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ON THE NONPARAMETRIC ESTIMATION
OF COVARIANCE FUNCTIONS

By PETER HALL, NICHOLAS I. FISHER AND BRANKA HOFFMANN
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We describe kernel methods for estimating the covariance function of
a stationary stochastic process, and show how to ensure that the estima-
tor has the positive semidefiniteness property. From a practical viewpoint,
our method is significant because it does not demand a parametric model
for covariance. From a technical angle, our results exhibit a striking depar-
ture from those in more familiar cases of kernel estimation. For example, in
the context of covariance estimation, kernel estimators can have the same
convergence rates as maximum likelihood estimators, and can have excep-
tionally fast convergence rates when employed to estimate variance.

1. Introduction. Covariance or variogram estimation is a fundamental
problem in inference for stationary stochastic processes, having wide-ranging
applications in areas such as ore reserve estimation and hydrosciences [e.g.,
Matheron (1971), Journel and Huijbregts (1978) and Christakos (1984)]. In
order to preserve the property of positive semidefiniteness enjoyed by a true
covariance function, statisticians commonly resort to fitting parametric mod-
els. However, such an approach can be inadequate, particularly in view of
the difficulty of testing goodness of fit with dependent data [e.g., Armstrong
and Diamond (1984) and Christakos (1984)]. In the present paper we pro-
pose nonparametric estimators of covariance. Our basic estimators are con-
structed using kernel methods. We suggest modifications of those estimators,
which enjoy the positive semidefiniteness property but retain the flexibility of
kernel methods.

Recently, Shapiro and Botha (1991) suggested a method based on constrained
curve fitting through point estimates of the covariance function. Shapiro and
Botha’s method does not produce a smooth covariance function which is posi-
tive semidefinite in the continuum, although it does have that property on a
discrete set. We argue that our approach is simpler, in that it does not require
numerical optimization under nonlinear constraints. Furthermore, its theoret-
ical properties are significantly more transparent. This is important, because
it is unclear what convergence rates are enjoyed by Shapiro and Botha’s es-
timators, and what methods of construction are necessary to achieve them.
The reader is referred to Cressie [(1991), Section 2.6, page 90ff], for a detailed
account of variogram estimation.

Sampson and Guttorp (1992) have recently proposed a nonparametric esti-
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mator for variance in the case of spatial data. Their approach is very different
from ours, being based on a covariance representation due to Schoenberg (1938).
It would be applicable to one dimension, although the convergence rates of their
technique, for either one or two dimensions, remain to be determined. Related
work on estimation of second-order properties of spatial point processes may
be found in Diggle, Gates and Stibbard (1987) and Berman and Diggle (1989).

Our methods and main theoretical results may be described as follows. As-
sume that the stationary process X is observed at “time” points ¢;,...,%¢,. The
aim is to estimate p(t) = cov{ X(s),X(s +2)}, for general ¢ and without structural
or parametric assumptions about p. The ¢;’s are not necessarily evenly spaced,
and may, for exapple, represent values of independent random variables. Put
X= n‘IZX(ti), Xij = {X(tl) — X}{X(tj) - }_(} and tij=1t; — tj. Let K denote
a kernel function, which we take to be a symmetric probability density. Let &
represent bandwidth, and define

-1
@y = [Z S X K{t - tij)/h}] [ZZK{(t —ti)/h}|

where the two double series may either include or exclude the diagonal terms
corresponding to i =j. Then pis a kernel estimator of p.

Of course, 7 is not necessarily itself a covariance function, since it typically
lacks the positive semidefiniteness property,

/ / p(s — hw(s)w(t)dsdt > 0 for all integrable functions w.

By Bochner’s theorem, this is equivalent to nonnegativity of the Fourier trans-
form of p (i.e., of the spectrum),

pf(6) >0 forall#,
where

NOE / * o) e dt =2 / ~ p(t) cos(0¢t) dt.

9] 0

(Throughout, we use g! to denote the Fourier transform of a function g.) If
the time points #; are regularly spaced on a grid, then one way of estimating
p is via Fourier-inversion of the periodogram. This would always produce a
covariance function estimate satisfying the positive definiteness property on
the grid points. However, the problem then arises of smoothing the estimator
in such a way that it is positive semidefinite in the continuum. Furthermore,
this method is not available when the ¢;’s are not regularly spaced. We suggest
instead the following approach. First, compute the Fourier transform, pt, of
p, perhaps after truncation of the latter to ensure integrability. Next, render
p' nonnegative, for example by deleting any negative lobes and perhaps doing
a little additional smoothing. Let the resulting function be represented by pt.
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Finally, Fourier-invert 5! to obtain a new function p which, by construction, is
guaranteed to enjoy the positive semidefiniteness property.

