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THE MEAN-SQUARE ERROR OF BAHADUR’S
ORDER-STATISTIC APPROXIMATION

By D. L. DUTTWEILER

Bell Laboratories

Under the assumption of a uniform parent distribution, we find an exact
expression for the mean-square error of an order-statistic approximation
suggested by R. R. Bahadur. From this result we obtain an asymptotic
formula for the mean-square error when the parent distribution is not
necessarily uniform by transforming with the inverse of the cumulative
distribution function of the parent.

1. Introduction. Let X, X,, - .. be a sequence of irfdependent, finite-mean-
square, random variables on the real line each with the same cumulative distribu-
tion function F(x) = Pr{X,, < x}. For all integers m and n with m < n define
Xy (Or simply X|,,)) as the mth smallest member of the set {X,, ..., X,} or, in
other words, as the mth order statistic in a sample of size n. Bahadur (1966) has
suggested approximating X,,,,., by (results will be stated informally in this intro-
ductory section)

(1) X myin = & + (Z, — ng)/(nf(£))
where

fix) = Fx) = & P,

p=min+1), g¢g=1—p,
¢ is such that F(§) = p, and Z, is the number of observations X; in the set
{X,, - -+, X,} that are greater than £&. He has shown that if m and n increase
together maintaining the relationship

p=m/(n+ 1),
then
R, =X — X

m)in (m):n

is O(n~¥(log n)(log log n)*) almost surely. Since Bahadur’s initial work, Kiefer
(1967) (see also, Kiefer (1970)) has found the exact order of R,.

For many applications of Bahadur’s approximation, however, knowing the
almost sure order of R, is not sufficient and an estimate of the size of R, for
finite n is needed. The engineering problem that led to our interest in Bahadur’s
work provides an example. To simulate a proposed system for concentrating
digitally encoded speech channels, we needed to know the statistics of a discrete
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random process T'(k), defined at each time k as the mth smallest of the values at
time k of n independent, stationary, discrete random processes {X;(+), - - -, X,(+)}.
In other words, we needed the statistics of

2) T(k) = Xipy:n(k) .
Results of Mood (1941) and Siddiqui (1960) showed that T(k) was asymptotically

(m and n increasing together and maintaining the relationship p = m/(n + 1))
Gaussian with mean & and covariance

) Clk) = p(F(&|€) — PII(nf(E))

with F,(§|§) equal to the probability X, (/ + k) < & given that X, (/) < ¢ (in-
dependent of / and m). Unfortunately, neither Mood’s nor Siddiqui’s methods
of derivation suggested a way of estimating the accuracy of (3) for finite n.
Bahadur’s approximation did. The covariance (3) is easily shown to be the
covariance of

(4) T(k) = X yin(K) -

Thus an estimate of E[R,*] provides an estimate of the accuracy of (3) for finite

n.
In this paper we show that under certain smoothness conditions on F(x)

) E[R,"] = n73[~%&)(2pg/m)} .

This result is consistent with a result of Kiefer (1967, Equation 1.6), who showed
that n?f(§)R, converged in distribution to a distribution with mean zero and
variance (2pg/7)t. The procedure we shall follow in deriving (5) is to first find
an exact formula for E[R,’] for the case F(x) = x, x € (0, 1), and then extend this
result for arbitrary F(x) by transforming with F-.

2. Exact results for a uniform parent.

THEOREM 1. Let Uy, U,, - - -, U, be independent random variables each distributed
uniformly on (0, 1) and let Uy, ---, U, denote their order statistics. For any
m < n define

p=mjn+1), g=1—p,
(6) Z = the number of U, = p
Uiy = P + (Z — ng)/n

and
R = U(m) - ﬁ(‘m) .
Then
@) E[R] =2n"'p(I(m,n+ 1 —m) — I(m+ 1,n4+ 1 — m))

— 2pqn~i(n 4 2)7*
(8) = (2/n)(pq/(n + 2))}
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where I (a, b) is the incomplete Beta function and is defined by

— (a + b — 1)! z j0—1 . \b-1
Lo, b) = O S (1 —

ProoF. We have

E[R] = E[Uq) — (p + (Z — ng)[m)]

©) = E[(Um) — p) — (Z — nq)[n]
= E[Ui — I + E[Z — nqP[n* — 2E[(Ui) — pUZ — ng)]n .

