of all sufficient partitionings. Standard arguments for multi-
parameter exponential families ([2], page 134) infer minimality from complete-
ness ([6], page 160). We need other arguments because even (S, S,,S,,) is not
complete. Dynkin [1] shows that one of the necessary and sufficient statistics is
the mapping 4: .2”— 57(@) where 57(0) is the space of all functions over ©
and A(x) = 2, is the likelihood-ratio function for which 2,(0) = Py({x})/ Py, ({x})-
We take 0, = (3, §), with the result that 2,(0) = 2**P,({x}). All that we have to
do is to show that the partitioning introduced by (S, S,, S;, Sy;) is coarser; or in
other words that Py({x}) = P,({x'}) for all 6 ¢ ® implies that Sin(x) = S;(x")
(/» A =0, 1). This is elementary mathematics.

4. Description of two tests. The classical solution to our testing problem is
the sign test ¢, which rejects for large outcomes of S = S,, + S,,. This test
statistic .S describes the number of individuals that preferred the genuine drug;
S has the binomial B{n; §(1 4 6, — 6,)} distribution if 6 = (6,, ,). Obviously,
Psign 18 UMP among all tests based on S. Unfortunately S is not sufficient for
our family {P,; 6 ¢ ©} and this optimum property of the sign test is not compel-
ling. We shall need a precise definition of ¢,,,. This could be given (i) as a
function of xe.2% (ii) as a function of the outcome of (S,,S,, S, Sy), (iii) as a
function of the outcome of S. We use (ii) in order to get agreement with Sec-
tion 3. Let B be a rv having the binomial B(n, }) distribution; let b, , be the
smallest integer b such that P(B = 6 4 1) < a and define

4.1 Twae={x —PB=2b,,+ 1)}JP(B=0b,,).
The sign test can then be defined by

Psign(So0 Sor S108) = 0 if sy 4 5 < bn e
(4'2) = rn,a lf SOI + le = b'n,a
=1 if sy + 556> b,

The 2 X 2 table in Section 3 suggests to apply Fisher’s exact test ¢,,, which
rejects for small outcomes of S,,. By studying the conditional distribution of S,
under the condition Y = y; Z = z, both for ¢ ¢ ©, and for arbitrary 6 € 0, it
can be shown that ¢, , is unbiased size-a (this can also be deduced from Section
8: ¢uy, is UMP unbiased size-a for the modified problem which is obtained by
no longer assuming that the coin is fair) and moreover, that ¢, , is UMP among
all conditional level-a tests based on the condition ¥ = y; Z = z. This optimum
property is not compelling either: it is not true that ¢, is UMP unbiased size-a.
We need a precise definition of ¢,,, as a function of the outcome (S00 S01 530 511) -
Let H, , , be a rv having the hypergeometric distribution with

(4-3) P(H,.n = k) = ()GZD/G)
(h =max 0,y + z — n), ---, min (y, 2)) ;
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let &, , . . be the largest integer £ with P(H,, , < h — 1) < « and define
(44) Tyzna = {(X - P(Hy,z,n < hy,z,n.a)}/P(Hy,z,n = hy,z,n,a) .

Fisher’s exact test ¢, ., can then be defined as follows

S"hyp(soosmslosu) =0 if Soo > ks +810,800+801 17 &
00+810: 500 S01
(I‘S) — rsoo+slo,soo+301,n,a lf SOO - h

=1 if 50 < h

%00+ 210500+ %01 ™ @
$00+210: %00 S012 ™

5. A numerical comparison of the power properties of the two tests of Sec-
tion 4. Figure 1 considers the case n = 30; a = .0493686 (this value of « gives
Tna = 1, see (4.1)). In Figure 1, lines of constant power are drawn for ¢,
and for ¢, ;.. The straight lines belong to ¢, (see the beginning of Section 4).
Figure 1 suggests to define Regions I, II and III. In Region II the sign test is
more powerful than Fisher’s exact test; in Regions I and III the exact test is
more powerful.

The following notion

CRY 1(95 ') = supyeo {Ex(¢") — Eo(p)}

of the maximum shortcoming of test ¢ with respect to test ¢’ seems to be useful,
though often misleading. Figure 1 shows that ¢, is only a little bit less power-
ful than ¢y, in Region II (the computations gave 7(¢y,,, ¢sign) = -038) whereas
Regions I and III contain points where ¢,;,, is much less powerful than ¢,
(we found 7(@yign, nyp) = -22). The latter points however are not very likely
to occur because the experimenter will usually expect that the order-effect is not
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extremely large or, in formula, that ¢ will not be far from the line 6, + 6, = 1
which corresponds to no order-effects.

