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Let X have a star unimodal distribution P, on R”. We describe a
general method for constructing a star-shaped set S with the property
PXe€8)>1- a, where 0 < a <1 is fixed. This is done by using the
Camp-Meidell inequality on the Minkowski functional of an arbitrary
star-shaped set S and then minimizing Lebesgue measure in order to
obtain size-efficient sets. Conditions are obtained under which this method
reproduces a level (high density) set. The general theory is then applied to
two specific examples: set estimation of a multivariate normal mean using
a multivariate ¢ prior and classical invariant estimation of a location
vector 0 for a mixture model. In the Bayesian example, a number of shape
properties of the posterior distribution are established in the process.
These results are of independent interest as well. A computer code is
available from the authors for automated application. The methods pre-
sented here permit construction of explicit confidence sets under very
limited assumptions when the underlying distributions are calculationally
too complex to obtain level sets.

1. Introduction.

1.1. Previews. Set estimation of unknown parameters is a problem of
major statistical importance and mathematical interest. The common ap-
proach is to minimize a reasonable measure of size of the set subject to a
lower bound on the set’s probability content. This is generally accepted as a
good formulation of the problem and in common situations results in many
standard and time-tested estimation procedures. The z-interval for an un-
known normal mean and the Hotelling confidence ellipsoid for an unknown
multivariate normal mean vector are two prime examples.

The success of the method depends crucially on the ability to identify the
high probability sets of a relevant distribution. This is usually not difficult in
many standard problems, because the underlying distribution often has a
structure, such as a spherical or an elliptical structure. However, the identi-
fication of the high probability sets becomes very difficult if such structure is
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not present. Indeed, it may even be argued that realistic models will not
result in such nice structures in the underlying distributions. A simple
example is the case

(1.1) X=0+2Z,

where 0 is an unknown parameter vector in R? and the error Z has a
distribution with density

f(z) = (1 - A)&;)Wexp(—%zfz)

1
A ———
(2m)P/ %312

where %, is a known positive definite matrix, and 0 < A < 11is also taken to be
known. Even in such a simple mixture problem, determination of, for exam-
ple, the best invariant confidence set is rather difficult. The problem stems
from the fact that sets of the form

{z: f(z) = ¢}

are no longer multiples of one another; the shapes vary with ¢, and the
correct threshold ¢ for a specified confidence level 1 — a can only be found by
repeated trial-and-error integration. The same problem arises in practically
any Bayesian problem whenever the prior distribution for the unknown
parameter is such that the high probability sets of the posterior have no fixed
shapes or are difficult to determine. A simple example is the case when X is
N(0,I) and 0 has a #(m, p, I) prior, that is, a ¢-prior with m degrees of
freedom, location p and scale matrix I. Even for such a reasonable prior and
a standard problem, the Bayesian high posterior density (HPD) sets are
difficult to nearly impossible to determine. Numerical methods, such as
simulation from the posterior, do not work in general because it is not even
known that the HPD sets are convex. An attempt to identify the high
posterior density points by simulation from the posterior followed by a
numerical construction of its convex hull cannot be mathematically justified
and in any case is a formidable project in high dimensions.

In this article, we provide a new method for constructing confidence sets in
any (finite) dimension. The method is explicit: it requires only an appropriate
integration involving the underlying distribution. The sets are constructed to
have a specified 1 — a probability content, where 0 < @ < 1 is fixed but
arbitrary. The construction is specifically directed toward finding the smallest
set possible using this technique. We give ample evidence that sensible sets
with reasonable to excellent size properties come out of this method. The sets
are in general not high probability sets. However, rather surprisingly, the
contours of the sets produced by our method are in fact high probability
contours under a particular assumption. At a mathematical level, the results
we present here bring out a novel connection between unimodality and high
probability sets and demonstrate that the classical Camp—Meidell inequali-

(1.2)

1
exp( - gz’z_lz) ,
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ties are much more useful than they are generally thought to be. A Fortran
program for use in practical cases is available from the authors.

1.2. The key idea: an illustrative example. Suppose X ~ U[6 — 1,6 + 1],
where — < # < » is an unknown location parameter. Trivially, the interval
X + (1 — ) is the best (location) invariant 100(1 — a)% confidence interval
for 6. Since the “optimal” interval is known and is so simple, there would be
no reason to construct frequentist confidence intervals by other methods.
However, other methods can be used, if one wants. Indeed, by Chebyshev’s
inequality, for any K, r > 0,

EIX -0l 1
K" K (r+1)°

(1.3) P[IX-060l>K] <

Equation (1.3) immediately implies that the interval X + r\/ 1/(a(r + 1)) is
also a 100(1 — @)% confidence interval. Since Chebyshev’s inequality is
usually not very sharp, use of this interval results in loss of efficiency in the
sense of size. For example, if « = 0.1 and one takes r = 2, then the length of
the Chebyshev interval is twice more than that of the best invariant interval
X +0.9.

However, the following observation is interesting. Since X — 6§ ~ U[—1,1]
and the U[ -1, 1] distribution is unimodal about zero, by the Camp—Meidell
inequality [see Camp (1922), Meidell (1922), Dharmadhikari and Joag-Dev
(1988)], for every K, r > 0,

r \" EIX-0l ro\" 1
r+1) K’ _(r+1) K'(r+1)"
Equation (1.4) gives the shorter interval X + K with

r " 1
(1.5) K=K(r)=r+1'\/ a(r+1)

as a 100(1 — a)% interval, for any r > 0. Rather surprisingly, on minimizing
(1.5) over r > 0 by using elementary calculus, one returns exactly to the
interval X 4+ (1 — a), corresponding to r = (1 — a)/a. This simple example
indicates that optimal use of the Camp—Meidell inequality may be useful in
set estimation problems where the underlying distribution is unimodal.

In this article, we demonstrate thatthe above example is not an accidental
coincidence, and we show ways in which this technique can be used with
reward in any number of dimensions, subject to an appropriate kind of
multivariate unimodality. The theory is then illustrated with two concrete
examples.