In our technical analysis of this procedure, we first develop a theoretical
model generating the time points ¢;. To ensure statistical consistency in esti-
mation of p, it is usually necessary for the interval between the smallest and
largest t;’s to expand as sample size, n, increases. Indeed, for many parametric
problems the amount of information in the sample about p is roughly propor-
tional to any interquantile range of the collection of ¢;’s; see Remark 3.9. On the
other hand, if the range increases at the same rate as n, or at a faster rate, then
it is often not possible to ensure that a large number of differences #; — ¢; exist
with the property ¢; — ¢; ~ ¢, for any given ¢. The latter property is essential
for consistent estimation of p in a nonparametric, structure-free context. For
example, it fails if ¢; = i (where the range of the ¢;’s increases like n); here it is
not possible to get a consistent nonparametric estimator of p.

For these reasons we assume that the interval to which the ¢;’s are confined
increases like )\, and that A = A\(n) diverges so slowly that A/n — 0. Then in
many parametric settings the amount of information about p in the collection
{X(#y),...,X(t,)} increases roughly in proportlon to ), and the convergence
rate of max1mum likelihood estimators of p is typically A~1/2. We claim that
our nonparametric estimator p also enjoys this convergence rate, provided the
bandwidth % is chosen appropriately. Furthermore, the bias of an optimally
constructed version of p is typically of smaller order than the error about the
mean. Thus, the effect of smoothing is much less apparent here than in more
classical curve estimation problems, where the convergence rate is typically
slower than in parametric contexts and where the optimal estimator usually
has bias and error-about-the-mean of the same order of magnitude.

Another point of departure from the classical case is that there is a range of
orders of magnitude of bandwidth for which asymptotic optimality is attained.
(In the case of curve estimation using independent and identically distributed
data, the order of magnitude of &, and even the constant multiplying that order,
are uniquely determined by the requirement of asymptotic optimality.) This
feature is particularly fortuitous, since the construction of a data-driven rule
for bandwidth selection is difficult even in the case of the basic kernel estimator
p, let alone for the transformed version p.

An additional feature of our estimator p(#) is that in the special case ¢ = 0,
it often converges at the particularly fast rate of o(A~%/2). Of course, p(0) = o>
=var{X(s)}, and so we are claiming that the kernel estimator p(0) can converge
at a faster rate than the more common variance estimator

2=n"1Y {Xt) - X},
i=1

‘which typically satisfies a central hmlt theorem of the form \/2(G2 — o2)
— N(0,72) in distribution, where 0 < 72 < oco. The reason for this superef-
ficiency” property of 5(0) is that the latter estimator uses not just information

in the diagonal terms X;; = {X(#;) — X}2, which form the sole basis for 52, but
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also information in the off-diagonal terms X;; (for i # j). Since there are a lot
more off-diagonal terms than diagonal terms [n(n — 1) rather than n], then there
is potential for improving performance by including the off-diagonal quantities.

Section 2 briefly describes numerical properties of our estimator. Section 3
outlines theoretical results which imply the convergence rates discussed above,
and also discusses other aspects of the general problem. Outlines of proofs are
given in Section 4. A practical application of the method will appear elsewhere.

2. Numerical results. We conducted a simulation study to evaluate the
performance of the proposed method for a variety of covariance functions. The
results for one such function are presented in this section; they are typical
of those obtained in the larger study. For all the results presented here, we
constructed the estimator p(¢), ¢ > 0, using the definition at (1.1) and with
diagonal terms included. This choice is recommended by the theory in Section 3.
To calculate the Fourier transform pt, we truncated p at a point Ty > 0, and
then brought the curve down linearly to 0 at a point T, say. An example of
this truncation and linear smoothing is illustrated in panel (b) of Figure 2.
Software was written that would allow the truncation and smoothing to be
performed interactively.

The truncation and smoothing produces a function that we may write as

p(@), 0<t<Ty,
i) =4 p(T)(Ty —t)XTo —T)™Y, Ty <t<Ty,
0, t>Ts.

In a slight abuse of notation, put

510) =2 / 51(2) cos(08) dt,
0
and define
g =inf {6 > 0: 51(6) > 0},

0
) = @m? / poras.
-9

Then p is our final estimator of p.
We applied this technique to data generated from the stationary Gaussian
process having zero mean and covariance function

pt) =t Lsint.

Note particularly that pis not compactly supported. A quartic function 0.9375(1
— x2)2 was used for the kernel K(x). So as to simplify and abbreviate this section,
we‘take A = 0.01 throughout, and define #; = \u;, where the u;’s are generated
from the uniform distribution on the interval (0,1), A = 20,100 and 1 <i{ <
n = 50, 250.
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Fic. 1. Estimator p for four different trunctions (T, T). The same data set is used throughout. (a) Ty
=2.4185, Ty = 2.9641; (b) T = 5.0553, Ty = 5.5402; (¢) Ty = 9.2984, T, = 9.4499; (d) T; = 14.2385,
Ty = 14.4203.