We made similar comparisons for n» = 10, 15, 20, 25, 30, 37, 46, and 50 with
a =~ .05 such that y, ., = 1. For n = 10 we did not find any point 6 € ©, with
Ey(¢nyp) > Ey(@sign). This indicates that ¢, , might be inadmissible, at least
sometimes (see Section 7). As n increases, Region II becomes smaller and smaller
(see Figure 2) just like 7(¢y,p» ©s1gn) (see Figure 3), while y(¢gign> ¢nyp) becomes
larger and larger (Figure 4). This indicates that, as n increases, Fisher’s exact
test becomes more, and more attractive whereas the sign test becomes less attractive.
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6. The class of all SMP unbiased size-a tests. Let E denote an arbitrary class
of tests. A test ¢’ is said to be SMP (E) (somewhere most powerful among the tests
of class E) if (i) ¢’ ¢ E and (ii) for at least one point 6 € ©, we have E,(¢’') =
sup,c, Ey(¢). We call ¢’ SMP level-a if E is the class of all level-a tests; if E



PAIRED COMPARISONS WITH ORDER-EFFECTS 1033

denotes the class of all unbiased size-a tests, then ¢’ is said to be SMP unbiased
size-a (see [5]).

By considering simple alternatives of the form 8 = ({1 + o, — p) (0 < p < 3)
corresponding to “no order-effects,” the sign test can be shown to be both SMP
level-a (consider 6, = (4, ) as the corresponding least favorable parameter in
0,) and SMP unbiased size-a. No level-a test can improve upon the sign test if
0 is of the above-mentioned form: Region II of Section 5 cannot be empty,
Fisher’s exact test will not be UMP unbiased. It follows easily that the sign test
is uniformly maximin in the following sense: ¢;,,, is maximin level-a for testing
H against the subalternative A4,: 6, = 6, + v for each value of v (0 < v < I).
This, however, is not a very compelling optimum property.

We deepen the insight into our problem (H, A) by constructing the class C of
all SMP unbiased size-a tests; this will be done in the usual way via similarity
and Neyman-structure. Accordingly, let D, denote the class of all unbiased
size-a tests for our testing problem (H, A), let D, denote the class of all similar
size-a tests for testing Hypothesis H and let D, denote the class of all tests having
Neyman-structure.

REMARK. One would like to apply the standard theory of multiparameter
exponential families (Lehmann [3] Section 4.4, Ferguson [2] Section 5.4). Diffi-
culties appear ““because (S,,S,, S,,) is 3-dimensional whereas 6 = (6,, 6,) is 2-dimen-
sional.” We shall avoid these difficulties by working with the basic concepts.

First we prove D, C D, = D, and we characterize D,. For that purpose
consider {P,; @ € ©,}. It isshown easily that Y = S, 4+ S,, is a complete sufficient
statistic for this family. Thus (see Lehmann or Ferguson) D, = D, and ¢ € D,
if and only if
(6.1) Ea{SD(SooSm SIOSll)l Y = y} =a
forall6e®,and y =0, 1, --., n.

We need the conditional distribution of (S, - - -, S;,) given Y = y. It follows
from Section 3 that Y has the binomial B{n; 1 — (6, + 6,)} distribution. Com-
puting the conditional probability that (S, - - -, Sy;) = (S -+, S;) given Y = y
for arbitrary 6 € ©, we find that S, and S,, are conditionally independent, S,
having the binomial B{n — y; 6,/(6, + 6,)} distribution and S,, having the binomial
B{y; (1 — 0,)/(2 — 0, — 0,)} distribution. Thus

(6.2) Py{(Soo = Y — S100 St = 8o S1o = S10 S =1 — y — S0) | Y =y}
= Py(Sp, = 501‘ Y = y)Py(Sy = su| Y =)

where the right-hand side is a product of two binomial probabilities. For ¢ € ©,
the right-hand side of (6.2) becomes (" ¥)(,*)2~" independently of ¢, as it should
be because Y is sufficient for the family {P,; 6 € ©,}.

Let 6 = (6,, 0,) be an arbitrary point in the interior of ©, (there arise some
unpleasant and uninteresting degeneracies if & = (o, 0) or (1, p); we restrict our

attention to the interior of ©,). We can maximize E,(¢) among all tests with
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Neyman-structure by applying the Neyman-Pearson Fundamental Lemma to
the conditional distributions given Y = y. By doing so, we find that we have
to reject for large values of the statistic

(6.3) T, = pSy + (1 — p)S)
where p € (0, 1) is defined by
(6.4) p = log (05/0,)/{log (6,/6,) + log (I — 6,)/(1 — b,)} .

Under the hypothesis, the distribution P, of T, given Y =y, is that of a
weighted sum (6.3) of two independent binomial variables, S, having the

B(n — y; §) and S, the B(y; $) distribution. Let ¢, , . be determined such that
it is the smallest real number ¢ satisfying

(6.5) P(T,> 1Y =y) <a

and define

(6'6) rn,y,p,a = {Cl' - PO(Tp > tn,y,p,al Y = .y)}/PO(Tp = tn,y,p,al Y - .y) *

We can now formulate the basic theorem which characterizes the class C of
all SMP unbiased size-a tests by describing for arbitrary fixed ¢ in the interior
of @, the tests ¢* that are MP in § among the unbiased size-a tests for Problem
(H, A).

In Section 3 we defined tests as functions over the outcome space of
(Se0S01S10S1). There exists a 1:1 correspondence between this outcome space
and the range of the random vector (S,, S, Y). Thus we can define our tests
equally well as functions over the outcome space (S,,S,,Y). This is a bit more
convenient.