(14) P[IX-6/>K]< (

1.3. Outline and overview. In Section 2, we present the general theory,
extending the technique of the previous example to many dimensions. As
indicated in that example, some form of unimodality is required for arriving



CONFIDENCE SETS 1411

at useful sets by using this method. The appropriate form of unimodality
precisely suited for our analysis is the so-called star unimodality. In this
definition, the high probability sets of the underlying distribution are as-
sumed to be star-shaped about a mode v. The very appealing feature is that,
unlike some other notions of multivariate unimodality, there are usable and
verifiable characterizations of star unimodality. It is also one of the weaker
notions of multivariate unimodality, making it more likely that the underly-
ing distribution is star unimodal. This in turn makes the methods presented
in this article more widely applicable.

It is proved in Section 2 that if a random vector X is star unimodal about
some v, then, for any set S with 0 in its interior and also star-shaped about 0
(zero), and for any given 0 < o < 1,

(1.6) PX-vekS)>1-a,

for suitable %, depending on a generic constant r > 0, the value of a and the
set S. This essentially says that a prespecified probability content of 1 — «
can be achieved by starting with any set S star-shaped about 0, inflating it
sufficiently and then recentering it at the mode v.

Next, we address the problem of minimizing the volume (Lebesgue mea-
sure) of the set kS. Since each set kS in (1.6) guarantees a probability
content of 1 — «, this minimization is simply for deriving the smallest set
obtainable by using our method. For any given r > 0, we give an explicit
analytic description of the star-shaped set S* = S*(r) that solves this mini-
mization problem over all possible star-shaped sets S. It is proved that the
optimal family of sets S*(r) have the following invariance property: for any
given a; and ay, 0 < a4, @y < 1, the corresponding optimal star-shaped sets
S*(r, a;) and S*(r, a,) are multiples of each other, that is, the solutions we
present are mutually homothetic. This property is attractive from a communi-
cation and interpretation point of view and is not necessarily shared by the
family of high probability sets. We then give an indirect stochastic majoriza-
tion argument to show that if the high probability sets do have this property,
then for any r > 0 the contour of our set S*(r) is exactly a high probability
(density) contour. Examples are given where this is indeed the situation.

For best results to be obtained, it is clearly necessary to optimize not only
over all possible star-shaped sets S, but also over r > 0. This is evident from
the illustrative example presented in Section 1.2. This two-stage optimization
is then carried out in two. concrete examples. The theory we present is
completely general, subject to star unimodality. It therefore applies in gen-
eral, subject to star unimodality. The two examples to which the theory is
applied are the ones mentioned in Section 1.1, namely, estimation of a
multivariate normal mean with multivariate ¢-priors, and invariant classical
set estimation for the mixture model (1.2). Notice use of ¢-priors in the first
problem is very reasonable and, calculational complexities aside, is pre-
ferred by many over conjugate normal priors because of the thicker tails of
t-distributions.
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As stated before, the theory presented here applies only when the underly-
ing distribution is star unimodal [although a direct extension of our theory
will also cover the cases of a-unimodal distributions, as in Olshen and
Savage (1970); this will be useful for the cases when star unimodality is
lacking]. In the Bayesian example, therefore, it is necessary that one has the
posterior of 6 given the observed data X to be star unimodal. In Section 3, we
describe explicit results in this direction. These results are of independent
interest, regardless of the present context in which they are needed. We prove
that if X ~N,(0,0%I) and O ~ t(m,p,7?I), where m, n, o® and 72
are given, then the posterior is star unimodal for all X if and only if 72/02 >
(m + p)/(8m). Under this condition, therefore, our set estimation methods
can be applied regardless of which X is observed. If 72/02 < (m + p)/(8m),
we give a complete analytic description of the set of all X for which the
posterior is star unimodal. Indeed, we prove that the posterior is star
unimodal if and only if X lies outside a spherical band

(1.7) {X:a <X - pll < b},

with explicit formulas for a and b. This will enable direct immediate verifi-
cation of whether or not the set estimation methods we present are applica-
ble. We also state without proof a necessary and sufficient condition for the
posterior to be star unimodal for all X in the more general case X ~ N,(6, 3,)
and 0 ~ t(m, p, 3,); again m, pn, 3; and 3, are assumed given. Under this
condition, our methods can again be used without worrying about which X
was observed.

To get a fair picture of the situation, it is necessary to find out how efficient
our sets are in the sense of size. In the Bayesian example, having obtained a
specific confidence set after the two-stage optimization on r > 0 and star-
shaped sets S, we evaluate their efficiency by the following method: we
squeeze the obtained set until the desired probability of 1 — a is exactly
attained and then measure efficiency by taking the pth root of the ratio of the
volumes of the two sets. Taking the pth root is reasonable because in high
dimensions a negligible increase in (say) the diameter of a set can result in a
very significant increase in the volume. For example, if S; is the unit sphere
in R?® and S, is the sphere with radius 1.02, the volume of S, is 48.6% more
than that of S,. These efficiencies are evaluated for various p, m, 0%, 7% and
data X and are reported and discussed in Section 4. Section 4 also deals with
the case when the underlying distribution is exactly a normal. This is not a
case where our methods need or should be used in practice, but applying our
methods to the normal case is useful as a benchmark.

Section 5 treats the invariant estimation example stated before.

The principal results of this article are then the following:

1. demonstrating that Camp—Meidell inequalities can be very useful,

2. presenting a general method of set estimation in arbitrary dimensions
subject to star unimodality, when determination of, say, high density sets
can be at least formidable;



CONFIDENCE SETS 1413

3. establishing a new connection between unimodality and high density sets;

4. description of the shape behavior of posteriors under ¢-priors for normal
means. These results are needed for our results to be applicable in the first
place; but we hope they are interesting on their own as well.

Notice that the potential application of our methods to prediction problems
is particularly exciting; construction of prediction regions is very valuable for
planning.

