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MULTIPLE ISOTONIC MEDIAN REGRESSION!

By TiM ROBERTSON AND F. T. WRIGHT
University of Iowa
We consider the partial order on the unit square; s1 = (x1, y1) € 52 =
(%2, y2) if and only if x; < y; for i = 1,2, and say that a real-valued func-

tion f is isotone if 51 € sz implies that f(s1) < f(s2). Suppose that for each
point, s, in the unit square we have a distribution with median m(s) and
m(s) is isotone.

In this paper we propose an isotone estimator for m which we denote
by 77 and give an algorithm for computing 7. Furthermore we show that
if x;5 (j =1, - -+, n;) are observations at s; (i = 1, - -, k) then 7 minimizes
D(f) = hat A 2%, |f(si) — xi5] over all isotone functions f. The estimator’
is also shown to be consistent for m and some rates are given for this con-
vergence. A brief discussion of isotone percentile regression is also given.

1. Introduction and summary. Suppose that for each point, s = (x, y), in the
unit square, [0, 1] x [0, 1] we have a distribution with mean p(s) and median
m(s). Assume that we make observations. on k of these distributions, correspond-
ing to the points s,, s,, - - -, 5,, and that the observations on the distribution at
the observation point, s;, are denoted by x,; (j =1, 2, - -+, n;). Consider the
problems of estimating y(+) and m(+) based on these observations.

Without any additional information about x(.) and m(.), estimates might be
provided by p*(s;) = %; = n;7' 337, x;; and m*(s;), the median of all those obser-
vations at s;. We adopt the convention of averaging the two middle items when
the sample size is even. This ensures that when we pool two samples, the median
of the pooled sample is between the medians of the individual samples (cf.
Robertson and Waltman (1968)). This property of sample medians is used
repeatedly in the proofs in Section 2 and we shall refer to it there as “apom”
(averaging property of medians).

In certain problems we may have reason to believe that p(.) or m(+) has an
isotone property. More specifically, we may believe that the value of the func-
tion under consideration at a point does not exceed its value at any point to the
upper right of the original point. Technically speaking, introduce the partial
ordering « on [0, 1] x [0, 1] defined by: s = (x, y) € 8’ = (x/, y’) if and only if
x < x'and y < y'. A function g(.) on [0, 1] x [0, 1] is said to be isotone with
respect to this partial ordering if u(s) < p(s') whenever s € s’. We want to
consider the'case when the raw estimates do not enjoy this property and it is
felt that some smoothing is required. (An analogous problem on the line is
discussed by Cryer, Robertson, Wright and Casady (1972).)
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Such a situation occurs in testing problems. Suppose x represents a child’s
grade level in school, y denotes his intelligence quotient, and x(x, y) and m(x, y)
represent the average and median score, respectively, earned on a certain achieve-
ment test by those individuals in category (x, y). It seems reasonable to assume
that () and m(.) are isotone with respect to the partial ordering . Even with
relatively large sample sizes the raw estimates may not enjoy this property and in
the past relatively ad koc methods have been used for smoothing these estimates.

An estimate fi(+) of p(+) which is isotone, has been proposed and studied (cf.
Brunk (1970) and Hanson, Pledger and Wright (1973)). We wish to investigate
an analogous estimate r(+) of m(.). Before we give the formulas for f(-) and
m(+) we need to introduce some terminology and notation. Since we are only
concerned with the value of our estimates at the observation points we will re-
strict our attention to S = {s;, 8, - - -, 5,}. The domain of definition of those
estimates may be extended to [0, 1] x [0, 1] in several ways, depending on
what properties the investigator wishes his estimates to enjoy. A review of the
results in Brunk (1965) or Robertson (1967) might be of value to the reader at
this point.

Let & be the collection of all upper layers in S (i.e., & is the collection of
all subsets L of S having the property that s; « s; together with s; ¢ L imply that
s; € L). In order to simplify some of the notation used in the remainder of the
paper we will henceforth only use the symbol L, with or without subscripts,
primes, etc., to denote upper layers. It is easy to see that < is a complete g-
lattice. (Relationships between partial orderings and complete o-lattices are
discussed in Robertson (1967).) Let R(.%”) be the collection of all #~measur-
able functions on S (i.e., R(Z") = {9(+); [9 > a] € & for all real a}). Define
the decrement functions D(+) and D’(+) on the collection of all functions on § by:

D(9) = Xt i [9(s:) — xi,T
and

D(g) = 2ty 250 |0(s:) — x4 -
If g is an estimate of y(+) or m(+) then D and D’ measure how close g is to what
we actually observed. For each nonempty subset §’ of S let A(S’) denote the
arithmetic average of all those observations corresponding to observation points
in §’ and let M(S’) be their median.