THEOREM. Necessary and sufficient for p* € D, E,(¢*) = sup,.,, E,(p) is that
for this fixed value of 0, p is determined by (6.4),
(6.7) ©*(Sus0y) =0 if pso+ (1 —0)s10 < tyypn
=1 lf‘ 0501 + (1 - P)Slo > tn.y.p.a
while in the remaining points ¢* has to be determined such that (6.1) holds, or
equivalently

(6-8) 2 P Susw ) (G)@)2" = a = PT, > 1,0, Y =)

where the summation is taken over all (s, 5,,) satisfying psy + (1 — 0)$1 = 1, , .o
An interesting test ¢* satisfying (6.7) and (6.8) is obtained by applying “uniform

randomization,” that means by defining ¢*(s, s, y) equal to the constant v, , . . for

all (sys $10) satisfying psy + (1 — p)Sig = ta ...« The test obtained is called ¢,,.

”

Proor. The discussion preceding the formulation of the theorem contains a
proof for the theorem if the class D, = D, is considered, instead of the class D,
which is a subclass of D,. Our proof is complete if we can show that each test
o* satisfying (6.7) and (6.8), automatically belongs to the class D, of all unbiased
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size-a tests for Problem (H, A4). It follows from the construction of ¢* and par-
ticularly from (6.8) that ¢* has Neyman-structure and that ¢* is similar size-a.
Hence, a sufficient condition for the unbiasedness of ¢* is that E,(¢* |Y = y) = «
for all y and all # € ©,. This will be proved in the following part of this section
ending at “interpretation of the theorem” (this part is not essential for a good
understanding of the rest of the paper).

It follows from the basic probabilistic result above (6.2) that both S, and S,
are stochastically larger if 6 € ©, than for 6’ € ©,, when conditioning on Y = y.
Sy and S, being conditionally independent, one immediately infers that T, =
Sy + (1 — p)S,, where p € (0, 1) is stochastically larger if ¢ € ©, than for ¢’ ¢ ©,.
Thus for 6 € ©, and ¢’ ¢ ©,, we have

a = Eo'(QDpIY:}’) é Eo(QDPIYZy)
because ¢, is a non-decreasing function of 7,. This proves the unbiasedness of
test ¢, which uses “uniform randomization.”

For almost all p € (0, 1), ¢, will be the unique test satisfying (6.7) and (6.8)
(see interpretations of the theorem). But for some rational values of p and
particularly for the very important value p = } (see Section 7), ¢, will not be
the only test ¢* satisfying (6.7) and (6.8). How to prove the unbiasedness of ¢*
in these cases? Remark that ¢* will not be a function of 7',: the value of ¢* is
not uniquely determined if psy, + (1 — p)$;y = £, ,,,..> &t least for some values of
y. In order to deal with these cases, we extended the above-mentioned arguments
as follows. Remark that, when condioning on Y = y: (i) S,; and S, are inde-
pendent, (ii) S, and S, are stochastically larger if # € ©, than for ¢’ € ©,, (iii) if
Sp = Sy and s}y, = 550, then o*(sy; 550 ¥) < ©*(5, 55 y). The lemma below provides
that for each ¢* satisfying (6.7) and (6.8),

a = Ep{o*(SnSwp) | Y =y} < E(e*|Y =)
This completes the proof for the unbiasedness of ¢*.

Let < denote the natural partial ordering in R*: we say x < y iff x; < y;
(i=1,.-.,p). Afunction¢: R? — Rissaid to be non-decreasing w.r. to < if
x < y implies ¢o(x) < ¢(y) (¢ is “isotonic” in the sense of Barlow, Bartholomew,
Bremmer and Brunk).

LemMmAa. Let X = (Xy; - -+, Xp) and Y = (Y, ---, Yp) be two p-variate random
vectors and let ¢ : R* — R be non-decreasing w.r. to <. If (i) X, ---, X, are
independent, (i) Yy, - - -, Y, are independent and (iii) Y, is stochastically larger than
X, (i=1,.--,p), then o(Y) is stochastically larger than ¢(X) with as a result that
E{o(Y)} = E{o(X)} if the expectations exist.

Proor. Assume that X, and Y, have continuous distribution functions F; and G,
respectively, which are strictly increasing on the same interval /; = (a;, b;) and
constantly 0 or 1 outside of this interval (a; = —oo and b, = co permitted;
i=1,...,p). Define f;: I, - I, by fi(x) = F,{G,(x)}. Observe that X, and
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fi(Y;) have the same distribution while f,(y,) < y,forall y, e I,. The independence
assumptions in the lemma imply that ¢(X) = ¢(X,, - -+, X,) and ¢{f\(Y)), - - -,
f»(Y,)} have the same distribution. Hence

Plo(X) = 2} = Ple{fi(Y)), - - -, [(Yo)} = 2] = Ple(Y) < 7}
because ¢(y, - - y,) < z implies o{fi(y), -+ +»f,(¥,)} < z. See Remark 3 for
further discussions.

REMARK 1. Dealing with ¢, in the proof of the theorem, we remarked that
one immediately infers that 7 is stochastically larger for # € O, than for ¢’ € ©,.
Though this result can be proved easily, it is interesting to remark that it can
also be derived from the lemma: let 7 play the part of ¢.