1.4. History. There is a truly vast literature on confidence sets. As such,
it is impossible to give a complete account of the work in this area. For results
on invariant and decision-theoretic set estimation, see Brown (1966), Cohen
and Strawderman (1973), DasGupta (1991), Hooper (1982), Hwang and
Casella (1982), Joshi (1967) and Naiman (1984); for general exposition and
discussion on Bayesian confidence sets, see Box and Tiao (1973), Ferguson
(1973) and Lehmann (1983); for various notions and implications of multi-
variate unimodality, see Anderson (1955), Dharmadhikari and Joag-Dev
(1988), DasGupta (1980), Eaton (1982), Eaton and Perlman (1977), Kantner
(1977), Marshall and Olkin (1979), Mudholkar (1966), Olshen and Savage
(1970), Tong (1980) and Wells (1978); for a recent use of the Camp—Meidell
inequality in a different context, see Bickel and Krieger (1989).

2. The general theory.

2.1. Basic definitions. For a lucid treatment of unimodality in high di-
mensions, see Dharmadhikari and Joag-Dev (1988). We will merely cite some
definitions and theorems which will be employed throughout this section.

DEFINITION 2.1. A real random variable X with distribution function F is
called unimodal about a mode v if F' is convex on (—, v) and concave on

(v, ).

DEFINITION 2.2. A set S € R? is said to be star-shaped about ¢ € S if, for
every x € S, the line segment joining ¢ and x is completely contained in S.

Evidently the star-shaped property is weaker than convexity, except in one
dimension.

DEerFINITION 2.3. Let X ~ F be an absolutely continuous random variable
on NP with density f(x). We say that X (or equivalently f) is star unimodal
about 0 if and only if f(¢x) > f(sx) for all 0 <¢ <s < and all x or,
equivalently, if and only if, for every s > 0, the level set

(2.1) C,={xeR?: f(x) s}

is star-shaped about 0.
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REMARK 1. Notice that if f is differentiable, then star unimodality is
equivalent to df(¢x)/dt < 0 for all ¢ > 0 and all x.

DEFINITION 2.4. X is said to be star unimodal about v if X — v is star
unimodal about 0.

We will call v the mode of X. Notice a particular X may be star unimodal
about several v.

ExaMPLE. Let X ~ N,(0,2), where 3 is a given nonnegative definite
p X p matrix. Then X is star unimodal about 0.

REMARK 2. Anderson (1955) defined unimodality by the property that the
level set C, in (2.1) is convex for every s. Clearly, thus, star unimodality is a
weaker notion than the one suggested by Anderson. While the definition
proposed by Anderson is really quite natural, unfortunately there seems to be
no verifiable or usable characterizations of random vectors satisfying it. In
that sense, the following theorem is very useful. So is Remark 1.

THEOREM 2.1. The p-dimensional random vector X is star unimodal about
0 if and only if X is distributed as UY/PZ, where U and Z are independent
and U is uniformly distributed on (0, 1).

PRrROOF. See Dharmadhikari and Joag-Dev [(1988), page 40]. O

REMARK 3. Theorem 2.1 immediately gives that, for p = 1, star unimodal-
ity is equivalent to usual unimodality.

From Theorem 2.1, one also gets the assertion of the following example
immediately.

EXAMPLE 1. Let X be star unimodal about 0. Then

p p/2
(2.2) X8 = ( )y Xf)
i=1
is real-valued unimodal about 0.

2.2. A basic result. Example 1 above leads to the following simple result.

PropOSITION 2.2. Let X be star unimodal about v. Then, for every 0 <
a < 1 and every r > 0, the Ly-ball
(2.3) Sy(v) = {(X: IX = vllg < &},
where
r 1/p Ur
(2.4) k= (—————) (EIX —vli")
(r+1)-Va
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has a probability content of at least 1 — a, that is,
(2.5) P(X e S,(v)) =21~ a.

REMARK 4. Proposition 2.2 is formally valid even if E||X — v||5” = «», but
obviously is not useful in that case.

REMARK 5. From Proposition 2.2, one sees that if the distribution of X is
star unimodal about some v, then one can construct appropriate L,-balls as
confidence sets with a guaranteed probability content 1 — a.

PROOF OF PROPOSITION 2.2. By Example 1, since X is star unimodal about
v, |IX — v||? is real-valued unimodal about 0. The proposition now follows on
using the Camp-Meidell inequality for real-valued unimodal (about 0) ran-
dom variables Z, namely,

K
ar

T E|ZI
(2.6) P(I1Z] > a) < (r+ 1) .

for any r,a > 0.

REMARK 6. Proposition 2.2 generalizes to L,-balls for any £ > 0; that is,
one can construct appropriate L,-balls as confidence sets with a guaranteed
probability content. This is because the only property of the L,-norm [ X]|,
that is needed for the unimodality of ||X — v||§ in one dimension is that
L,-norm is homogeneous, that is, for ¢ > 0, [|cXll; = ¢ - [ X||;. However, this is
true of the L,-norm for any 2 > 0 and thus Proposition 2.2 generalizes in an
obvious way to L,-balls. Indeed, since the above homogeneity property is
valid for functions much more general than L,-norms, it is possible to
generalize Proposition 2.2 strongly. The following definition is needed for this
purpose.

DEFINITION 2.5. Let S € i? be any star-shaped set, star-shaped about 0.
The Minkowski functional mwg of the set S is defined as
(2.7) mg(x) = inf{a > 0:x €aS}, xeRP.

EXAMPLE 2.

(a) Let S = {X € R”: |IX|lz < 1}. Then 7¢(X) = [IXIl5.

(b) Let S = {X € R?: |IX|l; < 1}, £ > 0. Then 7g(X) = [IX[l.

(c) Let S={XeR?: X3 X <1}, 3 positive definite. Then wg(X) =
VX'3TIX.
In each of the above examples, 7m¢(x) has the homogeneity property
(2.8) mg(cx) = cmg(X) Ve=>0,Vx € RP,

This is true in general.
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PROPOSITION 2.3. Let S C R? be star-shaped about 0. Then mg(x), the

Minkowski functional of the set S, is homogeneous of degree 1, that is, wg(X)
satisfies (2.8).

ProOF. Obvious. O
We are now ready to prove the following generalization of Proposition 2.2.

