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SOME LIMIT THEOREMS FOR MAXIMA OF
NONSTATIONARY GAUSSIAN PROCESSES!

By CHANDRAKANT M. DEo
University of California, Davis

Let Z, = maxigj<a X; Where {X,: 1 < n < oo} is a Gaussian process.
Some known limit theorems for Z, when {X,} is stationary are extended
to the nonstationary case.

1. Introduction. Let {X,: 1 < n < oo} be a discrete-parameter Gaussian
process with E(X,) =0, E(X;) =1 and E(X,X,) = r(i,j) for all i,j. Let
Z, = max,,;., X;. The asymptotic behavior of Z,, for stationary Gaussian
process {X,}, has been investigated in [1], [3] and [4]. In this note it is shown
that some theorems in [1] and [3] continue to hold for nonstationary sequences
under suitable conditions. The techniques used are essentially those of Berman
(1964). After this note was submitted for publication I found that Theorem 3
here has been obtained earlier by P. I. Yuditskaya (1970). Since a proof of this
theorem is given in [5] no proof is given here.

2. Results. Let 0, = sup,_;., |r(i, /)| and d," = sup,;_; 5, r(i, j).
THEOREM 1. Suppose 3, — 0 and for some y > 0,
Zisiciza |70 ) = O(*77)
then Z, — (2logn)t — 0 a.s.
It is easy to see that the conditions of Theorem 1 are satisfied if
€)) n*g, — 0 for some a > 0.

A simple application of Schwarz’s inequality shows that the conditions of
Theorem 1 are also implied by

(2) 210, < oo

However, under either (1) or (2), it is possible to prove a stronger theorem about
the almost sure behavior of Z,. It is shown in [2] that in this case,

Z,* = (loglog n)~*(2 log n)}(Z, — (2 log n)})

has, with probability one, lim sup equal to } and lim inf equal to —4. For
stationary sequences such an iterated logarithm type result was first established
in Pickands (1969).

The proof of Theorem 1 is based on the following lemmas.
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Lemma 1 (Berman [1]). Let the random variables X, X,, -- -, X, have joint
Gaussian distribution with zero means, unit variances and correlations {r(i, j):
1 < i < j < n} under probability measure P; and let them be independent, standard
normal under probability P*. Then for any ¢ > 0,

(3)  |P(maxyg;g, X; = ¢} — P¥{max,g;c, X; < ¢} = Do(c)
= Thsiciza [1 — 1 PITHIFG Pl exp {—€(1 + |r(E D] -

In the remainder of this paper A denotes a generic constant which is finite and
strictly positive.

LeMMA 2. If each X, has (marginally) standard normal distribution then for any
e > 0, we have, )

P{limsup,_.. (Z, — (2logn)t) < e} =1.
Proor. This is proved in [3]. Indeed, with probability one,
X, > 2logn)t 4 ¢
only finitely often since, '
2. P{X, > (2logn)t + ¢} < 3, exp {—3((2logn)* + <)’}

1
<Ay —
=4 n(log n)? <o

From this, the conclusion of the lemma follows easily.
LemMma 3. If {X,} are i.i.d. standard normal variables then,
(log n)*P{Z, < (2log n)t — ¢} — 0
for any ¢ > 0.
Proor. This is given in [3], page 199.
Proor oF THEOREM 1. In view of Lemma 2 we need only show that
4 P{liminf (Z, — (2logn)}) > 0} = 1.

Let e > 0. Making use of the elementary fact that (2 log 2"+')} — 2¢ is eventual-
ly less than (2 log 2")f — ¢, it is easy to see that the statements (5) and (6) below
are equivalent.