REMARK 2. It might be interesting to define that-a p-variate rv Y is stochas-
tically larger than a p-variate rv X if ¢(Y) is stochastically larger than ¢(X) for
each ¢: R* — R which is non-decreasing w.r. <. Necessary and sufficient con-
dition for X' < Y in this sense is that ¢(Y) is stochastically larger than ¢(X) for
each non-decreasing indicator function ¢ = I,. The lemma provides sufficient
conditions for X < Y based on independence assumptions. A necessary but
insufficient condition for X < Y is that # > G holds for the p-dimensional distri-
bution functions F and G of X and Y respectively.

REMARK 3. The assumptions used in the proof of the lemma should be
removed. This can be done by defining F,"'(u) = inf {x; Fy(x) = u}. If G, is
continuous, then all arguments in the proof of the lemma hold. If G, is not
continuous then f(y,) < y, holds, but X; and f,(Y;) do not necessarily have the
same distribution. In fact there exists a function ¢, such that ¢,(x) = x and
¢,(X;) and f(Y;) have the same distribution. Now the proof of the lemma can be
completed by extending the arguments used at the end.

Interpretations of the theorem. We are interested in (i) when is ¢, the unique
test satisfying (6.7) and (6.8), (ii) what does the class C of all SMP unbiased
size-a tests look like? With respect to (i) we remark that uniqueness will hold
for all irrational and nearly all rational values of p because there will usually
exist exactly one point (s, $,,) satisfying psy, + (1 — p)s,, = ¢, , ,.. (Whatever y
may be). Uniqueness will also hold if, for the values of y of interest, ¢, is
essentially nonrandomized; that means if « is such that (6.8) can only be satis-
fied by taking ¢*(sys,y) = 1. With respect to (ii) we remark that different
values of p may also provide the same test satisfying (6.7) and (6.8). The situ-
ation will be as follows. Let p(¢) be defined by (6.4). There will exist rational
numbers 0 < o, < -+ <, <3< 1 ~p, <.+ <1—p <1, partitioning
[0, 1] into 2k + 2 subintervals, such that all # with p(¢) in the interior of one
of these subintervals provide the same unique optimum test satisfying (6.7) and
(6.8), while for ¢’s with p(f) equal to one of the separating points the corre-
sponding optimum test is not uniquely determined because randomization need
not be uniform.
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If @« < 277, then no separating points exist: for each value of p we obtain the
same test satisfying (6.7) and (6.8). This test rejects with probability a . 2= if
(So1810) = (n — y, y), and accepts otherwise. Thus it is the sign test: the sign test
is the unigue UMP unbiased size-a test if a < 2~". Similar results hold for
az1l-—2""

For 2" < @« < 1 — 27" there does not exist a UMP unbiased size-a test.
The basic theorem determines the class C of all SMP unbiased size-a tests.
It is verified easily that the sign test and ¢, are equivalent: ¢,(S, S, Y) and
©sign(So0Se1 Sy Syy) define the same test-function over 27 or to put it otherwise

‘Psign(soo So1 S108u1) = Sog(sov Si05 Soo + S10)

7. Admissibility and invariance. The sign test is admissible if a < 27" or
a =1 — 27", because it is then the unique UMP unbiased size-a test. For
27" < a < 1 — 27" we have to distinguish two cases: (i) the sign test is actually
nonrandomized; r, ., = 1 in (4.1) and (4.2); (ii) the sign test is genuinely ran-
domized; 0 < 7, , < 1. In Case (i) the sign test is admissible because it is the
unique test maximizing the power in = (3 +v,1 —v) (0 < v < $).

LEMMA. The sign test is inadmissible if 27" < a <1 — 2", 0< 7, , < 1 and
n = 3.

Proor. We shall construct a test ¢, ., With E;(¢.00) > Ey(¢sign) for all 6 € ©,
with o(f) # 4 and equality of the power functions for p(f) = }. The idea is as
follows. ¢;,, is equivalent to ¢,, which test applies uniform randomization to
(6.7), (6.8) in case p = . ¢, has to satisfy (6.7), (6.8) for p = 1. The idea
is that uniform randomization is worse than some other way. Remark that Y
has the binomial B(n, 1 — 16, — 16,) distribution. Thus Y contains information
with respect to the direction of the order-effect: whether 6, + 6, > 1 (or equiva-
lently p(f) < 4, see (6.4)) or 6, + 6, < 1 (or equivalently p(f) > 1). A small
outcome y of Y suggests to work with p < } and to reject first large values of
s5,. These considerations suggest to define ¢, as follows. (In order to get an
easy proof of the superiority of ¢,,,, OvVer ¢;,, ~ ¢,, we modify ¢, only slightly,
that means only for y =1l and y = n — 1.)

We define ¢.,0a(So $10¥) = ¢4(S S0 ), unless [y = 1 and @3(So0 100 1) = Twa =
Turi«(s€€(4.1)and (6.6))], or[y = n — land ¢,(sy, $10o 1 — 1) = 70 = Tnynorp,al-
In the remaining four points we define ¢,,,,(y 55, 1) as large as possible for the
point with s, = 1, and ¢,,,4(5, 5, # — 1) as large as possible for 5, = 1. One
can compute the difference in power between ¢, and ¢, by restricting atten-
tion to the four points where they differ. Along these lines we found that this
power difference is always nonnegative with the result that the sign test is
inadmissible.

