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SEQUENTIAL NONPARAMETRIC ESTIMATION WITH
ASSIGNED RISK!

By Sam EFROMOVICH

University of New Mexico

The problem is to estimate sequentially a nonparametric function
known to belong to an a-th-order Sobolev subspace (« > 1) with a mini-
max mean stopping time subject to an assigned maximum mean inte-
grated squared error. For the case of a given a there exists a sharp
estimator which has a minimal constant and a rate of minimax mean
stopping time increasing as the assigned risk decreases. The situation
changes drastically if a is unknown: a necessary and sufficient condition
for sharp estimation is that y < @ < 2y for some given y > 3.

1. Introduction. Substantial research has been devoted to sharp esti-
mation of a function known to belong to a Sobolev subspace of order @ when
the sample size n is fixed [see the review in Golubev and Nussbaum (1990)].
In particular, for statistical models of filtering, density estimation and non-
parametric regression it is shown that

(1.1)

inf sup Ef{fl(fn(x) — f(x))’ dx} — Pp2e/Ga*D(1 4 o (1)),
feFa,Q) 0

where the infimum is over all possible estimators based on both data and the

parameters a and Q. Hereafter, 0,(1) - 0 as n —» © and H«a, Q) is the

a-th-order Sobolev subspace of periodic functions supported on [0, 1],

#a,Q) = {f: F(x) = T 6,6.(x); 02
(12) =0

s

+
J

[1+ (2m))*|[63_, + 6] <@},
1

where
{@0(%) = 1, 95;_1(x) = V2 sin(2mjx) and
@;(x) = V2 cos(2mjx), j = 1,2,...

is the classical Fourier trigonometric basis on [0, 1], {f, g) = [} f(x)g(x) dx
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is the inner product in Ly(0,1), 6, = {f, ¢,),
2a/2a+1)
- (2a+ 5 (2a + 1)1/(2a+1)
m(a

is Pinsker’s constant [see Pinsker (1980)].

In addition, if a > 1, then there exists an adaptive estimate based only on
data (but not on a or @) such that its mean integrated squared error (MISE)
does not exceed the right-hand side of (1.1) for all f e #(a, Q) [see Efro-
movich and Pinsker (1984)]. Moreover, (1.1) holds for all sequential estima-
tors &{f,,, m = 1,2,...,},7) with restricted moment of a stopping time 7,
that is, for sequential estimators with a stopping time 7 subject to restriction
E{(r/n)P} <1, B> 1 [see Efromovich and Pinsker (1989a, b) and Efro-
movich (1989)].

The main focus of this paper is to solve the inverse problem of minimizing
the expected stopping time subject to assigned maximum risk. To shed light
on the problem, let us denote the right-hand side of (1.1) by &. Then the
sample size

(1.3) n*(a,Q,S) — I(SPHI)- (2a+1)/2a)] +1

is asymptotically sufficient for estimating f € #(«a, @) with MISE of at most
e(1 + 0,(1)). Hereafter ¢ > 0, | x| is the integer part of x and o,(1) - 0 as
& — 0. A natural question is the possibility of decreasing the average sample
size in comparison with n*(a, @, £) by implementing a sequential approach
[see discussion in Prakasa Rao (1983) on a sequential approach in nonpara-
metric curve estimation theory].

The answer is twofold. On the one hand, if @ and @ are given, then the
sequential approach does not decrease the average sample size and, due to
Efromovich and Pinsker (1989a, b) and Efromovich (1989),

(1.4) inf sup E {7} =n*(a,Q,s)(1+0,(1)),

fedfla,Q)
where the infimum is over all possible sequential estimators with the MISE
of at most &.

On the other hand, in contrast to estimating with a minimal risk based on
a fixed sample size, there is no sharp adaptive sequential estimate which
attains the right-hand side of (1.4) uniformly over all @ > 1 and 0 < @ < .
More precisely, let a > 4 be unknown but fixed, and let @ be also unknown
and @ € [Q; 1, Q,], where the function @, increases to infinity as slowly as
desired when ¢ — «© and @, > 1. We shall refer to this setting as adaptive.
We claim that for the adaptive setting a sharp estimate exists iff a € (y,2y]
for some given y > 1, that is, there is a known constant y such that

(1.5) l<y<ax<2y.