PROPOSITION 2.4. Let X be star unimodal about v and absolutely continu-
ous, and let S C R? be star-shaped about 0, with 0 in its interior. Then, for
every 0 < a < 1 and every r > 0,

PX—-vekS)=21-«q,
where

r

2.9 k=|—-——
(29) (r+1) Vo

1/p
) .(E[fn-S(X— v)]pr)l/pr.

REMARK 7. Proposition 2.4 shows how an arbitrary S star-shaped about 0
can be sufficiently blown up and then recentered in order to guarantee a
probability content of 1 — «.

PROOF OF PROPOSITION 2.4. It follows from (2.8) and Theorem 2.1 that
(mgX — v))? is real-valued unimodal about 0. Equation (2.9) now follows
exactly in the lines of Proposition 2.2 on using the Camp—Meidell inequality

(2.6). O

2.3. Construction of optimal star-shaped sets and their efficiency proper-
ties. From Proposition 2.4, it follows that, for any star-shaped set S, kS
(recentered) is a confidence set of guaranteed probability of 1 — «, where & is
as in (2.9). Construction of an “optimal” star-shaped set S° is the main goal
of this section. Let A(S) denote the Lebesgue measure of S; for a fixed r > 0,
we find a star-shaped set S* which minimizes (2.9), subject to the restriction
that A(S) = 1. Notice that the restriction A(S) = 1 results in no loss of
generality, since A(kS) = EPA(S), and there is a scale-invariance in the
particular problem we now have.

The following definition and notation will be subsequently used.

DEFINITION 2.6. For given r >0, let S*(r) Gf it exists) minimize
E[7g(X — v)]?” among all star-shaped (about 0) sets S such that A(S) = 1.
Then we will call S*(r) the optimal star-shaped set of order r.

We now present a general and explicit result describing the contour of
S*(r) for any r > 0. We will give the details for the case p = 2 for ease of
understanding. The technique is just the same for any p > 2. The general
result will be stated precisely.
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Let then S c R? be star-shaped about 0. Recall that X — v is assumed to
have a star unimodal distribution. We can and will assume here that v = 0.
We thus want to minimize E[7¢(X)]™ subject to A(S) = 1, where m = pr = 2r
and 7g(X) = inflc > 0: X € ¢S}.

Transforming to polar coordinates,

X, =pcos¢p and X, = psin ¢,

where p > 0 and 0 < ¢ < 27, and denoting #(¢) as the radius of S along
angle ¢, that is, () = sup{p: (pcos ¢, psin ¢) € S}, one has 74(X) =
p/ (). The restriction A(S) = 1 is equivalent to

de0= 1 - [2”[“"’)pdpd¢= 1

2#‘/’ (d’)
J

(2.10)
——d¢=1.

Observe that the star property of S is being used to deduce (2.10). Let now
P(p, ¢) denote the density of X written as a function of p and ¢. The problem
is then to minimize

m

(2.11) / 2”[ ( 0 ¢)) pP(p, ¢) dpde

subject to [2"[y2(¢)/2]1d¢ = 1. Note that > 0 is arbitrary measurable.
Writing

P2 (¢)
2

(2.12) Pm(¢)=[:p”‘+lP(p,¢)dp and dv(¢) = g,

expression (2.11) reduces to [Z" [P, ($)/¢™(H)] d .

Now the problem is equivalent to minimizing

2"7'Pm(¢)
o ey 4
_ 2 Pm(¢) ‘702(4))
(2.13) =2/ gy 7 9t
2 Pm(d)) . 27
=%’Wﬁqﬁdw@ MmadeMM=L
By Hélder’s inequality,
2r Pu(9) 2o Pu(9) |’ v
(2.14) gL Qﬁaafgfdy(¢)2:2(o (3353?57) dv(¢)) ifs<1.
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Choosing s =2/(m + 2) =1/(r + 1) < 1 and v() as in (2.12), direct compu-
tation gives that

s 1/s
(2.15) rhs. of (2.14) = 2([2"5’-;—(2 d¢) .
0

Hence, (2.14) reduces to

27 Pn(9) ( 27 )1/8 1-1
2.16 do > P; d -1 1/s,
(2.16) say 40z | [Pie) e
If we now choose ,(-) such that
P.(9) (Pm(qs) )”"’””
2.17 — T = = ,
( ) ¢6n+2(¢) ¢ ‘»[’0((15) c

where ¢ is a constant, then the restriction (2.10) forces

- (%)I/s(fj”P;(cﬁ) dc/))l/s.

1 9 2 2 (m+2)/2
(2.18) c=(-2-j0 P2 (¢)d¢)

On simplification, (2.13) now reduces to

2w Pu(#) e Pu(®)
](; (/I(;n((ﬁ) d¢ j;) (Pm(¢)/c)m/(m+2)

=o' [TPi(o) do

(2.19) »
-2 ["By#) do| " [by (219)

o r+1
- 2| Ry do|
0
which attains the r.h.s. of (2.16).
Since s = 1/(r + 1), combining (2.18) and (2.19), one has that
2Py 0(g) 17
fOZﬂ’ Prrlz/(r+ 1)( d)) d¢

produces the contour of the required set S*(r). Thus we have the following
result. ‘

(2.20) Po( ) = [

THEOREM 2.5. For p = 2 and any fixed r > 0, the contour of S*(r) is given
by (2.20) and the minimum value of E[wg(X)1P" is given by (2.19).

For p > 3, similar arguments are employed again. We omit the unneces-
sary details but give the corresponding result. Transforming to polar coordi-
nates,

X = (Xl,Xz,...,Xp) 4 (p,¢1,~~-’¢p—1)a
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where p > 0,0 < ¢y,...,¢,_, <mand 0 < ¢,_; < 27, and
X, =psin ¢, sin ¢, -sin ¢,_, sin ¢, _4,
X, = psin ¢, sin ¢, **-sin ¢,_, cos ¢, _ 1,
X,_1 = psin ¢, cos ¢,,
X, = pcos i,
one has
p?=X2+ X2+ - +X2 and |J|=pP lsin? 2 ¢, ~-sin ¢, ,,

where |J| denotes the Jacobian of the transformation. Let P(p, ¢,..., qbp_l)
denote the density of X in terms of p, ¢y,...,¢,_;.
With m = pr, define

(2.21) P (¢1s--rbpy) = f:p"’“"lP(p, b1s-esby_1) dp

and

'/’0(4’1’“-’ p—l)

(2.22) PP/ " (G, s byo) 7
= { 02“ T T P"1l/(r+1)(¢1’_“, p_l)sinp~2 ¢, -+ sin ¢p~2 do, - d¢p_1 .