For each L e £ let U(L) denote the collection of all proper sub-upper layers

of L. An isotone estimate for p is given by:

(1.1) A(s;) = max,,,; ming, ¢y, AL — L') .

It is shown in Hanson, Pledger and Wright (1973), or it follows from the fact
that 4 can be represented as a conditional expectation given a o-lattice, that g
provides the nearest member of R(") to our observations in the sense that
fie R(&) and

(1.2) D'(a) = D'(9)
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for all g € R(¥”). In addition, it follows from properties of conditional expec-
tation operators that

(1.3) i (A(s;) — p(s:))'ms < Zhao (%5 — p(s)))’m;

In other words, £ is closer to the unknown p than the “raw” estimate provided
by the unsmoothed averages %; = n;~* };"i, x,;. Furthermore, f is a consistent
estimator of p and convergence rates have been studied (cf. Hanson, Pledger

and Wright (1973)).
Motivated by the above considerations we propose the estimator #: of m given by:

(1.4) (s;) = max, ,, ming, .y, M(L — L').
In Section 2 we prove several theorems about 7 including the result which says

that 7 provides the nearest point of R(.~") to our observations in the sense of
D(-). More specifically, 71 € R(-<") and

(1.5) D(h) < D(g)

for all g € R("). The key to proving this result is a representation theorem
which also simplifies computation of 7 considerably (a similar result holds for ).

Note that if the distribution at s is a bilateral exponential distribution (i.e., the
distribution is absolutely continuous with density function f(x; s) = le-l*—m®))
then (1.5) says that 7 provides the maximum likelihood estimate of m.

Section 3 contains some consistency results for the estimator 72 and gives rates
of convergence for P[|#(t,) — m(t,)| > ¢] to zero. In Section 4 we briefly discuss
percentile regression and in Section 5 we indicate some problems for which we
have not found a solution.

2. The estimate. In this section we explore certain properties of the estimate,
m, given by (1.4).

THEOREM 2.1. If 5; K s; then ri(s;) < mi(s;) (i.e., M € R()).

Proor. Consider the definitions of 7(s;) and 7(s;), note that since s; € s, we
know that {L; Le &, s;e L} C {L; L € .57, s; € L} and the desired result follows.

THEOREM 2.2. If M; < M, whenever s, £ s; then the value of mi(+) at each ob-
servation point, s, is given by M;.

ProoF. Let L(s;) be the smallest upper layer containing s;. By hypothesis,
M; < M; for all j such that s, e L(s;). It then follows, using “apom,” that M, <
M(L(s;) — L) for all L' in U(L(s;)). Thus

M, = minL'eU(L(si)) M(L(s;) — L')
and it follows that M; < i(s;) from the definition of #(s;). On the other hand,
suppose s; € L and let Ly = {s; = (x;, y;); x; > x; or y; > y;}. Then, L/ e U(L)
and M; > M, for all j with the property that 5; ¢ L — L. It now follows that

M; = M(L — L{) = ming, ., M(L — L').
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The desired conclusion obtains since L was an arbitrary upper layer containing s;.

If one uses the decrement function, D(+), as a tool for measuring the “good-
ness” of estimators m(.) then the property given for 7(+) in Theorem 2.2 is a
desirable one. This is so because if A(s;) = M, is £-measurable then A(.) pro-
vides a best estimate, in the above sense.

Now let L,=Sand choose L, in U(L,) so that min,, .y, , M(L,— L") = M(L,— L,).

ReEMARK 2.3. If L) is another member of U(L,) with the property that
ming, ¢y, M(L, — L') = M(L, — L,’) then L, n L," also has that property.

Proor. First observe that L, n L, is also a member of U(L;). Now if L, —
(L,u L))y= @ then L, — (L, n L) = (L, — L,) + (L, — L,’) and the desired
result follows, using “apom” and the fact that M(L, — L,) = M(L, — L,’). On
the other hand, suppose L, — (L, U L,’) is not empty. Then L, U Ly’ € U(L,) so
that using the hypothesis that L, provides a minimum, L, — L, = (L, —
(L, U L)) + (L — L,) and “apom” we get
(2.1) M(Ly — L)) < M(L, — L,) £ M(L, — (L, U L)) .