What about the admissibility of Fisher’s exact test? This test does not belong
to the class C of SMP unbiased size-a tests (verify the case n = 1 for example).
It follows that ¢, , is inadmissible in case « < 27" and @ < 1 — 27" because
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then ¢, is the unique UMP unbiased size-a test. The computations showed
for some other situations (n < 10, @ = .05) that ¢,,,, is uniformly better than
@nyp With the result that ¢, , will then be inadmissible. But usually neither the
sign test nor the exact test is uniformly better than the other. We have no proof
for the inadmissibility of ¢, in these cases.

We have seen that usually (2-* < a < 1 — 27") no UMP unbiased size-a test
exists. One would like to apply invariance considerations. Consider the problem
which is obtained after reduction by sufficiency (Section 3). The only group G
leaving the testing problem invariant (and which we could invent) consists of
two bijections e and g = g~* where e is the identical mapping and

9(S00 S0 S10511) = (S11 510 01 S00) .

Using the notation of Ferguson [2], we find that the induced mappingg: © —©

is defined by
90y, 0) =1 — 6,1 —0,).

This obviously leaves the testing problem invariant. The tests ¢gizny Quypr 94
and ¢, are invariant. This shows that there usually will not exist a UMP test,
even not when attention is restricted to tests that are both unbiased and invariant.

8. Other designs for counterbalancing the order effects. The preceding
sections were based on the “coin-tossing” design where drug and placebo are
administered to the ith patient in an order which is determined by tossing (inde-
pendently) a fair coin. Some experimenters did not take all precautions that
belong to this design; or they simply preferred another sampling scheme. We
shall discuss three alternative designs: (i) the “unfair-coin” design, (ii) the
“alternating” design, (iii) the “inexplicable” design. Of course each design leads
to a new probabilistic model and accordingly to a new theory.

Sometimes the order is determined by means of a random mechanism which
is not manipulated by the experimenter and which simulates independent toss-
ings with an unfair coin. Suppose one wants to “prove” the supposition that
“in a cat the response to electric stimulation in the cortex is more vehement in
the drowsy state than in the awake state.” The null-hypothesis should be tested
that “in a cat the response does not depend upon the initial behavioral state.”
It has to be remarked that the meaning of the conclusions to be obtained is
always restricted by the means of experimentation. Suppose our experimenter,
aiming at an efficient design, stimulated each of n cats twice. The ith cat was
stimulated first in the state which presented itself first (x,,_, = 0 if this was the
awake state and x,,_, = 1 if it was the drowsy one). Next he waited till the cat
arrived in the other state, he stimulated again and denoted whether the response
was more vehement in the first state (x,, = 0) or in the second (x,, = 1). [In
fact one of my clients used a procedure in which he distinguished seven initial
behavioral states which were stimulated in the order in which they presented
themselves to the observer; it would have consumed too much time if a pre-
determined random order had been used.] First we develop a probabilistic model
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for this “unfair-coin” design. Assume that the n random vectors (X,;_,, X,,) are
independently and identically distributed (all cats were treated by means of the
same stimulation procedure). The joint distribution of (X,,_,, X,,) can be deter-
mined by means of the following three parameters: 7= = P(X,,_; = 1) denoting
the probability that a “randomly drawn” cat presents the drowsy state first, and
6; (J = 0, 1) according to (2.1). Remark that (X,,_;, X,;) assumes the outcomes
(0,0), (0, 1), (1,0) and (1, 1) with probabilities (1 — #)(1 — 6,), (1 — =)@,
n(1 — 6,) and =0, respectively. Thus P, belonging to parameter 6 = (=, 6,, 6,)
is determined by

8.1) Py((x}) = (1 — m)Z@ =2 (1 — f)Sw®fSu@ (1 — 0,)%@5u®

where we use the notation (3.1) (see also (2.2) and (3.2)). Next we try to express
null-hypothesis and alternative in terms of our parameter §. The referee observed
that there exists some ambiguity here. Remark that “in a cat, and experimenting
along the lines described, the probability to get the highest response in the drowsy
state,” in formula P,{X,,_, # X,;}, is equal to

r=0 =)+ 71 —0) =% + 16 — 6) + (x — $)(1 — b, — 6,) .