Therefore we have an extension of Theorem 2.5.

THEOREM 2.6. For general p and for any fixed r > 0, the contour of S*(r)
is given by (2.22), and the minimum value of E[ms(X)]?" equals

| rem 7 ™ .
P [fo /0 mfoP"I’/( (15 bp)
r+1
XSinp_z ¢1 "'Sin ¢p_2 d¢1 e d¢p~l] .

The following example gives an illustration of these results.

ExAMPLE 3. Let X ~ N(O, ¢tI), ¢t > 0. Then, by definition,

1 p?
(223) P(p,d)l,...,d)p_l)E'(2T)p/2-exp(——2—t-).

Therefore, on straightforward integration,

2m/2—1t(m+1)/2 m +p
(224) Pm(¢1’-'-’¢p~1) = aP/2 ( 2 )’
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a constant (actually, as long as it is a constant, the exact value is not
important).
Now using the fact that

QP /2

27 T T .
(2.25) fo fo ~~j0smp 2, sing, ydd, - dd, = T3

one gets from (2.22) that

r((1 2)\"”
(226) ¢o(¢’1,---,¢p—1) = (Lq—;ip—i;)/—)) :

The very interesting fact is that (2.26) is a constant independent of
¢1,- .., ¢,_1, implying that, for any r > 0, the set S *(r) is a sphere. Thus the
contours of the sets we propose are high density contours in this example.

The phenomenon of the above example actually generalizes to a much
broader situation. An attractive result shows that whenever the distribution
of the underlying variable is such that its high density sets are mutually
homothetic, the method of Theorem 2.6 reproduces a high density contour.
We must caution the reader, however, that even though our methods will
produce a high density set, it is not necessarily the 100(1 — a)% high density
set exactly. Separate efficiency calculations will therefore be necessary.

THEOREM 2.7. Let X be distributed as P, where P is absolutely continuous
star unimodal. Suppose the high density sets of P are mutually homothetic,
that is, if f denotes the density of P, then the sets

{x: f(x) = ¢}

are mutual multiples of each other for different c. Then, for any fixed r > 0,
the contour of the star-shaped set S*(r) is a high density contour.

ProOF. Let S, denote the high density set and let S be any other
star-shaped set with A(S;) = A(S) = 1. It suffices to prove that
E[ms(X)]" < E[ms(X)]" VYV m>0.
Since S, is a high density set and A(S,) = A(S), we have
P(XeS)) =PXed).
Hence, ‘
(2.27) P(XecS,) =P(X€EcS);

this is because the high density sets of P are mutually homothetic, that is,
¢S, is another high density set. By definition of (), since P is absolutely
continuous,

(2.28) P(mg(X) <c) =P(X€cS)

and

(2.29) P(wSO(X) < c) =P(Xe€cS,).
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Combining (2.27), (2.28) and (2.29), we have
P(ms(X) <¢) = P(mg(X) <¢).
Since ¢ > 0 is arbitrary, this means
75,(X) < m5(X),
where “ < ” means “stochastically less than.” Therefore, as is well known,
E[ms(X)]" < E[75(X)]" VY m >0,
which completes the proof. O

REMARK 8. The common examples where high density sets are mutually
homothetic are general spherically or elliptically symmetric distributions or
uniform distributions on hyperrectangles and so on. There are other situa-
tions in which this will be the case as well. For example, if an observable X
and a parameter 0 have a joint elliptical distribution, the conditional (pos-
terior) distribution of 0 given X is elliptical too and the mutual homothetic
nature of Bayes confidence sets is apparent. A case of particular interest is
when (X, 0) is jointly distributed as a 2 p-dimensional elliptical ¢; in this case,
given 0, X is a p-dimensional elliptical ¢ with 0 as a location parameter.
Thus the interpretation of 0 is maintained; the conditional covariance matrix
of X given 0 is a function of 0, however. See Muirhead (1982) for more details.

REMARK 9. After the optimal contour of Theorem 2.6 is derived the actual
optimal confidence set is obtained by using

c*(r) Er - 8%(r),
where £ is as in (2.9) with S = S*(r).

Finally, in this section, we point out the following rather nice property of
the family of sets C*(r).

ProPOSITION 2.8. For given aq, ay, 0 < a;, ay <1, and any given r > 0,
let C¥(r) and C¥(r) denote the optimal confidence sets for a = a;, a,,
respectively, in the sense of Remark 9. Then, for a suitable constant b > 0,
Ci(r) = bCE(r).

REMARK 10. The mutual homotheticity property of the above proposition
is attractive from an interpretation and communication viewpoint. The user
can immediately visualize the effect of increasing or decreasing the confi-
dence level.

PROOF OF PROPOSITION 2.8. The proof is transparent on noting that S*(r)
does not depend on a and on using the definition of £ in (2.9). O
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3. An application to Bayesian decision theory.

3.1. Introductory remarks. The theory of the preceding section makes no
reference to any specific problem. Consequently, in principle, it applies in
general, subject to having a star unimodal distribution.

In this section, we give an example on Bayesian set estimation of a
multivariate normal mean when it has a multivariate ¢-prior. Formally, then,
consider the model

X ~ N,(6, a’l),

0~t(m,p, %),

where 0 is the only unknown quantity and all others have the same meaning
as in Section 1.1. Extensive previous research exists on Bayesian inference

about a normal mean with respect to ¢-priors. For discussions on the general
appeal of #-priors and other related references, see Berger (1985).