%) Ve >0: Z, < (2logn)t — ¢ for only finitely many n’s.
) Ve > 0: Z, < (2log2")t — ¢ for only finitely many n’s.
Hence we need merely show that

@) 3 P{Z,, < (2log2")t — e} < o0, for ¢>0.
Now (7) is clearly implied by

(8) (log n)*P{Z, < (2logn)t — ¢} —0.
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In view of Lemmas 1 and 3, to establish (8) it suffices to show
9) (log n)*D,(c,) — 0, where ¢, = (2logn)t —¢.
Now assume for a moment that §, < 1. Then,
(10)  (logn)’D,(c,) = (log n)(1 — 4,7)~*
X Zl§i<j§'n Ir(i5 ])l €xp {—cnf"/(l + |r(i’ ])l)} .
Let 2 be any number such that 0 < 2 < (1 — d,)(1 4 d,)'. Write the sum
appearing in (10) as S, + S, where S, is over all i, j for which |i — j| < n* and
S, over all remaining i, j. Then,
(log n)*S, < A(log n)*n*** exp {—c,*/(1 4+ 9,)}
< A(log n)*n*~a-300+07  exp (2¢(2 log n)t)

—0 as n-—oo.
Furthermore,
(log n)*S, < A(log n)* exp {(—2 log n + 2¢(2 log n))(1 + d(n*))~7}
(11) X Disi<jzn (i,

< An~¥a+0ehilexp (2¢(2 log n)t)(log n)n*=7 ;

where we have written d(k) for 4, for typographical convenience. Now since
d(n*) — 0 it is clear that 2 — y — 2(1 4 d(n*))~* becomes eventually less than,
say, —r/2. Thus the expression on the right side of (11) goes to zero as n — oo.

This proves the theorem under the assumption 9, < 1. To remove this as-
sumption, note that since J, — 0 we can find a constant k, such that 0y < 1.
Then for each j < k, the theorem applies to the sequence {X,, . ;: 0 < n < oo}.
Now (2log n)* — (2log[n/k,))? — 0 as n — co. Writing Z, as the maximum of
submaxima in terms of the sequences {X,, .;: 0 = n < oo} it follows easily that
Z, — (2log n)* — 0 a.s. and the proof is complete.

THEOREM 2. Let the conditions of Theorem 1 be satisfied and, in addition, suppose
that 6, < 1. Then the limit law of a,”(Z, — b,) is the extreme value distribution
exp (—e~®), where a, = (2logn)~t and b, = (2 log n)* — (2 log n)~*(log log n +
log 4r).

Proor. Let x be a real number and write ¢,” = a,x + b,. The theorem is
true if {X,} are i.i.d. standard normal. Hence in view of Lemma 1 it suffices to
prove that D,(c,”) — 0, under the hypotheses of this theorem. Note that

¢,’* = 2logn — loglogn 4 O,(1).
Also g, < 1 by assumption. Hence

(12)  Dy(es)) = A Tasicizn 1 Pl exp {=e”/(1 + |1 )}

< A(log 1) Xizicjzn 1, exp {=2log n(l 4 |r(i, j)))7} -
Now the last expression on the right side of (12) is dominated by the expression
on the right side of (10) and the latter was shown to go to zero, under the
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hypotheses of this theorem, in the course of the proof of Theorem 1. Hence
D,(c,’) — 0 and the proof is complete.
Finally we mention

THEOREM 3 (P. I. Yuditskaya (1970)). If 9,” — O then (2logn)~tZ, — 1 a.s.

3. Concluding remarks. (A) The condition d; < 1 cannot be completely re-
moved from Theorem 2. This can be seen by considering the nonstationary
Gaussian sequence {X,}, where X,, , =X, =Y,, n=1,2,...; {Y,} being a
sequence of i.i.d. standard normal variables.

(B) Let {X,} be stationary and write r, = E(X;X,,,). If r, —0 then
(2logn)~tZ, — 1 a.s. Thus r, — 0 is a sufficient condition for (2 log n)~tZ, — 1
a.s. Using the arguments in [1] it can be seen that a necessary condition for
(2logn)~tZ, — 1 a.s. is the ergodicity of {X,}. Thus it would be interesting to
find a necessary and sufficient condition for Theorem 3 to hold at least in the
stationary case.
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