Next, using the fact that L,’ provides a minimum, L, — (L, n L)) = (L, — Ly') +
(Ly — L,) and “apom” we get
(2.2) M(L, — L)) = M(L, — (L, 0 L)) = M(L, — L}).
Combining (2.1) and (2.2) we can infer that
M(L, — (Lyn L)) £ M(L, — L,),
from which the desired result follows.

Using the above result and the facts that S is finite and &7 is closed under
intersections we know that there is a smallest member of U(L,) with the property
prescribed for L,. Assume that L, is chosen to be this smallest member of U(L,).

Now choose L, e U(L,) “as small as possible” so that

minL’el](Lz) M(L, — L') = M(L, — L;) .
Continuing in this fashion we obtain a sequence L,, L,, - - -, L, of upper layers
such that L, D L, > --- D L, and

minL’eLi M(L; — L'y = M(L; — L;4,) -
(Lysy = @). Our construction procedure must terminate since S is finite and
L;,, e UL,) reqires that L, — L,,, is not empty.

THEOREM 2.4. The value of m(+) at any observation point in L, — L,,, is given
by M(L, — ML,,,).

PRroof. Suppose s; € L;,;. Then
(2.3) (s;) = max; ,,; ming, .y, M(L — L)

= ming, gy, M(L; — L') = M(L; — L;y,) -

Next assume that L is an arbitrary upper layer containing s;. Then for & < i,
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L,—L,,,=,—(LUL,y))+(LnL,)—L,,). Consideringseparately the
cases when L, — (L U L,,,) is empty and otherwise we obtain
(2.4) M(Ln L) — L,y,) = ML, — L,,,)
h=1,2,...,i. This result, together with the fact that

L—-L,= Zi=1 ((L n Lh) - Lh+1)

gives:

(2.5) M(L — L;,,) < max,,; M(L n L,) — L,,,) .
Now L, , — L;,, = (L;_, — L;) + (L; — L;,) so

(2.6) M(L;y — L) < M(Liy — Liy) = M(L; — L) -

Liy—Liyn=Liy— L)+ (Lisy— Liy)soM(L,_, — L, ) S M(L; , — L;,)) <
M(L,_, — L;,,). Combining this with (2.6) we get

2.7) ML, ,— L,_)<ML,—L,,,).
Continuing in this fashion we obtain
(2'8) M(Lh — L) = M(Li - Li+1)

forh =1,2, ...,i. Combining (2.4)and (2.8) we obtain M((L n L,) — L,,;) £
ML, — L;,)forh = 1,2, ...,iwhich together with (2.5) gives M(L — L,,,) <
ML,—L;.,). NowLn L;,,e UL)sinces; e L — L, ,,;somin,, ., M(L — L") <
M(L; — L;,,). Since L was arbitrary it follows that

(2.9) (s;)) < M(L, — L) -

(2.3) and (2.9) give the desired result.

Since this argument depends only on the averaging property of medians an
analogous result can be obtained for 4. Theorem 2.4 provides for us the key
to showing that ri(+) has the desired minimizing property. More importantly,
perhaps, this theorem provides an algorithm for computing (). Suppose we
have n* observation points lying in an n by n grid. The number of upper layers
is m = (*). Thus, if we intended to use the definition for (.) in our compu-
tations then to find the value of 7i(+) at an 5s; somewhere in the middle we would
be required to compute approximately m/2 minimums each of which involves
computing m/2 medians. This task may be impossible even for a modern com-
puter when n is 15 or larger. Theorem 2.4 clearly provides a better method for
computing 7(+). We are currently in the process of studying the estimate 7(+)
in a problem which arises in estimating achievement levels for given IQ and
grade levels.

COROLLARY 2.5. Other representations for the value of ri(+) at observation points
are given by:
(2.10) (s;) = max,,, ming,,, M(L — L)
= min,, ,, max,,,. M(L — L").
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Proor. To prove either of these let m*(s;) be the appropriate function on
the right-hand side of (2.10) and argue that if s;e L, — L;,, then m*(s;) =
M(L; — L,,,) (see Theorem 2.4).

We are now in a position to show that 7 solves our extreme value problem.
We first argue that there is a solution.

LEMMA 2.6. There is a minimizing point g(+) in R(<¥).

ProoF. Let R(.Z")* be that subset of R(.<”) whose points have values bounded
below by min (M,, M,, ---, M,) and above by max (M;, M,, ---, M,). Using
the fact that if we move the value of g(.) at s, closer to M; we do not increase
the value of D(.), we can see that for each point g(+) in R(") — R(Z")* there
is a point §(+) in R(<")* such that D(g) = D(J). Hence we may restrict our
attention to R(<")*. But this set is a closed and bounded subset of Euclidean
k-space and D(-) is continuous so that it follows that a minimizing point exists.