(3.1)

3.2. Star unimodality of posteriors. The goal in this subsection is to apply
the theory of Section 2 for constructing Bayesian confidence sets for 6 under
model (3.1). In order that the theory be applicable, we need star unimodality
of the posterior. The next few results give a complete picture for this problem.
The posterior is star unimodal if it has the stronger property of log-concavity.
The converse is known to be not necessarily true. The first theorem below
gives the rather surprising result that for ¢-priors as in (8.1), the posterior is
log-concave for all X if it is star unimodal for all X. In fact, we prove it for
more general priors. This result is useful because checking whether the
posterior is log-concave for all X is easier than directly checking if it is star
unimodal for all X. Also note that the theory of Section 2 can be applied
without regard of which particular X was obtained if it is known that the
posterior is star unimodal for all X.

THEOREM 3.1. Let X ~ N,(6, o?I) and let 8 ~ w(||0 — pll?/72). Assume
w, 02 and 72 are known. Suppose 7(-) is twice differentiable and decreasing.
Then the posterior distribution of 0 is log-concave for all X if and only if it is

star unimodal for all X.

Proor. Clearly we only need prove the if part. We will, without loss of
generality, assume p = 0 and further let o2 = 72 = 1. The case of general
o? and 72 is exactly similar. Let 7( | X) denote the posterior density of 0.
Clearly, —log 7(0 | X) is proportional to ¢1(||0||2) + %IIB — X||2, where ¢, =
—log . Suppose now 7(0 |X) is star unimodal for all X with mode at
v = »(X). Therefore, Z = 0 — v is star unimodal for all X with mode at 0. It

then follows that V ¢ > 0,V Z, V X,

¢ ItZ + vl +1||Z+ X2} >0
E{(ﬁl( t v ) 2 t v — } >
= 24 (ItZ + V|I2)(t||ZI|2 +v'Z)

+(tlZI* + Z'(v - X)) 20 Vt>0,VZ VX

(3.2)
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Letting ¢ — 0 in (3.2), we have
(3.3) W(vlI?) - vZ+Z(v-X) =20 (VZ,VX)
' = (2¢y(IvI*)-v+v-X)Z>0 (VZ,VX),

from which it immediately follows that
(2¢4(IlvlI*) + 1) -v =X,

that is, v = aX for suitable a. Notice that “a” may (and will, usually) depend
on X. Given X # 0, “a” can be found from the equation

(3.4) a(244(a®IXI?) + 1) — 1 = 0;

it is easy to check that 0 < a < 1 and that a = a(||X]) is continuous in || X]|.
Furthermore, infy al|X|| = 0 and supy allX|| = 1. Substituting aX for v and
Z = X in (3.2), one then has

(3.5) 2604((t +a)’X'X)(t +a) +t+a—-1>0 V¢,VX.

Multiplying both sides of (3.5) by [IX||, writing  for (¢ + a)|IXI||, w, for allX]|
and letting f(w) = 2¢'(w?)w + w, one then obtains that, given [X| > 0,
there exists w, > 0 such that

f(w) = f(wy) =Xl if o> o,
and
f(w) < f(w) =Xl if o < .

For this one uses (2.1) for both Z = X and Z = —X. Since f must then be
nondecreasing, it follows that 7(0 | X) is log-concave for all X. This is because
direct computations give that the following holds:

the Hessian matrix of —log w(0 | X) is equal to
(1 + 245(1811*) - I + 444(l16]*)080’,

which is nonnegative definite if
1+ 2¢4(1611%) + 4ll6l%; (l6]%) > o.

This last inequality, however, follows if f(w) is a nondecreasing function. O

COROLLARY 3.2. Let X ~ N,(6, 0'2]) and 0 ~ t(m,w, 72I). Then the poste-
rior of 0 given X is star unzmodal for all X if and only if mr2/0? >
(m + p)/8.

ProorF. We give the proof here for the case o2 = 72 = 1 (the proof for the
general case is essentially the same). Clearly, we can assume p = 0. From
Theorem 3.1, the posterior is star unimodal for all X if and only if 1t is
log-concave for all X. The condition for log-concavity is 1 + 2¢/(/6]1*) +
4|1011%" '(116112) > 0 for all ® which reduces to m > p/7 on computation, as
required. O
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Corollary 3.2 implies that if @ ~ t(m, w, 72I) and if m72/0% < (m + p)/8,
then there exist appropriate X such that the posterior of 0 given X is not star
unimodal. We have a complete description of this set for any given m, n, o2
and 72. The full proof is rather lengthy and can be obtained from the authors;
however, at least an indication is necessary for completeness.

We assume p = 0; if p # 0, all assertions are valid with X replaced by
X — p. We will use the following notation:

0 X o?
— =12, — =X, —s =a, m+p=p,
o o mr
1 1
y=—=, y=:i13
a 1%, 17

THEOREM 3.3. For given m, 0% and 72, the set of X for which the pos-
terior of 0 given X is not star unimodal is given by

S, = {X:a, <IXIl < by},

where
B2 -8y + 208y - VB(B-8Y)°
a, = 8y
and
B2 — 8y2 + 208y + VB(B — 8y)°
(3-6) bo = 8y 5

whenever the quantities a and b are not well defined (i.e., if B < 8v), the set
S,, equals the empty set.

DiscussioN. Notice the very interesting aspect of Theorem 3.3 that, for
large values of ||X|| i.e., when the prior and the data are totally incompatible),
the prior is star unimodal. This is essentially because of the difference in
tails of normal and ¢-distributions; if prior and data are compatible, then the
posterior is star unimodal as intuition would suggest. If they are very
incompatible, then only the dominant tail matters and the posterior is again
star unimodal. The general assertion of Theorem 3.3 is false if the likelihood
and the prior were each a t-distribution; in that case, the posterior is star
unimodal if and only if ||X — || is sufficiently small.

INDICATION OF PROOF OF THEOREM 3.3. A detailed proof is available in Zen
(1991). The main steps are the following:

Step 1. Showing that if the posterior is star unimodal for a particular X,
then it is necessarily star unimodal about

=aX,,
where a solves the cubic equation
(3.7 h(a) =a®—a?+ (B+ y)ay — yy =0.
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Step 2. If the posterior is star unimodal, then there is a unique root in
(0, D of (8.7) and the X for which A(a) has this unique root property form the
set

(38) S .= {X: 4(B+ 7)3y2 — (/32 - 8y% + 20By)y +4y > 0}.