P = QV/@e+ 1)(

In other words, the necessity of (1.5) for sharp estimation means that if
a€[y,2y] and Q €[Q;!,Q.], where Q, » = as slowly as desired when
& — 0, then there is no sharp adaptive estimate. The sufficiency of (1.5)
means that there exists a sharp estimate which is based only on data and .
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Some remarks on terminology. The phrase “sharp estimation” means that
MISE is to be at most (1 + 0,(1)) and sup; ¢ 5, q) Efl7} = n*(a, @, e)1 +
0,(1)). The phrase “adaptive estimate” means that the estimate is based only
on data and given v.

To make our setting more specific, from now on only the problem of
filtering is considered; that is, we observe a process Y(¢) which is defined by
the stochastic equation dY(¢) = f(t)dt + dW(¢), 0 <t < n, where W(¢) is a
standard Wiener process and f(x) is an unknown periodic function with the
period one from F(a, @). We refer to n as the sample size and Z; = {Y(x +
j— 1), 0 < x < 1} as the j-th observation.

We are now in a position to explain the underlying idea of condition (1.5).
The necessity of (1.5) follows from the theory of hypotheses testing. Consider
the familiar problem of minimax testing of the simple hypothesis of absence
of a signal (i.e., f = f, = 0) versus the alternative composite hypothesis that a
signal has at least some minimal power C_& and belongs to a subspace
HAa,Q), that is, that feF(a,Q) N{f: [4f2(x)dx > C,e}. The minimax
error is defined as e(n, a, Q) = infmax{E.{¢,},sup E{1 — ¢,}}, where the
infimum is over all possible critical functions ¢, based on n observations, «
and Q; the supremum is over the signals under the alternative hypothesis.
Hereafter C, > ® as & — 0 and the function C, can be either known or
unknown. A test is called consistent iff the error tends to zero as n — .
Ingster (1982, 1988) shows that if C, is not given, then boundedness below
from zero of the ratio n/n*(2a, @, ) is a necessary and sufficient condition
for consistent testing. A similar result, with some additional factor depending
on C, for the ratio, holds for the case of known C, (see details in Section 3).

This result explains the necessity of (1.5), for if a rate-optimal adaptive
estimate exists and (1.5) does not hold, then the adaptive estimate may be
employed for constructing a consistent test whose properties contradict the
above mentioned criterion of consistent hypotheses testing.

The sufficiency of (1.5) for sharp estimation is much more involved. Here
we discuss only one aspect of the problem. It is well known that both the
hypotheses-testing problem and sequential estimation with assigned risk are
closely related with that of estimating with assigned risk the quadratic
functional I(f) = [}f%(x) dx of small signals. More precisely, I(f) is to be
estimated with an assigned maximum risk sup Ef/ 2(f, - I(F)?) < &, where
the supremum is over f € #(a, @) N {f: I(f) < C,¢}; here the estimate I, is
based on n observations, ¢ and @, and C, does not increase too fast as
g — 0. It follows from Efromovich (1994) that for this problem again the
sample size proportional to n*(2a, @, ) is the smallest when the problem
can be solved. This sheds light on the sufficiency of (1.5). However, the
interested reader is referred to details in the following sections because the
sufficiency is not a plain issue. It is also worthwhile to note that Bickel and
Ritov (1988), Donoho and Liu (1991), Fan (1991) and Brown and Low (1992)
give an interesting insight into the related problems of functional estimation.

In Section 2 the results are formulated and a sharp adaptive sequential
estimate is constructed. Note that only asymptotic approach when ¢ — 0 is
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investigated and therefore estimation with risk of at most £(1 + o,(1))
is considered. The reader who is interested in a nonasymptotic approach is
referred to Efromovich and Pinsker (1989a), where the problem of estimating
with risk of at most & is considered for arbitrary &> 0. However, the
adaptive estimate is suggested only for the case y < @ < 3y. It might be
possible to implement the machinery developed in that paper to expand the
interval to that given in (1.5); we leave this to the interested reader. All
proofs are given in Section 3.