THEOREM 2.7. m minimizes D(+) in R(-Z") (i.e., 2k, 217, |(s;) — x5 <
b DIty |9(s;) — x4 for all g in R()).

Proor. The argument uses the representation for 72 given by Theorem 2.4.
We consider separately the case where H =1 (ie., n(s;) = M(L,) =
min,, .y, M(L, — L')). Suppose that this is the case. Assume that g(.) is any
minimizing function, and relabeling, if necessary, suppose that g(s,) < g(s;) < - - -
< g(s,). Choose i(j) to be the jth integer such that g(s;;) < 9(s;;5+1) (J =
1,2, ..., p— 1,i(p) = k). If g is constant on S, we could easily complete the
argument. The argument when H = 1 is now divided into three cases depending
on the relation between the values of g(.) and M(L,). We give only one; the
other cases are similar.

Assume that M(L,) < g(s,) < 9(s;) £ --+ < 9(s,). We argue that there is a
constant minimizing function. If i(1) = k we have the desired result. Otherwise,
let Ly = {Sip-1ys1> Sip-n4> ** +» Si}- Since g € R(X), L, € &so that L, € U(L,).
Thus M(L,) < M(L, — L,’) and using “apom” we obtain

M(L)) < M(L)) < M(L, — Ly).

Since g is constant on L, we can move its value closer to M(L,’), the median of
the observations in L,, without increasing the value of D(.) at g or destroying
the isotone property of g. Move it down to g(s;,_,)). Continuing in this fashion
we obtain a constant minimizing function.

Arguing in a similar fashion we can obtain a constant minimizing function
in the case that g(s,) < g(s,) < - -+ < 9(s,) < M(L,) and the case that g(s,) <
9(s)) < -+ = 9(sip) = M(Ly) < 9(Sip41) = -+ = 9(s,). Hence in any even-
tuality there is a constant minimizing function, g. It follows from well-known
properties of D(+) that D(r) < D(g).

Now consider the general case. The argument proceeds by induction on the
number k of distinct observation points. The desired result is clearly true when
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k = 1. Suppose the result is true for any number of distinct observation points
less than or equal to k and that we have k + 1 distinct observation points
815 835 -+ +» S41- Relabeling, if necessary, assume that {s,, s,, ---,s,} = L, — L,
and {s,,1, 5,49 ** > Sepa} = L. If p = k + 1 the result follows from our first
case. By supposing that s, s,, - - -, s, were the only observation points it follows
from our first case that

(2.11) T Dk (s) — x| < X0 2% [9(s:) — Xy
for all g € R(-¥”). Then assuming that s,,,, 5,,,, - - -, 5,,, are the only observa-

tion points, recalling the procedure for constructing L,, L,, ---, L, and using
the induction hypothesis it follows that

(2.12) o Liia (s — x| < TG D5 [9(s:) — x4
for all g in R(<"). The desired result follows by comi)ining (2.11) and (2.12).

3. Consistency results. In this section we prove a theorem and two corollaries
which show that 77 is consistent for m and which give rates for this convergence.
It is convenient for us to think of the observation points as a sequence {t;: j =
1,2, - ..} whose elements are not necessarily distinct. We assume that associated
with each ¢, is a random variable Y; with the following properties.

(3.1) The random variables Y; for j = 1, 2, - .. are independent.

3.2) The distribution function and median of Y; are F; and m(t,),
respectively.
(3.3) For each ¢ > 0, inf; F;(m(t;) +¢) — 3 >0 and
3 — sup, Fy(m(t;) —¢) > 0.

It is also more appropriate in this section to state our results in terms of func-
tions on [0, 1] x [0, 1]. Thus we now adopt the following terminology: an upper
layer is any subset L of [0, 1] x [0, 1] with the property that s’ e L whenever
s« s and se L. Thus, for a fixed value of n the proposed estimator at an
observation point ¢; with j < n can be written

(3.4) ,(t;) = max,,, min,,,, ML — L)

where M, (L — L’) is the median of all those observations at observation points
t; with i < n and ;e L — L’ (cf. 2.10). We again agree to use the symbol L
when referring to an upper layer and agree to average the two middle items
when the sample size is even. (This latter convention is not necessary for our
consistency results.) The value of #,(.) at points other than ¢, ¢, -.-,¢, is
arbitrary except that #,(.) should be isotone with respect to the partial ordering
given in Section 1.