Figure 1 illustrates typical traces of the estimator p for four different trun-
cations. Note the way in which the fidelity of p to the true p at first improves,
and then deteriorates, as the truncation point is increased. Figure 2 illustrates
four steps in the construction of the second panel in Figure 1: first, the data
set; second, the estimator p, with the truncation marked; third, the function ',
with 8 marked; and finally, the estimator p (shown here as an estimate of the
correlation function, for purposes of comparison with the true function). Note
particularly that imposing the constraint of positive definiteness produces a
substantially smoother estimator—compare panels (b) and (d) of Figure 2.

3. Asymptotic theory. We assume that X = X(¢) is a stationary stochastic
process, observed at “time” points #1,...,¢,. If the ¢;’s are confined to a fixed in-
terval, then we cannot necessarily estimate characteristics of the process con-
sistently. For example, consistent estimation of the mean, 4 = E{X(¢)}, demands
that the process be observed over an increasingly wide range of time points. To
model this situation, we assume that ¢; = Au;, where ) is an increasingly large
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FiG. 2. Four steps in the construction of Figure 1(b). (a) Data set (n = 50, A = 20); (b) estimator p;
(c) Fourier transform pt; (d) final estimator j [shown as 5(£)/5(0); dashed line is true p@)/p(0)].

positive number [i.e., A\ = A\(n) — oo as n — o], and u;,...,u, represent ob-
served values of independent random variables Uy, . .., U, all having the same
distributions (not depending on n) and all independent of the process X. Alter-
natively, we may take ¢1,...,¢, to be regularly spaced on an interval of width
A. Strictly speaking, we should write ¢; as £,;, to indicate that the time points
are chosen differently for each n.

We impose the following regularity conditions. The densities fi,fs,f5 of
U1 -Us, (U -U,, Us—Uy),(Uy—U,, Us — Uy, Uy — Uy), respectively, are bounded
and continuous, and are such that none of £1(0), £2(0, 0), £3(0, 0, 0) is 0; S lpl < oo
the function

g(u,v,w) = E[{X@ +w) - p}{X®) — p}{Xw) - 1} {X(0) - 1}] - pp@)
satisfies
sup [ |gu,v,w)|dw < oo;

the kernel K is a bounded, piecewise continuous, compactly supported, symmet-
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ric probability density with K(0) #0; and for some n > 0, n"h — 0, n1 = "h — oo,
n2="h3XA"! — 0o, n7"\ — oo, nl ="\~ — oo; p has two bounded, continuous
derivatives in a neighbourhood of ¢.

If the ¢;’s are equally spaced in an interval of length ), then the functions f;,
f2, f3 should be taken to have the form they would if U, ..., U, we uniformly
distributed on the interval (0, 1).

The condition sup, , [|g|dw < co holds if X is a smooth, polynomial function
of a Gaussian process with integrable covariance. In particular, it is valid if
X =p(Y) where p is a polynomial and Y is a Gaussian process with covariance
v satisfying [ || < co. If X is itself Gaussian, then g(u,v,w) = pu + w — v)p(w)
+ p(u + w)p(v — w), whence it follows that

sup/|g(u,v,w)| < 2p(0)/|p(w)|dw.

u,v

Define

po=31p"®?  p1=3*{cfi(0)+K(0)} f(0)p"®),
_{po, ift#0orif ¢ = 0 and nhA~! — oo,
" \p1, ift=0andnkr-l—¢, 0<c < oo,

g0 = £1(0)"2£3(0, 0, 0) / ot t, w)du,

q1 = c{cfi(0) + K(0)} ~*{cf(0,0,0) + 2K(0) £3(0, 0)} / £(0,0,u)du,

_{qo, ift#0orif¢ = 0 and nhA~! — oo,
" lqy, ift=0andnkA!—>e¢, 0<c < oo.

Under the above regularity conditions, the sample mean X converges to the
population mean y at rate A~'/2, Indeed, E(X) =  and

var(X) = A"11(0) / p+o(A7Y).

[See Step (iii) in the Appendix for a proof, and Remark 3.7 below for further
details about estimation of .] Our next theorem shows that p(¢) converges to p(¢)
at least as fast as X converges to u, provided the bandwidth is chosen correctly.