In Sections 2—7 we assumed 7 = } and testing H: 6, = 6, against A: 6, > 6,
is in complete agreement with testing H’: y = } against 4’: y > }. But for the
“unfair-coin” design the testing problems (H, A) and (H’, A’) are different. Even
the probabilistic models differ because for (H, A) it is assumed that 6,> 6, whereas
for (H', A’) it is assumed that y > 4. Neither of the corresponding regions in
0 = (=, 0, 0;)-space is a subset of the other. Both (H, 4) and (H’, A’) are
solved easily by constructing UMP similar size-a tests and applying the usual
theory of multiparameter exponential families starting from the observation
that (S, Sy, S;,S;;,) is a complete sufficient statistic having the multinomial
Min; (1 — =) (1 — 0,), (1 — m)8,, (1 — 8,), n6,} distribution if 6 = (=, 6,, 6,).
Fisher’s exact test (4.5) is UMP unbiased size-a for problem (H, A); the sign
test (4.2) is UMP unbiased size-a for problem (H’, A’). One verifies immediately
that Fisher’s exact test is not a level-a test for testing Hypothesis H’, and the
sign test is not a level-a test for testing H. We have the opinion that usually
the appropriate formulation is to test H: 6, = 6, against 4: 6, > 6, with as a
consequence that Fisher’s test should, and the sign test should not, be applied
to the case of an “unfair-coin” design. First remark that the original formula-
tion “in a cat the response does not depend upon the initial behavioral state”
might very well be translated into H: “the conditional probability to get the
highest response in the state tried last does not depend on whether this is the
awake state or the drowsy one.” Next remark that the original formulation
need not be in agreement with H': y = 4. For that purpose suppose that (i)
there exists a bias in favor of the second stimulation (‘“‘overreaction,”
0, + 6, > 1), (ii) the response to the first stimultation does not depend on
whether this happens in the awake or in the drowsy state; the same holds for
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the response in the second stimulation (though this tends to be larger according
to (i)), (iii) the cat usually presents itself first in the awake state (z < §). It
follows that y > 1: it looks as if drowsiness facilitates high scores, but this is
only due to overreaction and the fact that the drowsy state is usually the last
one. In the rest of this paper we shall consider some other designs, but always
restrict the attention to testing H: 6, = 0, against A: 6, > 0,.

Many experimenters feel reluctant to apply the coin-tossing design because
they do not want to introduce “more randomness.” They prefer a design
where x,, x;, - - -, x,,_, is a predetermined sequence of 0’s and 1’s. Usually they
use the “alternating” design where x,,_, = 0 if / is odd and x,,_, = 1 if i is even
(i=1,.--,n). Now the sample space .’2” essentially consists of all 2" points
(%X, X, + ++ x,,) where x,, = 0 or 1. What we get is the classical problem for com-
paring two probabilities. One can complete the 2 x 2-table of Section 3. Fisher’s
exact test (4.5) is UMP unbiased size-a. For a continuation see Section 9.

Some experimenters determined x,, X;, - - -, X,,_, in an “inexplicable” way,
introducing an interdependence between the rv’s X, X,, - - -, X,,_, which is diffi-
cult to describe. Asan example, consider the experiment with n cats, described
at the beginning of this section. During the experiment the experimenter might
start to believe that most cats present the awake state first (“z < 4”) and that
it is the task of the experimenter to do something about it. He might start ignor-
ing some awake states in order to get more cats presenting the drowsy state first.
Other experimenters are mentally unable to toss coins independently. If they
find six heads in a row or if they otherwise obtained too many heads in the
past, then they cannot resist the temptation to ignore some of these results by
tossing again.

A safe model for this “inexplicable” design is as follows. We do not make any
probabilistic assumption concerning the joint distribution of X, X, - -, X,,_;.
We only assume some kind of conditional independence such that we may write
(8.2) P({x} = P{Xy_y = x5 (i =1, - -, n)}

X T Po(Xyy = Xoi | Xy = Xp5)
where 6 is of the form 6 = (0,, 0,, P), 0, and 6, being defined in (2.1) and P
denoting an arbitrary probability distribution over the space of all 2" sequences
of n numbers zero or one. The second factor in the right-hand side of (8.2) is
a product consisting of factors 0, 6,, 1 — 6,, 1 — 6,. We again have to test
H: 0, = 0, against A: 6, > 0,. The parameter space O is pretty intricate. One
might write formally ® = A x .’ where A denotes the set of all (6, 0,)’s satisfy-
ing0 < 0, < 0, < 1 and where . denotes the (2" — 1)-dimensional set of all
possible probability distributions P over the space of all 2* sequences of n num-
bers zero or one; P is determined by giving the probabilities of the elementary
events (except one) in the latter outcome space. Of course we cannot apply the
usual theory for multiparameter exponential families. In Section 10 we shall
nevertheless show that Fisher’s exact test (4.5) is again UMP unbiased size-a. 1t is
obvious that the sign test is not a level-a test here (see the “unfair-coin” design).
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9.. The alternating design if n is even. We shall show that the sign test is a
reasonable competitor of Fisher’s UMP unbiased exact test and we shall investi-
gate whether the alternating design is indeed better than the coin-tossing design
“because less randomness is introduced.” We assume that n is even.

We have met experimenters who used the alternating design and next applied
the sign test. We can show that the sign test is a level-a test if a < 1.

LemMa. If 0 = (p, p) € ©, and b > 4n, then P)(S = b) is a strictly increasing
function of # = p(1 — p) with its maximum equal to P, , (S = b) = P(B = b)
where B has the binomial B(n, %)-distribution. Hence E,(¢g;,,) < a for all 6 € ©,
ifa < 3.