For any subset J of [0, 1] x [0, 1] we define N, (/) to be the number of obser-
vation points among the first n observation points which are in J. Also for
each positive integer » we let I;; = I,(y) = [(i — 1)/7, i/p] x [(j — 1)/», j/n] for
i, j= 1, 2, cee, 7.
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THEOREM 3.1. Assume m(+) is continuous on [0, 1] x [0, 1]; for each non-
degenerate rectangle J [0, 1] x [0, 1]

lim inf,_, N,(J)/n > 0
and that
3.5) there exists a constant M such that for any positive integer 3
there exists an n(n) such that N, (I;;) £ Mxy~n for all n = n(z)
and i, j< 7.

Then for each t, € (0, 1) x (0, 1) and each ¢ > O there exist positive constants C and
{ < 1 such that

(3-6) Pl (t,) — m(t)] > e] < CC".
Before the proof of the theorem is given we note that (3.5) relates the pro-
portion of the observations taken in the special squares /;; to the area of /.

This condition was used in Hanson, Pledger and Wright (1973) to obtain con-
sistency results for f.

Proor. The first part of the proof of Theorem 3.1 is similar to the initial
part of the proof of Theorem 3.3 in Cryer, Robertson, Wright and Casady
(1972) and the last part is just like the last part of the proof of Theorem 6 of
Hanson, Pledger and Wright (1973). We shall omit much of the detail. Let
¢ > 0. We will show that there exist positive constants C and { < 1 such that
P[m,(t,) — m(t,) > ¢] =< C{*. The other half of the proof is similar. Choose s
such that 7, € s € (1, 1) and m(s) — m(t,) < ¢/2 and define L, = {s': s’ £ s}°.
Now using (2.10) it follows that:

(3.7) (1) — m(t) < max,,, M,(L — Lo) — m(1,)
= max;,, M, (L — L)) — m(s) + ¢/2.

However, for each L which contains ¢, the median of {Y,;: j<nandt;e
L — Ly} — m(s) is the median of {Y; — m(s): j < nand t;e L — Ly} which is
bounded above by the median of {Y;, — m(t;): j < n and t;e L — L,}. Define
Z; =Y; — m(t;); M,*(L — L) to be the median of {Z,: j < nand t;e L — L};
and W, =1 _,,x(Z;). For notational convenience we set A(L,n) ={j:j<n
and t; € L — L} and we observe thatif M, *(L — L)) > ¢/2then >}, ..., W; <
N,(L — L;)/2 which implies that

[NuL = L) Xjeawm (W; — EW;) + inf; Fy(m(t;) + ¢/2) — $ < 0.
We now set 0 = inf; F(m(t;) + ¢/2) — ;. Assumption (3.3) ensures that 6 > 0.
Hence, using (3.7), if m,(t,) — m(t,) > ¢, then
(3.8) max; ., [No(L — L)™' Zjeazm (EW; — W) = 4.

The random variables EW,; — W, for j = 1, 2, - .. are independent and centered
at their means. Since they are uniformly bounded there exist constants D and

A such that
P(\W; — EW,| = y} £ De
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for all jand all y > 0. The remainder of the proof is just like the proof of
Theorem 6 of Hanson, Pledger and Wright (1973) beginning at (43).

CoRrOLLARY 3.2. Let 0 < a < b < 1 and assume the hypotheses of Theorem 3.1.
For any ¢ > 0 there exist positive constants C and { < 1 such that

(3.9) P[SUD;c(a,b1x1a,7 [ () — m(£)] > €] < CC*.
Also
(3.10) P[lim, _,, SUP, ¢ (a.51xa,5] [F(t) — m(t)] = 0] = 1.

Proor. Conclusion (3.9) follows from (3.6) just as (27) follows from (42) of
Hanson, Pledger and Wright (1973). Conclusion (3. 10) follows from (3.9) by
the Borel-Cantelli Theorem.

COROLLARY 3.3. Assume the hypothesis of Theorem 3.1. Then
(3.11) P[lim,_,, m,(t) = m(t) forall te(0,1)x (0,1)] =1.

Proor. Since a countable intersection of sets with probability one is again a
set with probability one, (3.11) follows from (3.9).

4. Percentile regression. Fix p with 0 < p < 1 and define the 100p-percentile
of a distribution function F (the right continuous version) to be

§, =min{t: F(t) = p}.