THEOREM 3.1. Assume the conditions stated above. Suppose first that the
estimator p(t) is defined with the i = j terms included. If t#0, or if t = 0 and
nhA~! — c where 0 < ¢ < o0, then .
3.1 E{p® — p®}* =h'p + A lg+o(ht +A7Y).
Ift = 0and nhA~1 — 0, then

3.2) E{p®) — p®)}* =o(h* + A71).
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Next, suppose that p(t) is defined with the i = j terms excluded. Then, for both
t=0and t+#0,

(3.3) E{5(®) - p®)}* = h*po + A" pg +o(h* + A~1).

The remarks below elucidate consequences of the theorem. In particular,
Remark 3.1 demonstrates that in many circumstances our estimator g achieves
a convergence rate of \='/2 (in L!) under nonparametric assumptions on p; and
Remark 3.9 shows that this rate is optimal in many problems, even when p is
known parametrically. Note particularly that in many circumstances, optimal
choice of bandwidth produces an estimator which is asymptotically unbiased.
This is quite unusual in curve estimation problems, where asymptotic bias is
typically of the same size as error about the mean.

REMARK 3.1. In formulae (3.1) and (3.3), the first term represents the con-
tribution from squared bias and the second denotes the contribution from vari-
ance. By choosing bandwidth £ so that A% = o(A~1), we may ensure that the bias
contribution is asymptotically negligible. The estimator 5(¢) is then asymptot-
ically unbiased, with

E{p® - p()}” ~var{p®)} ~ A"1q.

Such a choice of X is compatible with the conditions of the theorem. Indeed,
ifn="\ — co and n! =7 A~7/% — oo for some ;) > 0, then we may choose & = h(n)
such that for some 7' — 0, we have n”h — 0, n1=7h — 00, n2-"h3 A~! 5 0o
and \ht — 0.

REMARK 3.2. In formula (3.2), the exact convergence rate (when nh\~!
— 0)is

n?hA "2+ nhr 240" 1= (nh)\"l)zh4 + (nh)\_l)/\_l +n"l= o(h4 + /\_1).

If n=1/2=7X — oo and n' ="\~ — oo for some 5 > 0, then we may choose A
= h(n) such that for some 7/ > 0, we have n"h — 0, n1~"h — oo, n2~ " R3)\"!
—0,nhA"! — 0 and Ah* — 0. Therefore, when ) diverges to co at a rate between
n!/2 and n, it is possible to choose % such that 7 is “superefficient” at ¢ = 0, in
the sl%lse that E{p(0) — p(0)}2 = o(A~1). That is, 5(0) converges to p(0) at rate
o(A™1/%),

REMARK 3.3. An alternative estimator of p(0) = var{X(¢)} is
52=n"1Y {X@) -X}% -
i=1

This estimator converges only at rate A~/2, and does not have the potential
for the speed of convergence to be improved to o(A\~1/2). It is of particular in-
terest that, by including diagonal terms and doing an appropriate amount of
smoothing, we may construct an estimator which improves on 52.



COVARIANCE ESTIMATION 2123

REMARK 3.4. Asymptotic normality of p may be proved under a variety of
regularity conditions. For example, if X = p(Y) where p is a polynomial and Y
is a stationary Gaussian process whose covariance function v satisfies |y(z)| <
C; exp(—Cs|¢t|) for some Cy, Co > 0 and all ¢, then the method of moments may
be used to prove that p — E p is asymptotically normal N(0, var p).

REMARK 3.5. The condition n2~7h3\~1 — oo, introduced prior to the state-
ment of the theorem, may seem unusual. However, it is close to being necessary,
and indeed the theorem may fail if n2A3\~! is bounded. This point is elucidated
in Step (ii) of our proof of the theorem.

REMARK 3.6. An alternative approach is to estimate the variogram,

v(@) =2{p(0) — p(®)},
instead of the correlation function. Since
Y, = {X@t) - Xt )}’

is unbiased for 7(¢; — t;), then a kernel estimator of the variogram is given by

DD YuK{t- t,-j)/h}] lz >_K{¢-t)/h} ) :

where the i = j terms may be either included or excluded. Asymptotic theory
may be developed for 7, and is very similar to that for estimation of p(¢). In par-
' ticular, when the i = j terms are included in the estimator 7(¢), “superefficient”
estimation of v(0) = 0 is possible, although, of course, estimating 0 is not of such
interest as estimating p(0)! Furthermore, asymptotically unbiassed estimators
of ~(t), with variance of size A, may be developed in the case ¢#0.