Step 3. By definition, star unimodality also implies that the posterior
density is nonincreasing as one moves away from the mode along any ray.
More formally, suppose h(a) has a unique root, say, a*. Then 0 is star
unimodal if and only if V = 0 — a¢*X, is star unimodal about 0, which implies

df(tV | X)
dt

where f(V | X) denotes the posterior density of V. Then, on lengthy algebra,
(3.9) is equivalent to

(3.10) a*?(1+ aB) +a*(2 — aB) + 1> 0.

Step 4. Consequently, the posterior of 0 is star unimodal if and only if X is
in the set

(3.9) <0 V¢>0,VV,

(3.11) Sy » = {X €8, ,:(3.10) also holds}.
Step 5. The set S, ,, is a set of the form
(3.12) Sy m = {X: X[l = &, or [X]| < a,}.

This is trivial on using the definition of y.
Step 6. The set S, ,, is a set of the form

(3.13) Sy m = {X€S8; ,: IXIl = b, or [X]| < ay}.

This is not entirely trivial, but requires proving that if X;, i = 1,2, are such
that, for each X;, (3.7) has a unique root a*(|X;|), then a*(IX;I) < a*(IIX,ID
whenever || X, || < |IX,l|l. After that, Step 6 is immediate.

Step 7. Explicit formulas for a; and b;, i = 1,2, can be found, which on
patient calculations give a; = ¢, = a¢;, and b, = b, = b,, where a; and b,
are as in (3.6). O

COROLLARY 8.4. For any given p, o? and 72, the set S,, in (3.6) is either
empty for all large m or converges to the empty set as m — .

PrROOF. If872/0?% > 1, then the first assertion holds. If 87%2/0 2 < 1, then
the second assertion holds as can be seen on noting that the quantity a,
defined in (3.6) goes to @ as m — o, O

REMARK 11. This result is in a sense intuitive because the ¢-prior for very
large m essentially looks like a normal prior.

~ Finally, in this section, we state the following generalization of Theorem
3.1. ‘
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THEOREM 3.5. Let X ~ N,(0,3%,) and let 8 ~ w((8 — n)'2;'(8 — p)). As-
sume w is twice differentiable and nonincreasing, and assume p, 2., and 3,
are known. Then the posterior of 0 given X is log-concave for all X if and only
if it is star unimodal for all X.

PROOF. See Zen (1991). O
The following corollary is of particular interest.

COROLLARY 3.6. Let X ~ N,(0, %)) and let & ~ t(m, n, Z,). Then the poste-
rior of 0 given X is star unimodal for all X if and only if Amin(27'3,) >
(m + p)/(8m), where A min(-) denotes the minimum eigenvalue.

Proor. Use of Theorem 3.5 and direct verification of the negative
definiteness of the Hessian matrix for the log posterior results in the cor-
ollary. O

4. Efficiency calculations.

4.1. Description of calculations. In this section, we first briefly describe
the application of the method outlined in Section 2 to the Bayesian set
estimation problem for the model given in (3.1) and then report and discuss
the efficiencies of the obtained confidence sets; the precise definition of
efficiency is given below. Without loss of generality, we can assume p = 0;
furthermore, since only the ratio 72/0 2 is important, we can also set o2 = 1.
Thus, in the following, we will use p = 0 and o2 = 1.

We first describe very briefly the procedure used to obtain the confidence
sets. For ease of understanding, let us consider the specific case p = 2. Since
the posterior depends on X only through [ X|, we can take all but one
coordinate of X to be 0 and the remaining one as ||X|. For p = 1, in the
notation of Section 2, this results in

exp(—3p® + plXllsin ¢)
(1 + pz/(m'z))n/ZH

(4.1) P(p,¢) «

Consequently, the function P,(¢) [see (2.12)] is proportional to

m+1 !

(4.2) fm P exp| — —1—p2 + plIX|lsin d)) dp
. o (1 + pz/(nTz))n/2+1 2 .

For given r > 0, the optimal contour ,(¢) [see (2.20)] is then proportional to
the [1/(2(r + 1))]th power of expression (4.2). Expression (4.2) was evaluated
by a straightforward one-dimensional numerical integration; we are not
aware of any special functions to which (4.2) clearly relates. The numerical
integration was easy. This was done for a grid of r values, and (2.19) was
evaluated by another numerical integration (on ¢). Finally, on substituting
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(2.19) into (2.9), the penultimate minimization over » > 0 was done by a
numerical search. We would like specifically to point out here that simulation
from the posterior was not necessary or done in order to obtain the confidence
sets.

However, simulation was necessary to evaluate the efficiencies of the sets.
As stated in Section 1.3, in order to calculate efficiencies, we shrunk the
initial confidence set until it had a posterior probability of (exactly) 1 — a and
then took the pth root of the ratio of the volumes. The shrinking was done by
gradually reducing the constant & in (2.9) from its initial value. The stage at
which the desired 1 — a posterior probability was reached was decided on the
basis of a simulated sample from the posterior. As a matter of fact, this
method of shrinking the initial confidence set until the desired content was
attained may be a good idea whenever such sequential shrinkage and simula-
tion are not difficult.

The calculations were done over a wide range of p, m, 7° and various «
and ||X]. Table 1 provides efficiencies in some selected cases. In the tables,
X'X corresponds to the three quartiles of the marginal distribution of X'X for
the particular given combination of p, m and 72. The HPD set was obtained
in a (mathematically) ad hoc way by simulating from the posterior and
forming a set of sufficiently many high density points, starting from the one
with the highest posterior density, and then by constructing the convex hull

2

TABLE 1
Table of efficiency

95% x'x
p m T2 25% 50% 75%
1 10.00 0.929 0910 0.895
1.00 1.000 1.000 0.953
3 10.00 0.910 0.922 0.914
1.00 0.984 1.000 1.000
5 10.00 0.902 0.910 0.910
1.00 0.964 0.988 1.000
30 10.00 0.884 0.887 0.891
1.00 0.910 0.925 0.922
70 10.00 0.872 0.869 0.865
1.00 0.839 0.839 0.835
3 1 10.00 0.729 0.729 0.744
1.00 0.710 0.749 0.715
3 10.00 0.729 0.729 0.734
1.00 0.729 0.691 0.700
5 10.00 0.739 0.734 0.739
1.00 0.719 0.710 0.700
30 10.00 0.759 0.754 0.744
1.00 0.729 0.724 0.719
70 10.00 0.754 0.754 0.759

1.00 0.749 0.739 0.734
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of these points in a visual manner. Thus, even this ad hoc method of finding a
HPD set will not work for p > 2. All simulation was done by using an
acceptance-rejection scheme.