It is well known (see, for example, David (1970), page 28) that U, has mean p
and variance pg/(n + 2). Since Z is a binomial (n, ) variable it has mean nq
and variance npg. Using these facts, Equation (9) can be rewritten as
(10) E[R*] = pq[(n + 2) + pg/n — 2E[U,; Z])/n + 2pq .

The difficult step is evaluating E[U,,,, Z]. The random variable Z is the number
of U; = p or, equivalently, the number of order statistics U;, = p. Since the
conditional distribution of the order statistics {U,,, - - -, U, _,} given U, is that
of the order statistics in a sample of size m — 1 from the uniform distribution
over (0, U,,,) and the conditional distribution of the order statistics {U,,,,, - -+,
U,,} given U, is that of the order statistics in a sample of size n — m from the
uniform distribution over (U,,,, 1) we have!

E[Z|U,,] = {(” —m)q/(1 — U,,), Um =P
(n—m+ 1)+ (m— 1)U, —p)/Usm, > Um > P
— {(” —m)q/(1 — Uy,), Um=p
n—(m—1)p/Us,,, Uy > P -
Letting 1(-) denote the function that is one whenever its argument is nonnegative
and zero otherwise, we can rewrite (11) as

(12) EZ|Uy]="""91p— U, + <n _ (_’”_—__l)i> (U, — p)

(1)

I — Uy, Uim)
m—1 n—m m— 1
We have
E[U Z] = E[U,, E[Z|U,]]
= E[nU,, — (m — 1)p]
(13) + E[(iﬁiﬂéﬁjﬂ + (m—1)p — ”U<m)> I(p — U(m)):|
— Ym

=pn —m+ 1) + E[(Usy — p)I(p — Uw)]
+ E[(M)ﬁq& + mp —(n + I)U(m) 1(p — U(m)):| .

1 — (m)

1 The idea of evaluating E[Um)Z] by first finding E[Z| Um)] was suggested to us by a referee
and substantially shortened our original proof.
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Remembering that the probability density of U, is

n!

(14 (m — Dl (n — m)!

Ul (1 — uggy)* ™™

and integrating, it is straightforward to show that the last expectation in (13) is
equal to

—ml(m+ 1,n—m+ 1) —pl(mn—m+ 1) — gl (m+ 1,n — m)),
which in turn by Equation 6.6.5 of Abramowitz and Segun (1964) equals zero.
Therefore,
(13) E[UmZ] = p(n —m + 1) — E[(p — Um)1(p — Um)]-

Substituting (15) in (10) and algebraically simplifying the resulting expression
gives
(16) E[R*] = 2n7E[(p — Uim)1(p — Uiw)] — 2pgn~*(n + 2)".
Integrating the density (14) of U, with (p — U,,,,) over (0, p), we obtain
(17) E[(p — Um)l(p — Uim))]

=pl(m,n+1—m)y—I(m+41,n+1—m)),
which substituted into (16) gives (7). The inequality (8) is obtained from the
relationship
E[(p = Uw)l(p — Um)] < E [Umy — P
(18) =< (E(Uim — P}
= (pg/(n + 2))* .

3. Arbitrary parent.

THEOREM 2. Let X,, X,, - - - be independent, finite-mean-square, random variables
on the real line each with the same cumulative distribution function F(x) =
Pr{X, < x}, and for all positive integers m and n with m < n let X,,,., denote the
mth smallest member of the set {X,, - -, X,}. Let & be an arbitrary constant on the
real line and assume

(i) f(x) = F'(x) = (d|dx)F(x) exists and is strictly positive at x = &, and

(if) F"(x) exists in a neighborhood of &.