REMARK 3.7. Ifthe process X is Gaussian, then, although X is seldom equal
to the maximum likelihood estimator of y, X is sometimes asymptotically op-
timal, in the sense that the amount of information about x in the sample X
={X(),...,X(t,)} is asymptotic to (var X)~!. For example, take ¢; = \;/n, sup-
pose pis known and define X; = X(t;), 03 = p(t; — t}), (a( Dy = (au)‘1 Then the
maximum likelihood estimator of x is

N

The inverse of the variance of [i, and the Fisher information in X about y, are
both equal to ZZ)UEJ.‘ D Now, the circulant version of the n x n Toeplitz matrix
(0;) has inverse (;;), say, and the sum of the elements of (7;;) precisely equals
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n? multiplied by the inverse of the sum of the elements of (¢;;). Under the
hypothesis that A\/n — 0 and p vanishes on a compact interval, we may prove
that Z)Z)alfj"l) ~ ¥ ¥7;j. (The argument is based on noting that the amount of
information in X lies between the amounts of information in two other stochastic
sequences, each of which has a circulant variance matrix and whose respective
lengths are n + O()\).] Hence, since f(0) = 1 in this case,

n n n n -1
:E::E:(é;l)A,nz(:EE:ZE:(nj> ,

i=1lj=1 i=1lj=1

YNoS oy =Y ptti— ) ~n2A-1f(0)/p.

i=1j=1 i=1j=1

Therefore, (var fi)~! and (information in X about ) are both asymptotic to
-1 -1 _
nz{nzx\’lf(O)/p} = )\{f(O)/p} ~ (var X)L

REMARK 3.8. If the process X is Gaussian and the covariance function p is
known parametrically, then, in principle, the exact form of p can be determined
precisely (i.e., without error) from observation of X over any finite interval, no
matter how short. This is one of the paradoxes of inference about the spectrum of
a stationary Gaussian process; see, for example, Grenander (1950) and Yaglom
(1963). It follows that even if p is known only up to smoothness conditions, as
hypothesized in our theorem, p can be estimated with extraordinary accuracy
(at a faster rate than A~1/2) from the data X = {X(¢1),...,X(¢,)}. In this sense,
the convergence rate described in the theorem falls short of optimality in the
case where X is Gaussian.

Next, we discuss the implications of Theorem 3.1 for a covariance estimator,
p, designed to satisfy the condition of positive definiteness. We assume that the
stationary process X has all moments finite; that p vanishes outside a compact
interval, say (—tg, ¢9); that an upper bound, T, to ¢, is known; and that for some
a > 1, the ratio

pl(8)/(1+16])"

is bounded away from 0 and oo, uniformly in 6.
The fact that p is known to vanish outside (-7, T) is utilized by defining

T
(3.4) 51(9) = / 5(2) cos(08) dt.
T
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Let 8> 1, and put

6=inf[{0>0: 516®) <0} U {(W}],
pt©), if|6] <8,

(3.5) P16 = { , I
0, if |6] > 8,

é
5(#) = (2m)! / 51(8) cos(6t) do.

At alternative approach to defining 5 is to replace 5t by

T .
7o) = / ) { 3 X, costt K {( ~ ¢ j)/h}}
- J

1

x [Z;K{(t - t,-j)/h}] _ldt,

i

(3.6)

and then define 51 and 7 as before. The validity of the theorem is not affected
by this change. It is tempting to replace the definition of 57(6) by, for example,
a quantity proportional to

Z Z}?ij COS(tije).
iJ

However, this change is really only permissible if the points ¢;; are asymptoti-
cally uniformly distributed over (—7', T'). The definition of 5t at (3.6) represents
one of several different possible approaches to correcting for nonuniformity of
the t; j’S.

THEOREM 3.2. Assume the conditions stated above, and that for some n > 0,
we have A — oo and n! ~"A\~"/8 — 00 as n — co. [Then we may choose h = h(n)
such that for some ' > 0, we have n” — 0, n'~"h — oo, n2-Th3A"! - oo
and M\h* — 0; see Remark 3.1. We assume that h has these properties.] Suppose,
too, that either t1,...,t, are regularly spaced on an interval of width X\ or that
they are generated as described in the opening paragraph of this section, with
U; having a continuous distribution with a bounded and continuous density,
and that K is a bounded, continuous, compactly supported probability density
with K(0)#0. Then

(.7 sup |5(t) — p(t)] = O, (A~W/2+(1/200)
t>0

as A — oo.

REMARK 3.9. The rate of convergence, that is, A\~(1/2+(1/2®)  degcribed by
(3.7), is optimal in the following sense. Under appropriate mixing conditions
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on the process X, and assuming that p!(6) ~ const.|f|~* as || — oo, it may
be proved that §/A1/2® hag a proper, nonzero weak limit. See that part of the
proof of Theorem 3.2 subsequent to (4.23). It follows from (4.21) and (4.23) of
that proof that for fixed ¢, in particular for ¢ = 0, A\=/2+1/20)(5(4) _ 5(¢)} has
a proper weak limit.