Finally, note that the formulated results hold for density and nonparamet-
ric regression models as well. The interested reader is referred to Efromovich
(1992).

2. Filtering with assigned risk. Let us recall the known results on
nonadaptive estimation when f € #(«a, @) and both « and @ are given. Using
the notation and terminology of the Introduction, set

n

(2.1) 6(n) =nt ¥ [Te(x)d¥(x +1- 1),
1=1°0

J P\ ¢
. in (J
by @ =i )+ £[1-(3)

X[é\Zj—l(n)qDijl(x) + ézj'(n)ﬁozj(x)]’

where J = J(n, a,Q) = [[n(2a + 1)a + 1)Q/(2a(277)2°‘)]1/(2“+1)1 + 1. Here
0 (n) is an estimate of the Fourier coefficient 6, and f (x, @, ®) is a nonadap-
tlve orthogonal series estimate of the signal.

Efromovich and Pinsker (1989a) show that the following statement holds.

THEOREM 2.1. Let F € #«, Q) and assume that a and @ are given. Then
the sequential estimate & = ({ f (x,a,Q), m=1,2,...}, 7) with the orthogo-
nal series estimate (2.2) and the fixed stopping time 7 = n*(a, Q, &) is sharp.

The following assertion holds for the adaptive setting.

THEOREM 2.2. For the adaptive setting, condition (1.5) is necessary and
sufficient for sharp estimation.

Theorem 2.2 will be proved in Section 3. The rest of the section is devoted
to one particular example of sharp estimation under condition (1.5).

To introduce the sharp estimate, in the first place we recall the known
adaptive minimax estimate based on given n observations. This estimate will
play a key role in the sharp estimate. Set d(0) = 0, d(k) = d(k — D + 2k,
TO)={0}, T(k) ={d(k — 1)+ 1,d(k — 1) + 2,...,d(k)}, S = |n?%], 60, n)
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= ég(n) - n_l’ fl(oy n) = ]-’
(23)  O(k,n)=(2k)"" ¥ (8%(n) —n7Y),

jeT(k)
(24) L(k,n) =0(k,n)(O(k,n) + n-l)‘lx(é)(k, n) —In"Y(k+3)n"1)

where £ =1,2,...,S and y(x)=1if x>0 and x(x) =0 if x < 0. Efro-
movich and Pinsker (1984) suggest the following adaptively smoothed orthog-
onal series estimate:

(2.5) fu(x,n,8) = ZL(k n) ¥ 6i(n)e(x),

k= jeT(k)

which is asymptotically minimax, that is, its MISE does not exceed the
right-hand side of (1.1) for all f € A «a, Q).

Moreover, Efromovich and Pinsker (1984) show that the MISE of the
adaptive estimate (2.5) is equal to R (1 + o(1)) whenever R,n — © as n — =,
where

S’ @k S"
=n"t Y 2R)——— + X (2k)0,,
(2.6) k=1 Ottt
sup R, =Pn~2¢/@2*1)(]1 4+ o (1)),
feFla,Q)

0, =@k) 'L, 1,67 Here 8'=8, > (2J)/% + 1 and 8" = S are some se-
quences of natural numbers such that S’ < §” and J = 0,(1X(S")2.

Comparison of (1.1) with equations (2.6) sheds light on the underlying idea
of the sharp estimate. First, we sequentially estimate R, and stop the
procedure as soon as the estimate is less than &. Then the adaptive estimate
(2.5) is implemented.

