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ESTIMATION OF THE DERIVATIVE OF
THE LOGARITHM OF A DENSITY!

By VAcLAV FABIAN
Michigan State University

Suppose g is a probability density on R = (— oo, +c0) with a continuous
derivative and with I(g) = S (9’/9)%9 < +oo. Suppose {es} is a sequence of
positive numbers converging to zero and V;, Z; are random variables, Z; —0
with probability one and ¥V, is conditionally (given Vi, ««+, Va1, Z1, -+,
Z,) distributed according to g. Estimates 4, of g’/g are constructed, which
are based on V; + Zy, -+, Vu + Z, and have the following properties. For
almost all w, Ao, *) = g’/g on {t; g(&) > 0}, Ifnen T +co0, 23 nlentZn| <
+co a.e. then for almost all w, Au(w, +) — g’/g in La(g) and"§ k2 dG., — K(g)
where G, is the empirical distribution function of V1 + 2, +++, Vu + Zy.
The results on the pointwise and Lz(g) convergences hold also if 4, are
replaced by hu(w, v + 74(v, ©)) provided 7, are small and preserve the
measurability of the estimators.

1. Introduction. The result derived here is needed in another paper (Fabian
(1973)) on asymptotically efficient stochastic approximation procedures. There
are known results about estimation of g’(G™*)/g(G~*) where G is the distribution
function with density g (Hajek and Sidak (1967), van Eeden (1970), Weiss and
Wolfowitz (1970)) and results about estimating g and its derivatives (cf. Schuster
(1969) and references given there).

Estimators of ¢’/g could be obtained from the results in Schuster (1969) but
under stronger conditions than are required here and the additional properties
(data contaminated by the Z,’s, possibility of contaminating 4, by the 5,’s, cf.
Extension 2.3) would need an additional proof. Itseemed then easier to construct
the estimates and prove their properties ab initio. The proof has, however, much
in common with the proof in Hajek and Sidak (1967), VII. 1.5.

2. The results. Assume (Q, .5, P) is a probability space. Unless specified
otherwise, convergence for random variables is meant with probability one. If
h is a function on R, the real line, then A°(x) denotes A(x + ¢) — A(x — ¢).

(2.1) LEMMA. Suppose G is a distribution function, V,, Vg, +++, Z), Zy, - - - are
random variables and the conditional distribution of V,,, given Vy, - -+, V, 1, Z, - -+,
Z,, isgiven by G. Let G, be the empirical distribution function of V, + Z,, - - -,
V,+ Z, and F,(t) = n* Y,*_, G(t — Z;). Then for every 0 < r < %

j=1
nsup, |G,(1) — F,(1)] — 0.

Proor. Fixarandset A, = n(G,(1) — F(9), I; = Yy ;1z;500 Pi = Gt — Z5),
G ={Vy s Vies Zy, -+, Z;}. We obtain E_ I, = p; and A, A, --- isa
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martingale. Let m be a positive integer. Obviously E_ |I; — p,/™ = 1 and it
follows, e.g. from Dharmadhikari, Fabian and Jogdeo (1968), that
E|A, " < Cpnm
with C, depending only on m, not on ¢. The Markov inequality implies
(1 P{n~'|A,| = n77} £ C, pmA-ma-n)
Partition R into n" intervals with endpoints —oo < t, < --- < t,,_; < 400,
with mass under F, less or equal to 2n~" for each of these unless the interval
contains one point only. It follows, using (1) in the second step, that
P{n”sup, |G,(1) — F,(1)] 2 3} = P{n"sup; |G,(1;) — F.(1))| = 1}
é Cmnm/z—mtl—'r)+'r .

Taking m > (1 + r)/(} — r) we obtain that the probability above is at most
C,n~*77 with an » > 0. It follows that with probability 1, the sequence
n"sup, |G,(t) — F,()| is bounded. Since r was arbitrary, less than §, our asser-
tion follows.

(2.2) THEOREM. Suppose G is a distribution function with a density g, suppose
9 has (everywhere) a continuous derivative g’ and I(9) = § (9’/9)* dG < +oo. Let
Z,yZy -+, Vy, Vyy -+ - be random variables such that Z, — 0 and each V, is con-
ditionally, given Z,, -+, Z,, V,, - -+, V,_,, distributed according to G.