REMARK 3.10. Closely related techniques may be employed to derive con-
vergence rates of estimators in the case where p is not compactly supported.
There, we may still use (3.4) to define 51, except that T' = T'(\, n) now diverges
slowly to co. The overall convergence rate is now a function of the rate at which
p(t) — 0 as |t| — oo, as well as the rate at which p!(9) — 0 as || — co. For exam-
ple, if p decreases exponentially quickly—in particular, if |p(¢)| < C; exp(—Cs|¢t|)
for constants C;,Cy > 0—then in definition (3.4) we may take T' = C3logn for
any sufficiently large C3 > 0. Minor modifications of our present proof of Theo-
rem 3.2 show that (3.7) continues to hold, provided that the right-hand side is
replaced by O,(A\~(1/2+(1/2e)+¢) for arbitrary € > 0.

4. Proofs.

4.1. Proof of Theorem 3.1. We give the proof only in outline, confining al-
most all attention to the case where i =j terms are included in the definition of
p(@). The following notation is used:

tj=ti—t, X;={Xt)-XH{X¢)-X},
: Xij = {X@) - p}{X¢)) — p},
at) = LY K{¢-t)/k},  B@®=Y Y X;K{t-t;,)/h},
- - b=E®B),
P& =B®/a®), ;=X — plti)),
At) = a()? ; %j {X(t;) — p}K{@ —t;5)/R}.

In this notation,
(4.1) ) = () — 20X — WA®) + (X — p).
The remainder of our proof is comprised of five steps, dealing with different
aspects of formula (4.1).
Step (i): a(t). Since t;; =0, then .
4.2) a(t) =a,(t) +nKE/h) ,

" where

a1t) =YY K{t—t;))/h}.

i#J



COVARIANCE ESTIMATION 2127

If t#0, then K(¢/h) = 0 for all sufficiently small 4.
Put Wij = K{(t - /\Uij)/h},

(4.3) a1(w)=E(Wy|Ur=u), agu) = E(W | Uz = u), a=EW;),
(4.4)  D;j=W;; — oq(U;) — 0p(U;) + o, Zj= ZDij~

In this notation, a,(¢) — n(n — 1)a represents an observed value of

(4.5) DD Wij—a)= 222 +(n— I)ZZ{ak(U) —a}.

i#J k=1i=1

Now, E(Z;|Uy,...,U;_1) =0,and Z,, ..., Z, are martingale differences. Hence,
by Rosenthal’s inequality [Hall and Heyde (1980), page 23], for integers p > 1,

(4.6) E(iz,)ngclp[ {ZEZ |Us,...,Uj_1 }p+§E(ZJ?P)}.

j=2

Here, Cj, denotes a constant depending only on p.

Next, observe that
n p n
E{ZE(Z?IUh-~-J/}—1)} )
Jj=2 Jj=2
4.7) 2) P 2
E(Z?)<Cy|E ZE Uj) ¢ +(j—DEDX)|,

supE(D U|U—u) O(rRX71).

Combining the results from (4.6) down, we deduce that for large p,

n 2p
(4.8) E ( >z ,«) < Cgpn® (RA1YP.
Jj=2
Furthermore,
4.9) | (w)] < ChA™!
for £ = 1,2. Hence, by Rosenthal’s inequality again,
n 2p
(4.10) E l:z {Olk(Uk) — a}:l < C3pnp (h)\il)ZP
i=1

Combining (4.5), (4.8) and (4.10), we obtain

E{ S> Wi, - a)} ’ < C4p{n2p(h,\—1)p +n3p(h)\"l)2p}.

i#J



2128 P. HALL, N. 1. FISHER AND B. HOFFMANN

Therefore, by Markov’s inequality, for eachn > 0 and p > 1,

(4.11) P{ Z Z(Wij —a)| > nnzh/\_l} = O{ (nzh/\"l) -pP + n‘P}.
it
It now follows via the Borel-Cantelli lemma that with probability 1,
(4.12) () YW - ) — 0.
it
Now,

a=hx"1 /K(u)fl{)\'l(t —huw)}du = RAT1(0) +o(RA71).

Hence by (4.12), for a sequence t1, ¢, . .. arising with probability 1,
a1(t) = n?hA"1f1(0) + o(n?RA7Y).
We may now deduce from (4.2) that

n2h\~1£,(0), ift#0or¢ =0and nhA~! — oo,

4.13 t) ~
( ) alt) {n{cf1(0)+K(0)}, ift=0and nhA"! — ¢ < .
Step (ii): b(¢). Since t;; = 0, then