Then, for any 6 > 0, if m = m(n) is such that the limit, as n increases, of m/(n + 1)
exists and equals F(§),
(19) (B[R]} = nf74E)(2pg/m) + o(n'+77)

where

A

P:F(E)’ q:l—p, Rn’—:X(m)m—X(m):'n’
X}(m):'n = ‘Sn + (Zn - ”qn)/(”f(én)) s Zn = Z?:l I(Xl - En) ’
Pnzm(n)/(n_l- 1)’ qn’__ 1 _P'n’ En'_-Q(Pn),
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and the function Q(-) is defined by
Q(u) = sup {x: F(x) < u}
(Q(+) = F7Y(+) if this inverse exists).

REMARK 1. The theorem is still true if £, and g, in the definitions of X,,,,.,
and Z, are replaced by & and ¢g. The theorem is stated in the form we feel will
be most useful for applications.

REMARK 2. If it is also assumed that F’”’(x) exists in a neighborhood of &,
then it can be shown that (24) is true with o(n='*%?*) replaced by O(n~*). The
proof of this stronger result is essentially the same as the following proof. Using
the notation of the following proof, the function H,(U,,,.,) must be expanded
as ()H," (P)(Umin — P + Gu(Upmy) and E[G,X(U,,,.,)] bounded by a pro-
cedure similar to that used here to bound E[H,*(U,,,.,)].

Proor. Let U, U,, - - - be independent random variables distributed uniformly
on (0, 1). It is not difficult to show that for any I, Q(U,) has the cumulative
distribution function F(.) and, moreover, since Q(-) is nondecreasing, that for
all n the collection {Xj, - - -, X,, X(1):> - * +» X(n):n} has the same joint statistics as
the collection {Q(U)), - - -, Q(U,), Q(Uy,.)s + + +» Q(Uiny.)}- Thus

(20) R, = Q(Uiy) — &n — n7(f(€0) 7" Ll (HQU) — €4) — 40)

where = denotes identical distributions.

Conditions (i) and (ii) imply the existence of an open interval 4 containing &
in which F(x) exists and f(x) = F’(x) exists and is strictly positive. Let B =
{u:u = F(x), x e A}. Then F(.) restricted to A4 is invertible and Q(.) restricted
to B is its inverse.

Since p = lim p, and p is in the open interval B, there must exist N such that
foralln = N, p,e B. Forn = N,

(i) Q'(p.) exists and equals (f(§,))™,
(ii) Q"(p,) exists,
(iii) Q(U)) = ¢, if and only if U, = p,.

Define
(21) Hn(U(m):n) = Q(U(m):n) - Q(pn) - Q’(Pn)(U(m):n - Pn) M
Using (21) and (iii) in (20), we have

Rn = Q(Pn) + Q'(Pn)(U(m):n - pn) + Hn(U(m):n)

1
22 — & - —— 2 (U, = p) —q,
(22) nf(&,,)z (1( Pa) — 9a)

= n(U(m):n) + (f(sn))_l(U(m)m - U(m\m)

where U, is as in Theorem 1.

(m):n
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From Theorem 1, we have

A

(23) E(U(m):'n - [J(m):'n)2
=2np, (I, (min+1—m)y—1, (m+1,n+1—m)+ Om?).
Since lim f(§,) = f(§), the proof will be complete if we can show

(24) 2n'p, (I, (m,n + 1 —m) — I, (m+ I,n+1— m))

= ni2pg/m)t + o(n=)
and
(25) E[H,(Up:n)] = 0(n7**7) .

Let L denote the left-hand side of (24). We have from Abramowitz and Segun
(1964, Equation 26.5.16)
2 n!

(26) L= —pa o (L=
n m! (n — m)!