To simplify the proofs, it is convenient to split observations into two
groups. The first group of observations is used for finding a stopping time,
and the second one for constructing estimate (2.5). Recall that we observe

={Y(x+1-1),0<x<1},1=1,2,..., and we denote the first group as
Z1=(Z,,...,Z,) and the second as Z2=(Z,,,,...,Z.), v<r7. It is also
convenient to denote the observations within these groups as {Z1,, k =

..} and {Z2,, k ..}, where Z1, =Z, and Z2, = Z,,,. We also
append 1 or 2 to all statlstlcs and estimates based on these groups of
observations. For instances, 62 (n) means an estimate 0 (n) which is defined
in (2.1) and based on n observatlons Z2,,22,,...,22,.

We need some additional notation. Recall that the constant v = % is given,
and we assume that (1.5) holds. Set g = In(s71)| + 3, S(a, &) = |gl/% /4]
+ 1, nla, &) =le 17122 /In(g)| + 2, m(a, ¢) = |n(a, ¢)/In(g)] + 1, I = i(s)
=|vy(g? - g%?%), a(i) =2y —ig~2, i =0,1,...,I. Hereafter we always as-
sume that ¢ is sufficiently small and therefore all these functions are well
defined.
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Notice that n(a(i + 1), &)/n(a(i), &) =1 + 0,(1) and vy + g7 1/% < a(l) <
v + g~ 1/2 for sufficiently small &. Therefore there exists an integer-valued
function i*(&) € {0, 1,..., I} such that n(a(i*(&)), &) = n*(a, @, )1 + o, (1)).
Thus, our first step is a sequential estimation of i*(¢).

Set
A1(k,a) = O1(k, m(a, £))[01(k, m(a, &) + n"Y(a, )]
XX(@I(k,m(a, e)) —In"(k +3)n"!(a, &)),
and set
. S(a, &) .
Rl(a,&) =n"Ya,e) Y, (2k)Al(k,aq)
E=1
Sta(D), &) X
+ Y (2k)O1(k,m(a,¢))
k=S(a,&e)+1

if @ > a(I) and R1(a, &) = ¢ otherwise. Note that statistic R1 obviously
mimics R, defined in (2.6). A sequential estimation is implemented via
comparison of R1(a(i), ) with &. Recall that R1(a(i), ¢) is based on m(a(i), &)
observations, where m(a(i), ¢) increases as i increases. Thus, we can define
the following sequential procedure of estimating i*(¢):

(2.7) i = minf{i: R1(a(i), ) <e,i=0,1,...,I}

with a stopping time v = m(a(i), &), where v takes at most I + 1 possible
values. Notice that the stopping time v is a classical example of the hitting
time of a set; v defines the sample size of the first group Z1 of observations.

We are now in a position to define a stopping time for the sharp estimate
as 7= m(a(?), &) + n(a(?), &), where the additional n(a(i), &) observations
Z2 will be used for constructing the adaptive estimate (2.5). It is convenient
to denote 41 = a(7) because this stresses the fact that the stopping time 7 is
based only on the first m(a(7), &) observations, that is, 7 is a statistic which
is based only on Z1. Finally, the estimate (2.5), based only on additional
n(41, &) observations Z2, is implemented. Thus, one can write down the sharp
adaptive estimate as

(28) &, =(f.2(x,n(d1,¢),8(d1,¢));7), 7=m(dl,¢) +n(dl,e).

This estimate has the following properties:
1, » 2
sup E { f.2(x,n(dl, e),8(al, ¢)) — f(x) dx}
(2.9) feFla,Q) d /0( )

=¢(1+0,(1));
(2.10) sup E/ {7} =n*(a,Q,¢&)(1+0,(1));
fed(a, Q)

and (2.9) and (2.10) hold uniformly over a €[y + @;'/2,2y] and @ €
[@.1,Q,], where here @, = In(3 + In(e™1)].
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Notice that the estimate (2.8) is relatively simple because the sequential
procedure (2.7) is based on at most I trials and then the familiar nonsequen-
tial adaptive estimate (2.5) is implemented.