4.2. Discussion of efficiencies. We did not see any clear trend or pattern
in the efficiencies, but generally speaking the efficiencies seemed to be better
for smaller p. Notice that, for p = 2 in particular, near 100% efficiency was
reported for many combinations of m, 72, | X[ and a.

Even when the efficiency is not very good, the information about the
contour is useful knowledge. As a matter of practice, it is probably a good idea
to work with a somewhat smaller value of 1 — @ than the one actually
desired. The conservatism of the method will hopefully automatically take us
near the desired level, while also automatically producing smaller sets. We
believe this is a useful general recommendation in practice. It may also be a
good idea to compute such a region and report its estimated content on the
basis of simulation.

4.3. The normal case. It follows from Theorem 2.7 that if our method is
applied to a multivariate normal distribution with (known) covariance matrix
3, then we will always obtain an ellipsoid, oriented as high density ellipsoids
are. As a general benchmark, it is interesting to evaluate the efficiencies of
these ellipsoids, where efficiency is defined the same way as in Section 4.1. In
this case there is a more or less closed-form formula for the efficiency. For
arbitrary positive definite 2, the efficiency can be easily proved to be equal to

X(P)
co(p)’

where x2(p) denotes the 100(1 — a)th percentile of the central chi-square
distribution with p degrees of freedom and
1/r 1/p
[(p(r+1)/2) H

1 . r
(4.3) cdp):ﬁ'[rufg{(wl).(/a' T(p/2)

Equation (4.3) applies to classical or Bayesian problems alike, but obviously
the sets have different interpretation. An attractive feature of formula (4.3) is
its nondependence on 2. Table 2 gives some values of e for various a and p.
Comparison with Table 1 shows that, for all X considered, the efficiencies
there are close to the corresponding normal distribution efficiencies when the
degree of freedom m is large. This is reassuring.

e=e(a,p) =

5. An application to classical invariant estimation.

5.1. Derivation of the confidence set. In this section, we consider the
example of constructing a classical invariant confidence set for 6 when
Z = X — 0 has the density given in (1.2). Motivation was discussed at length
in Section 1.1. So we will only describe the work involved in the construction
of the confidence set. Since the work, in spirit, is the same as that in the
Bayesian example of Section 4, we will keep details to a minimum; only the
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TABLE 2
Efficiency in the normal case

o

P 0.001 0.010 0.025 0.050 0.100 0.200
2 0.93403 0.91895 0.91020 0.90172 0.89098 0.87666
3 0.93777 0.92394 0.91582 0.90800 0.89778 0.88382
4 0.94053 0.92563 0.91995 0.91256 0.90285 0.88938
5 0.94273 0.93044 0.92321 0.91615 0.90690 0.89387

10 0.94985 0.93963 0.93360 0.92768 0.91985 0.90868

15 0.95414 0.94509 0.93972 0.93447 0.92750 0.91752

20 0.95721 0.94892 0.94404 0.93922 0.93286 0.92371

case p = 2 will be illustrated and we will assume (actually with no loss of
generality) that

31 = diag(d?, d3).

Easy algebra and integration gives that, for any r > 0, the optimal contour
corresponding to (2.20) is proportional to

1/(2(1+r))
1-ANd.d
(H (1 - 2)d,d, ) |

(5.1) _
(d? cos® ¢ + dj sin® ¢)

It is easily seen that optimizing over r corresponds to minimizing

(F(l + r))l/(2r)

1/(1+r)
- 1 - MNd,d
sz{ﬁ( ( )d,d, } ”

0 di cos® ¢ + dj sin® ¢)

a+r)/@2r)

(5.2)

X

- 1/2
(r+1)~:/a) ’

over r > 0.

For any given A, d;, d, and «, this can be done by a numerical integration
followed by a search. Usually, the minimum is at some r, > 0 (as opposed to
ro = 0). Henceforth, when we refer to r, it will be understood that we mean
r = r,. Once the optimal set corresponding to (2.9) is found, X is added to it,
thereby giving invariant (family of) sets.

5.2. Properties of the set.

1. Formula (5.1) in a sense says that the eventual confidence set has a
spherical component and also an elliptical component. This is nice from a
visual as well as communication point of view. The actual high density sets
do not have an obvious interpretation such as this.
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2.

Suppose, without loss of generality, dZ > d? (if d = d?, the problem is
somewhat uninteresting). This means Var X; > Var X,. One may, there-
fore, like to see a confidence set stretched more in the direction of 6, than
6,. Examination of (5.1) shows that this is indeed the case, on forcing
¢ = 0 and 7, respectively.

. Examination of (5.1) also gives that it is periodic with a period of 7. This

implies that the confidence set is symmetric in each direction. Again, this
is probably a desirable property.

. In fact, examination of (5.1) gives the following stronger property: the set

is most stretched along the direction 6;, and the amount of stretch
decreases monotonically as one approaches the 6, direction; and in this
direction, the set is the least stretched. This is because (5.1) is monotone

in ¢.
5.3. A specific case. Figures 1-4 give plots of the actual 95% optimal

confidence set in the above example, corresponding to d, = 2.5, d, = 7.5 and

lamda = 0, r0 = 3.294382

0.75 1

FiG. 1.

lamda = 0.25, r0 = 2.616533

-1

Fic. 2.
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lamda = 0.5, r0 = 2.909593

Fia. 3.

lamda = 1, r0 = 3.295472

-0.49

Fic. 4.

A =0, 0.25, 0.5, and 1, respectively. Note the very interesting transition of
the confidence set from a circle to an ellipse. In each picture, the value of
= r, for which (5.2) is minimized is given.
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