_2 m n! ( m >"‘<n+1—m>”+“’"
—nn+1m(m—l)!(n—m)! n41 n41 '

Using Stirling’s rule (see, for example, Abramowitz and Segun (1964), Equation
6.1.37) to approximate the factorials in (26), it is straightforward to show that

(27) L = n~¥2pg/n)t 4+ O(n~%?),

which is stronger than (24).

The problem of bounding E[H,*(U,,,.,)] is considered in Section 5.4 of Blom
(1958) and Section 3.2 of Van Zwet (1964). Unfortunately, our conditions and
desired conclusions are such that we cannot use the results in either of these
references directly.

Let

E»n, — n—l/2+5/5
and I, = (p, — €, Pn + &) Denoting the probability density function of U,
by g,(+), we have
(28) ETH  (Uimy:a)] = S0 HyH(1)g,(u) du
= (Suel,n + Suzl,n)H’nz(u)g‘n(u) du M

m):n

Let

(29) H, max = SUP,c g, [H,(4)]
and

(30) Ia,max = SUPuer, Gall) -
Then

(3]) E[HnZ(U(m):n)] H max Sueln gn(u) du + gn,max Sueln an(u) du

H':,max + gn,mnx S(l) an(u) dll M

IA 1A
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Since
(32) H,(u) = Qu) — Q(p,) — Q'(pa)(# — pa)

we have, using the fact that the square of the sum of three numbers is less than
three times the sum of the squares of the numbers,

(33) @) S H ) du = §3Q*(u) du + §o Q*(pa) du + 3 (Q'(pa))' (v — pa)* du
= E[Z7] + Q(pa) + (Q'(P4)) -

Since the Z, are of finite mean-square, since Q(-) and Q’(+) are continuous over
B, and since p, € B for n = N, there exists a constant C, such that

(34) s H, (u)du < C,, n=N.
Therefore, for n > N ’
(35) E[an(U(m):n)] é H'Z,max + Clgn,max .
Let M be an integer greater than N such that 7, is properly contained in B for
n > M. Letting C, denote the maximum of |Q”(u)| in I,,, we have by Taylor’s
theorem
(36) H, nox < Cie}2, n=M.
The density g,(#,,.,) has its mode p,* at (m — 1)/(n — 1) and decreases
monotonically on both sides. Since
m  m—1
n+1 n—1
= |qn _Pnl/(” - 1) S &
p.* will exist in I, for all n. Let k be an arbitrary positive integer. We have
E(U(m):n - Pn)zk = Sé (u - Pn)%gn(”) du
(37 Z §oun (u — pa)*gn(n) du
Z 0u(pa + &) 30" (0 — po)* du
= 0.(pn + &)(2k + D)7, — (p* — p)™ ™) -
Since ¢, = n~#+%5 and p,* — p, = O(n~'), there must exist a constant C, > 0
such that for all n

|Pn — P =

E(Umyin — Pa)™ Z C0u(Pa + €)™
or equivalently,
9n(Pn + €1) S E(Uimyin — Pa)*C7e, =40
Similarly, it can be shown that there exists a constant C, > 0 such that
9u(Pn — €4) S E(Uimyin — pa)C 7,00
Letting C, denote the minimum of C, and C,, we have

(38) 9n,max = E(U(m):'n — pn)zkcb—len—(2k+1) .
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Since (see Blom (1958) or Van Zwet (1964)) there exists C, such that

(39) E(U(m):n — Pn)2k é Cﬁﬂ_k ,
we have
(40) gn,max é C5C5_1n_k5n—(2k+1) i

Combining (35), (36), and (40), we obtain

(41) E[an( U(m):n)] é 4—1C225n4 + Clce_len—(2k+1)n_k

— 4—1C22n—2+45/5 + C1C6C5—1n%—25k/5—5l5 .

Since k is arbitrary, we can choose it to be such that

20k/5 + 85— =2, -

proving the theorem.
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