Proor. If @ = (p, p) then S, has the binomial B(in, p) and S, the binomial
B(%n, 1 — p) distribution. Hence S = S, + S, has the same distribution as 1n +
D, + --- 4 D,, where the D,’s are i.i.d. with P)(D, = —1) = P(D, = 1) ==
and Py(D; = 0) = 1 — 27. Remark that 7 = p(1 — p) < 4-*. We can prove
that P(D, + --- 4+ D, = ¢) is a strictly increasing function of 7 if ¢ > 0 and
m < §. For = > } the distribution of D, is no longer unimodal and one can
construct counter-examples by considering m = 2.

The lemma shows that the sign test is a level-a test but that it will not be
unbiased size-a because Ey(¢,;,,) < a for 6 = (p, p) with p = } and E,(¢,,,,) con-
tinuous in #. Hence Fisher’s exact test need not be uniformly more powerful.
In fact it can be shown that no level-a test can be more powerful than the sign
test for any point on the line-segment between (4, 1) and (1, 0): there the sign
test is uniformly best among all tests satisfying E, ,,(¢) < a.

We compared ¢, and ¢, , numerically for n = 10, 20, 30, and 46 with
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a =~ .05 such that ¢, isnon-randomized. The results are summarized in Figures
5, 6 and 7 (for an explanation, see Section 5). As n increases, Region II (this is
the set of all § = (6,, 0,)’s with E,(¢,.,) > Ej(¢ny,)) becomes smaller and smaller
(see Figure 5) just like 7(¢ny,> @sign) (se€ Figure 6) while r(¢qgns ¢©nyp) becomes
larger and larger (see Figure 7). This indicates that as n increases, ¢,,, becomes
more attractive, whereas the sign test gets less attractive. The interesting point
in this comparison is that for small values of n the sign test is more attractive
from an over-all point of view than Fisher’s UMP unbiased exact size-a test
¢nypt the unbiasedness restriction is too restrictive in case n is small.

This result has interpretations for the usual problem of testing whether two
success-probabilities are different, on the basis of two independent series of
Bernoulli trials. If both series consist of 1n trials and n is small (say n = 10),
then we prefer to use the sign test instead of Fisher’s exact test. This sign test
is carried out by testing s, ++ f, in the B(n, }) distribution where s, is the number
of successes in the first series and f, is the number of failures in the second one.

Finally we want to compare the coin-tossing design and the alternating design.
We have conjectured that the latter design would be better in the following sense.
If ¢ is an arbitrary (unbiased) test for the testing problem based on the coin-
tossing design (Sections 2—7), then there will exist a better test ¢’ for the
testing problem based on the alternating design (and the same sample size n of
course): E)(¢") < E,(¢) for all # € ©, and E,(¢’) = E,(p) for all 6 € O,.

This conjecture does not hold. A counterexample will be obtained by taking
© = Qgign- In the rest of this section, ¢, and ¢,,, will denote the sign test
and Fisher’s exact test for the testing problem based on the coin-tossing design;
@hign and @), will denote the corresponding tests for the alternating design.
Remark that Ey(¢.,) = E,(¢hign) for all 6 on the line-segment joining (4, $) and
(1, 0). Moreover ¢, is unbiased size-a (¢l;,, is not unbiased!). Hence, if a
better test ¢’ should exist, then this would be unbiased size-a too. But ¢}, is
UMP unbiased size-a. We would get E (¢},,) = E)(¢") = Ey(@sign) = Ep(¢sign)
for all & on the line-segment joining (3, 4) and (1,0). But we have
Ey(0hyp) < Eg(@lign) for all these 6’s (see the beginning of this section). Thus
we obtain a contradiction.
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In practical situations the experimenter can usually choose between the coin-
tossing design and the alternating design before doing anything. ~No design is
better than the other in the above-mentioned theoretical sense. Nevertheless we
need a guideline. It follows from our computations (one should try to prove
these results), that Ej(¢.,) = Ej(@lign) and Ey(¢n,,) < E,(¢h,,) holds for all
0 € ©,. The guideline becomes as follows. If n is so small (say n < 16) that one
would prefer the sign test for both designs, then it is best to use the coin-tossing
design. If nisso large (say n > 40) that one would prefer Fisher’s exact test for
both designs, then it is best to use the alternating design. '

We expected that the alternating design would constitute a substantial im-
provement over the coin-tossing design if ¢, ,, is used. The computations showed
that the improvement was not substantial. The expression

(91) Supﬂeel {Eﬂ(gogmyp) - Eﬂ(gohyp)}

was about .02 for n = 30 and @ =~ .05; for n = 10 and a =~ .05 the maximum
loss in power (9.1) was about .06.

10. Fisher’s exact test is UMP unbiased for the ‘‘inexplicable” design. Let
D, denote the class of all unbiased size-a tésts, D, that of all similar size-« tests
and D, that of all tests having Neyman-structure with respect to the statistic
T= (XX, - X,,_,Y). The result in the title is proved if we can show that
(i) D, C D,, (ii) D, = D,, (iii) yy, is UMP (D,), (iv) ¢y, € D,

(i) Introduce the usual topology in the 2* 4 1 dimensional parameter space
O = A x F(see Section 8). The power-function E,(¢) is a continuous function
of # for each test-function ¢. ©, consists of boundary points of ®, only. Hence
each unbiased size-a test is similar size-a.