Suppose A,, 0,, ¢, are positive numbers such that A, — 0, 6, — 0, ¢, — 0 and

(1) e, N, >0, 0,6, *—0, n=r9, %, —0  foran r<}.
Let G, be the empirical distribution function of V, + Z,, ---, V, + Z,, i.e.
(2) G (1) = n7" Xhai A jezjs0 -
Set dn = GnAn’ Dn = (Gnﬁn)A"’ En = X(cn,+°°)(dn) and
D.(1)
3 h(t) = =2k, (t
) (1) = 5l 0

foralltinT, = {(2j — 1)A,,j =0, +1, ...} and let h, be constant on the intervals
((2j — 2)A,, 2jA,]. Then for P-almost all w: The sequence h,(w, +) converges to
g'[g pointwise on {t; g(t) > 0} and, if

) !

2i=lZ;l—0,
ne
then h (®, «) — ¢'[g in square mean with respect to dG and § h,* dG, — I(g).

n

(2.3) EXTENSION. Suppose the assumptions of the preceding theorem hold and
1, are functionson Q@ X R, h,(w, ) = h, (o, t + 7,(v, 1)) are Borel measurable func-
tions of t for almost all w and 7, = sup, |9,(+, t)] — 0. Then for almost all w: The
sequence {h,(w, +)} converges to g'[g on {t; g(f) > 0} and, if (2.2.4) holds and

1

n

(1) en—li)n -0 ’ ?:1 l%| -0

then h,(w, +) — ¢'|g in square mean with respect to dG.
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(2.4) EXTENSION. Suppose the assumptions of Theorem (2.2) are satisfied, g is
symmetric around O and ¢'|g is non-positive on [0, +co). Let h,(f) = }(h(t) —
h(—18) A O fort =0, h,(t) = —h,(—t) for t < 0. Then Extension (2.3) remains
valid if, in the definition of h,, h, is used instead of h,.

(2.5) Proor oF THEOREM 2.2 AND EXTENsION 2.3. It is enough to prove Ex-
tension 2.3 and the assertion § 4,2 dG, — I(g) in Theorem (2.2) since the other
assertions in Theorem (2.2) follow if 5, = 0. Take an r < 4 for which (2.2.1)
is satisfied. From Lemma (2.1)

(1) G,=F,+n0, with sup,|0,(-, ) —0.

Let  be a point at which all the a.e. convergences, required in the assumptions,
hold. Tt is enough to prove all the properties of 4, at this @. In the following
all symbols denoting functions on Q will be interpreted as the values at w.

Let us refer to parts in (2.2.1) by a, b and c. We shall use symbols </(a,),
o(a,), 2.a,), 0,(a,) to denote functions 4, on R (including constants) such that
a,”'|h,| are bounded, converge to zero, at each ¢ € R, uniformly on R, respectively.

From (1)

(2) d, = F,* 4 0,(n"7)
and since ¢,7'n"" — 0 by (2.2.1c¢),
(3) ’Cndn = FnA”[l + ou(l)]xn *

For every ¢, n let ¢, be the point in T, for which ¢ + »,(f) e (#, — A, 1, + 4,].
Suppose g(rf) > 0. By continuity of g, if n is large enough, f,(7) = }g(¢) if
|r—t|<3A,+%, where f,=F,’. Thene, ~'d, (1,)=2¢,7'A, f,(7,)—¢, 0, (n"")—>+ 0
(cf. (2.2.1a)) and «,(z,) = 1, eventually.

Easy algebraic manipulation and use of (1) and (2.2.1c) and then of (3)

establish '
*4) h(f) = (1 + 0 ())g.(1) + 0.(1)]
where, with y, an abbreviation of «,(z,),

gu(t) = Lallella)

®) 20, F*
n-n 'Ib(t”)
By the mean value theorem
1
(6) 20 (F"a")An(tn) = fn(tn+) - fn(tn_)

with |t'n+ - (tn + An)l < &n’ ltn_ - (tn - An)l < 6%‘

From I(g) < + oo it follows by Schwarz inequality that ¢’ is integrable and
then (cf. Rudin (1966) Theorem 8.21) g is bounded (also absolutely continuous)
and so are, uniformly, all f,. It is then easy to obtain, using (3) and (2.2.1b),
that

Q) LnFute(t,) = [Fo(t,") — Fo(t,7)[1 + 0u(D]ta -
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From (5), (6), (7)

apy — o L) = [l&O)P 1 F oangr 10
®) 02(0) = 1 ey T e I R+ o)
and, as t,* — t, t,” — t, Z; — 0 and ¢’, g are continuous, we obtain
%) 9.0 = (g'19)t), R ()—(g'[o)Xt) if g() > 0.