REMARK 4.1. If 0 < a« < 1, Fand G are distribution functions and H = aF +
(1 — a)G, then &, is between &, and &,.

Proor. We assume that &, < §,. We show that £, < &, by arguing that
H(§;) = p and the other half of the proof is similar. The desired conclusion
follows from

H(E) = aF(§) + (1 — )G(§e) = aF(§p) + (1 — )G(Se) 2 p -

We agree that the 100p sample percentile is the 100p-percentile of the empirical
distribution function. From Remark 4.1 and the fact that the empirical distri-
bution function of the pooled sample can be expressed as a convex combination
of the individual empiricals, we see that the sample percentile of a pooled sample
is between the two percentiles of the individual samples.

Suppose for each point, s, in the unit square that p(s) is the 100p-percentile
of the distribution associated with s and suppose that p(s) is isotone with respect
to the partial order given in Section 1. As in Section 1, let x;; (j =1, - -+, n)
be observations at s; (i = 1, - - -, k). We define p analogous to (1.1) and (1.4),
that is,

4.1) p(s;) = max, . ming, .y, P(L — L")

where P(L — L’) is the 100p sample percentile of the collection {x;;: i = ..o, n;
and s;,e L — L'}.
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With the definitions, results analogous to Theorems 2.1, 2.2, 2.4 and Corol-
lary 2.5 of Section 2 hold for g. In Section 3, if one modifies the hypotheses
and conclusions of Theorem 3.1, Corollary 3.2 and Corollary 3.3 and replaces
the sample median by either the [n - p]th or the [n . p] + 1th order statistic then
analogous results for p can be obtained by similar arguments.

We are grateful to Professor R. V. Hogg for pointing out that the above
definition for percentiles gives the needed averaging property.

5. Some unresolved questions. There remain several interesting questions for
which we have been unable to provide answers. The first question which comes
to mind is suggested by (1.2) and (1.3). These two say that 2 was simultaneously
nearest to what we observed and ““in-between” the raw estimate and the unknown
p. Theorem 2.7 guarantees that 77 is nearest to our observations but we have
no result analogous to (1.3) telling us that it is closer to the unknown m than the
raw estimate. This type of result has not even been obtained in the linear case
(cf. Robertson and Waltman (1968)). In the linear case a result analogous to
the following was shown: There exists a measure a on the collection of all
subsets of S with the property that » = E (k| <), where A(s;) = M,. Sucha
result would imply that

1 (A(s;) — m(sy))a({s;)}) = 2k (M; — m(s;)) a({s}) .
However,. it is not clear what this kind of result would mean since nice charac-

terizations of « are unknown and « depends not only on the sample sizes but on
the values of the observations. One might conjecture that

b lm(s) — m(sy)ln; < 2k M — m(s;)|n; .

However, Malmgren (1972) has provided a counterexample.

In the consistency results the assumption that lim inf, . N,(J)/n > 0 for all
non-degenerate rectangles J [0, 1] x [0, 1] is a direct analogue of the condition
used in Brunk (1970) and Cryer, et al. (1972) to obtain strong consistency of
the analogous mean and median functions on the unit interval. In Hanson, et al.
(1973) it was shown that something more than {t,: k =1, 2, ...} dense in [0, 1]
was needed to obtain strong consistency. Is the above kind of condition what is
needed to prove strong consistency for mean and median regression functions on
[0, 1] and [0, 1] x [0, 1]? In Hanson, et al. (1973) and Cryer, et al. (1972) weak
consistency results were obtained for mean and median regression functions on
[0, 1]. Can the assumptions in Theorem 3.1 and Theorem 5 of Hanson, et al.
(1973) be weakend and still obtain weak consistency? Condition (3.5) was also
used in Hanson, et al. (1973), but has not been investigated.

Makowski (1971) obtained some law of the iterated logarithm type conver-
gence rates for estimators of isotone regression functions on the line. Can similar
results be obtained here?

Finally, it seems as though asymptotic distribution theory for “isotonized”
estimators has been left relatively untouched. Some results (cf. Rao (1966) and
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Brunk (1970)) have been obtained for the asymptotic distribution of the estimator
at a point. It would seem that similar results could be obtained here. More
desirable yet, can one obtain asymptotic distributions for more global type
measures of the difference between the estimate and the true function like

sup, [#i(t) — m(t)], §po.n [#(r) — m(n)] dr or o,y |i(t) — m(7)] de?

(1]

2

[3]
[4]
[5]

[6]
[7]
[8]
9]
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