(i) We must show that 7 is a complete sufficient statistic for {P,; 6 € 6,). If
0 = (p, o, P) then (8.2) becomes

(10.1) Py({x}) = P[{(x1 %5 - -+ Xpp)}]0" 7L — p)T®
where Y is the rv Sy, + S, introduced in Section 3. Sufficiency follows from the
Factorization Lemma. If t = (x; x; - -+ x,,_,») is a possible outcome of T, then
(10.2) Py(T =1t) = () P[{(xy x5 -+ Xgu_p)}]0" (1 — p)*

because the inverse image 7'~'(¢) contains (}) points x each having the probability
(10.1). Completeness of T follows by proving that E,{¢(T)} = 0 for all ¢ ¢ ©,,
implying ¢ = 0 (¢ is regarded as a function over the range of T). But

(10.3) Efd(T)} = 2= (NG *(1 — p)*
where
(10.4) X)) = Dh=o Dagyoy=0 (X X5 - Xy V) P[{(%1 X5 -+ Xpp)}] -

Now suppose E,{¢(T)} = 0 for all § = (p, p, P) € ©,. It follows from (10.3) and
the completeness of the family of binomial B(n, p) distributions (0 < p < 1) that
x(y) =0fory =0,1,-..,n Butthen (10.4) implies that ¢(x, x5 - -+ X,, , ¥) = 0
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because y(y) = 0 must hold for all P ¢ & Hence ¢(¢) = 0 for all ¢ in the range
of T.

(iii) If 6 = (p, p, P) € ©,, then (10.1) and (10.2) show that all points x in the
inverse image 7-'(f) have the same conditional probability P(X = x|T = 1) =
1/(7), where of course ¢ = (x, X, -+ x,, ;). If 6 = (6,,0,, P) is an arbitrary
but fixed point in ©,, then the above-mentioned conditional probability can be
written in the following form

(10.5) ¢(0us 0 D01 — BYJ{B(1 — 0,)} 00

as a strictly decreasing function of Sy(x) only (under the condition). Hence
there exists a UMP (D,) test, and this conditional level-a test rejects for small
outcomes of S,, under the condition T = ¢. But this {s exactly what ¢, , does.
Hence Fisher’s exact test ¢, is UMP (D,).

(iv) The unbiasedness of ¢, , is trivial because ¢, , is UMP similar size-a.

11. Generalizations. We forced the individual to state whether he prefers
the first or the second treatment. It is also possible to allow the individual to
declare himself undecided. It is even possible and sometimes attractive to allow
the individual to choose one out of, say, five different categories like “first treat-
ment much better than second,” “first somewhat better,” “no preference,”
“second somewhat better” and “second much better than first.“ One might try
to develop a corresponding theory for the coin-tossing design, the alternating
design etc. In our opinion the problems have to be formulated as testing prob-
lems where the alternative is restricted by a number of inequalities. We claim
that [5] Sections 8 and 10 are of interest. It is also possible that the individual
compares (or rather ranks) more than two treatments which are administered to
him in a certain order. One will expect that a one-sided analogue of Friedman’s
test arises as a generalization of the sign test. It is also possible that the indi-
vidual does not provide one score describing his preferences, but that the indi-
vidual provides two scores, one for the first treatment and one for the second.
In the rest of this section we shall consider the case when both scores are
dichotomous: the individual states for both treatments whether they help or not.
We shall see that the corresponding theory is already very intricate and that
[5] may be of application.

Our outcome space .2” may be described as the space of all 2** possible se-
qliences X = (X, -+ +, X;,) of zeros and ones; x;,_, = 0 (or 1 respectively) if the
ith individual tried the placebo (genuine drug) first; x,,_, = 0 (or 1) if the ith
individual declares that the first treatment does not help (or that it is a success);
x3; = 0 (or 1) if the second treatment is a failure (or a success). The probabilistic
model will now be based on the conditional probabilities

(11.1) {ﬁhk = P(Xy_s = b5 Xy = k| Xy, = 0)
O = P(Xyy = b5 Xy = k[ Xyy = 1)
where £, k = 0, 1 and where of course 3.3 6,, = 21> 60}, = 1.



PAIRED COMPARISONS WITH ORDER-EFFECTS 1045

It is interesting to try to formulate the null-hypothesis H and the alternative
A that the genuine drug is of any help. Of course

(11.2) H:0,, =0, (h, k =0,1),

but how are we going to formulate the one-sided alternative 4? In our opinion
A has to be defined by means of the following inequalities

(11,3) {0l0 < 05 O + 01 < 05 + 05,
01’71 < 001 ; ‘9(’)1 + 0;1 < ‘901 + 011 .

This is an alternative, restricted by a number of linear inequalities such that the
hypothesis is defined by the corresponding equalities. A theory for such prob-
lems was developed in [5].

One might try to find the analogue of the sign test by con31der1ng the assump-
tion of no order effects:

(11.4) 0,, = 0L, = u (h, k =0,1).

By considering the coin-tossing design and assuming (11.4), one arrives at
McNemar’s test as a UMP unbiased size-a test. We shall not work this out here.
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