(4.14) b(t) — a®)p(t) = by(®) + n{p(0) — pO}K (t/h),

where

bit) = > > {ott:)) — p®O}K{E — t:))/}.
i#Jj
Paralleling the argument in Step (i), put W;; = {o(A\U;;) — o)} K{@ — \U;;)/h},
and in that notation define a3, ag, o, D;j, Z; by (4.3) and (4.4). The arguments
given before continue to apply, except that in place of (4.7) and (4.9) we have

supE(D%|Uj=u) = O(r®x71), lop@)| < CR3A™L

Therefore, in place of (4.12),

p { Z Z(Wi i—a)
i¢J
where by the Borel-Cantelli lemma,

(n2h.3/\"1)’1 SN (Wi —a)—0,

i#J

> nnzh?’)\'l} = O{(nzh?’)\fl)-p +n""},




COVARIANCE ESTIMATION 2129
with probability 1. Now,

a=ha! / {0t — hu) — pO) VK@) { A2 — b} du
= IR3NTIA0)0" () + o (RPA71),
and so for a sequence ty, %5, . .. arising with probability 1,
b1(t) = 1n®A3NTIA1(0)p" () + o (n®REATT).
Therefore, by (4.14),
(4.15) b(t) — a(t)p(®) = 1n®h3A1£1(0)p"(t) + o (n®A3N7T).
It is straightforward to check that, with
S = (n?h°A7Y) 2N S (Wi, - o),
i#J

we have var(S) — o2 where 0 < 62 < oo, and that the fluctuations of S are of
order at least 1. This demonstrates that, for sequences ¢;, ¢, ... arising with
probability 1, the fluctuations of

(nzh?‘)\"l)—l/z{bl(t) —n(n — Da}

are of order at least 1. Therefore, result (4.15) will fail if n223)\~1 is bounded.
This indicates that the condition n2~7h3A~! — oo is close to being necessary
for the theorem to hold.

Step (iii): var(X), var{A(#)}. Observe that
n?var(X) = ) " plt;;) +np(0),
i¢J
E{ >3, ,«)} =n(n - DA™ / p@)fy (A" 'u)du
i¢J
=n2\"1£,(0) / p+o(n®271).

From these results, arguing as in Steps (i) and (ii), we may deduce that for a
sequence of values #,%s, ... arising with probability 1,

Var(I_()=)\‘1f1(0)/p+o()\‘1).

Similarly,

'a(t)zvar{A(t)} =3 ot ) K{ (¢ ti) /R YR (¢~ 1) /1)

it i2 J1 Je

= n4h2)\‘3f1(0)/p +o(n*h2)7%)
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whence by (4.13), var{A()} = (\~1). Hence, for a sequence of values #1,%2,. ..
arising with probability 1,

(4.16) var(X) + var{A®)} = 0(A71).

Step (iv): var{p(¢)}. Observe that

a(t)? Var{ﬁ(t)} = Z Z Z Zg(tiljl’ Ligjas tjljz)
(4.17) iy iz J1 e
x K{ (¢ ~ ti,5) /h YE{ (¢ = tu) /1 )

If we replace each ¢, on the right-hand side by AUy and take expectations, we
obtain the value

s=n(n-1)n-2)n— 3)E<g{,\(U1 — Uy), \(Us — Uy), XUz — Uy}
x K[{t - \U1 - U} JR]K [{t - XUs - U} /hD
+2n(n — D(n — 2)E<g{0,)\(U2 _ Us), XU, — U)}K (¢/h)
xK|[{t - \U; - U} /h])
+4n(n — 1)(n - 2)E<g{A(U1 _ Uy, AUy - Us), XUy — Us)}
< K[{t - AU - Up)} /h])
+Tn(n — 1)E<g{0, AU - Us), AUy — Up)}
x K (t/h)K[{t - XU - Up)} /h])

+1g(0,0,0K (¢/h)”.

Let f3(v1, 02,03), f2(v1,v2) and fl(v) denote the JOlnt densities of (U1 - U2, U3
— Uy, Uy — Uy), (Uy — Uz, Uy — Ug) and Uy — Uy, respectively. In this notation,

s = n4{1 + O(n_l)} /g()\vl, )\Uz, AUg)K{(t - )\vl)/h}K{(t — )\02)/}1}
X f3(v1, Vg, vg)dvl dvz dv3
+ 2n3{1 + O(n—l) }K(t/h) /g(O, vy, )\Uz)K{(t - /\Ul)/h}fz(vl, ve)dvy dug
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+4n3{1+0(n"")} / g{w1, Az, Mvg — v)ME{(E — Avy)/R}K{(E — Avg)/h)

x f3(v1, vg) dvy dvg
+?{1+0(n) }K (¢/h) / 200, \v, A0)K{(t — Xv)/h }fy(v) dv
+ng(0,0,0K (¢/h)*

= nth2A- / g(t, t, ug) K (uK () £3(0,0,0) duey duy dus

+2n3hA2K (t/h) / 80, ¢, us)K(uy) £2(0,0)duy dus + ng(0, 0, 0K (¢/h)”
+0(n*h22=2) + O{n3h?A~2 + n®hA K (¢/h) |
n*h22=3£3(0,0,0) [ g(t, t,u)du, if t#0or¢=0and nhA™! — 0o
n3hr=2{cf5(0,0,0) [ g(t,t,u)du
+ 2K(0)f5(0,0) [ £(0, ¢, u)du}
+ ng(0,0,0)K(0)?, ift=0andnhA —c, 0<c < oo.