Now we shall prove the L,(g) convergence under the additional condition
(2.2.4) and (2.3.1). In view of (9) and (4) it is enough to prove the uniform
integrability of g,2and that will follow if we prove lim sup § ¢,>dG < § (¢9'/9)’dG
(use the Fatou lemma, and Theorem C, page 163 in Loéve (1963)).

Starting with the numerator in (8) we use a simple 1dent1ty and the Schwarz

inequality to obtain
Lfu(t*) = fult D) = [$22 (L IA) AF.FE < (Fu(t,Y) — Fu(t7) Sl (2 If.) dF, -
Also, since g is bounded by a constant K,
F. v = G 4 R,

where &,"|R,| < 2K/(ne,) X3, |Z,| — 0 by (2.2.4).
Hence, using (3) and the definition of «,, we conclude that

(10) ,annA” = ,C’ILGAn[l + ou(l)]
and, from (8),
(11) 9.2 < 11 + o (DG ()] i (f,/[f.) aF, -

For n sufficiently large, 7, < A, by (2.3.1) and (2.2.1a) and then if ¢ is in
((2j — 2)A,, 2jA,), 1, is (2j — 1)A, if the distance of ¢ to the complement of the
interval is greater than 7,; otherwise ¢, can also be either (2j — 3)A, or (2j 4 1)A,.
Thus, denoting 7, ; = (2j — 1)4,,

fiaithn 0,046 < [1+ o (D{§29 (111, F,
+ PR §hims (1) dF, o+ S0 (£ If ) 4F, |

and subsequently, by (2.3.1),
+ .
§0,°dG < [1 + o ()] Ziza § 27 (S f) dF,
Y
and
(12) §9.2dG < [1 4 o (DIS) + 2 $5, (f/Ifa) dF.]
with
Using the Schwarz inequality and the fact that g(r) = 0 implies ¢'(7) = 0;
gU =210

e gt —Z) _
(f"(t))—(Z,l(TZ—))%(g(t zyy-) = an(t_Z)
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we conclude, first, that /(f,) < I(g), and, secondly

So, UL AF, S - B, (L) 46

1 g’ 2
S — 2k V@-zpni-ro (“g“) dG + ¢

n

i

if ¢ is positive, K suitably chosen and B, — Z; denotes B, shifted by —Z;. The
Lebesgue measure of each of these sets is at most 29,(KA,™* + 3) = o(1) and thus
the integrals converge to zero. This implies

limsup § 9,°dG < I(9)

and completes the proof of the L,(g) convergence. _
It remains to prove § #,’dG, — I(g). Because of (4) (with 7, = 0) it is enough
to prove § 9,2 dG, — I(g). We know that § g,>dG — I(g). Write

s gn2 dG = Z;—:—oo :::;tﬁz gnz(rn,j)GA"(Tn,j) .

Notice that y,G*» = y,[1 + 0,(1)]G,*» by (3) and (10) and thus § ¢,2dG, =
[l + 0,1)]§ g,2dG. This completes the proof.

(2.6) Proor oF EXTENSION (2.4). If t = 0 and g(¢) > 0 then #,(t 4 7,(1)) —
(@19)1) Z 0, —h,(—1 — 7,) — —(g[g)(— 1) = ¢[o(r) and (1 + 7,(1))— (¢']a)(?)-
Thus the new h, converge to ¢’/g on {t; g(f) > O} again. Obviously 2,%(t + 7,(f)) <
kAt 4+ 7.(t) + h*(—t — 7,(¢)) and the uniform integrabilily with respect to
dG follows since g is symmetric and %,%(¢ + 7,(¢)) are uniformly integrable by
Extension (2.3).
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