~o

Therefore, using (4.13),

(A1£1(0)72£3(0,0,0) [ g(¢, ¢, u)du,
ift£0ort=0andnhA~! — oo,
nhA~2{cf1(0) + K(0)}
(4.18)a@®) 25 ~ ¢ x {cf3(0,0,0) [g(¢, t,u)du
+ 2K(0)£»(0,0) [ g(0, ¢, u)du}
+ n~1{cf1(0) + K(0)} (0, 0, 0)K(0)?,
L ift=0and nhA"! —¢, 0 <c < oo.

‘

From the second case in the formula above, it follows that when ¢ = 0 and
nhi~! — ¢ where 0 < ¢ < oo, we have a(t)~2s ~ A~1q; and when ¢ = 0 and
nha~! = 0, a(t)~2s = o(A~1). Techniques from Steps (i) and (ii) may be used to
prove that, for a sequence ¢4, tg, .. . arising with probability 1,

=A"lg+0o(A7Y), ift#0andnhr~! —¢, 0<c< oo,

@19 var{po}{ 2] oo, PO

the precise convergence rate in the latter case being (nhA=)A~! + n~1.

Step (v): Mean squared error of p(t). Combining (4.13), (4.15) and (4.19), we
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deduce that
E{p® - pt)}’
= a®)~2{b(®) — a®)p(t)}” + var {5(®)}
(4.20) Intp"(t)2 + A"1q, ift#0o0r¢=0and nhA™! — oo,
15462 {cf(0) + K(0)} 2f(0)20"(2)2 + A~1d,
ift=0and nhA~! —¢, 0 <c < oo,
o(h*+X71), if¢=0and nAx"1 — 0,

the precise convergence rate in the latter case being (nhA~1)2h* + (nhA=1)A~!
+nL

If the diagonal terms, corresponding to i = j, are deleted from the definition
of 5(#), then, on inspection, it is clear that the first options in formulae (4.13)
and (4.18) hold for both ¢ = 0 and ¢#0. That is,

a®) ~ n®AA"1f1(0),
a(t) s ~ A"1f1(0)71£3(0, 0, 0) /g(t, t,u)du.
Therefore, the first option in (4.20) holds.
The theorem follows from (4.1) and (4.20), on noting [via Step (iii)] that only

the first term on the right-hand side of (4.1) makes a nonnegligible contribution
to mean squared error. O

4.2. Proof of Theorem 3.2. Observe that
b )
4.21) ={p@®) - p®} = / {p1(®) — p'(6)} cos(6t)db — /A p'(0) cos(6t) d,
0 g
and for any p, g > 1 withp~l+q71=1,

0
L@ = ‘ / {p16) - p'(®)} cos(Ht)dO‘
0

T ~ —~
/ {p) — pw)} [+ sin{dlt +w)} + (¢ —w) " sin{f¢ - w}]du
0

T 1/p
< { / |fo‘(u)—p(u)|”du}
0

T R 1/q
x </ [|t+u|-q|sin{e(t+u)}|q+|t—u|-4|sin{5(t—u)}|q] du> :
0

. The arguments used to establish Theorem 3.1 may be used to prove that, for ~
selected as in the statement of Theorem 3.2, we have for p > 1,

(4.22) sup E|p() — p@®)F =0 (,\-P/Z).

0<tLT

1
2
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(The case where p is an even integer is simplest to treat; other cases follow via
Hélder’s inequality.) Furthermore,

T
sup/ |t £ u|~9|sin{6(t + u)}|"du < C(g)§? ~*
t>0J0

Therefore,

suply(¢) = Op ()\—1/2+ﬂ(q - 1)) .
t>0

Since this is true for all ¢ > 1, then for all € > 0,

(4.23) supl;(¢) = O, (A\~1/2*¢).
t>0

Note that by (4.22),

T
sup [51(6) - p(®)] < 2 / 1P® — p(t)) dt
t>0 0
=0p (’\_1/2)'
Hence
51(0) > p'(6) - 0p (A7Y2),

uniformly in 4. It follows that, since p'(6) decreases like ||~ as || — oo, 8 must
be at least of size AY/?®, Therefore,

/é 51(8) cos(68t)d = O, (3=~ ) = 0, (\~1/2+1/2).

The theorem follows from this result, (4.21) and (4.23). O
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