3. Proofs.

PrOOF OF THEOREM 2.2. To prove the necessity of (1.5) for sharp estima-
tion suppose that this assertion is wrong, that is, there exists an adaptive
sequential estimate & = ({f,,, m = 1,2,...}, 7') such that, for some increasing
function @, — ® as ¢ —» », @, > 1, the following holds:

sup Ef{/ol[mx) - f()]" dx} < &(1 +0,(1)),

supEf{T'/n*(Ol:Q> 8)} <1+ 08(1)’ .

where the supremum is taken over f & S(a, Q) and then over a € [vy,2v]
and @ € (@1, Q,].

Let us show that assumption (3.1) contradicts the criterion of consistent
testing mentioned in Section 1. Set C, = QY “* D (recall that C, is used in
the definition of the alternative hypothesis) and define for the hypotheses
testing problem formulated in Section 1 the following critical function:

(3.1)

o = 0, ifT'Smandfl[f:(x)—fo(x)]zdxgcgl/zg,
m 0

1, otherwise,

where m = n*(2y, 1, ¢). Recall that f,(x) = 0. Note that the test is based on
at most m first observations (we can always assume that it is based on
exactly m observations) and that it is consistent. Indeed, to estimate the
probability of type I error, we write

Byfn) < Brf x(x' = m) + x( 1) = fo()]" = %)

and recall that y(z) = 1if z > 0 and y(z) = 0 if z < 0. Using the Chebyshev
inequality, we obtain that

By < m Byl7) + (C2%) B [ 06) = ()] )

Note that f, € (2y, Q;!) and therefore due to (3.1) we obtain E '} <1+
0, ()n*(2y,Q; ', &) = 0,()m. At the same time, (3.1) and the Chebyshev
inequality yield that the second term in the right-hand side of the last line is
asymptotically not greater than C!/2. Thus, the probability of committing
type I error tends to zero as & — 0.

To estimate the probability of type II error, we note that, under the
alternative_hypothesis and for sufficiently small &, the probability of the
event { /o[ f.(x) — fo(x)]® dx < C}/%} is not greater than the probability of
the event {[j[ £,(x) — f(x)]>dx > 3C, }. Therefore, (3.1) and the Chebyshev
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inequality yield that the probability of type II error satisfies

B [ (7o) = 1(2)' d
o ~ 0,(1),

where the supremum is over f € F, = %(y,Q,) N {f: [}f%(x)dx = C,&}.

Thus, we have shown that the suggested test is consistent under assump-
tion (3.1) and that it is based only on m = n*(2y,1, ¢) observations. The
latter contradicts Ingster (1982, 1988), where it is shown that the necessary
sample size for consistent testing of such hypotheses increases faster than
QY*'m as & - ». The contradiction proves the necessity of (1.5).

To show the sufficiency of (1.5) for sharp estimation we prove that the
sequential estimate (2.8) is sharp whenever (1.5) holds. First we prove (2.9),
that is, that MISE of the estimate is at most £(1 + 0,(1)). Note that (2.9) [as
well as (2.10)] is to be verified for unknown but fixed « € (y,2y] and
Q €(Q;',Q.], where @, — x arbitrarily slowly as & — 0. Thus, it suffices to
show that all the following relations are valid uniformly over f € %(a, @),
where a € [y + |ln(g)|_1/2,2y] and Q €[(1 + In(g))~ L, 1 + [In(g)[]; in this
case we say that an assertion is valid uniformly.

To simplify the following formulas, we use notation @ = dl1, i = n(dl, &),
m = m(dl, &), S = S(41, &), n* = n*(a, Q, &) and K = S(a(I), &); here 4, #,
# and S are based only on Z1. It is also assumed that o0,(1) do not depend on
f, a or Q. Statistics Z1 and Z2 are independent and therefore it follows from
Efromovich and Pinsker (1984) that

sup Ef{f (f;2(x,ﬁ,SA) —f(x))2 dx}

feHAa,Q)
<(1+o0,(1))

sup E{1 — ¢, } < sup

(3.2)

M=

X sup Eq A
fefa,q)

+ sup ). (2k)0,.
fef(a,Q) k>K

S
1Y (2R)0,(0, + A1)
k=1

A(zk)@)k}

k=S

Straightforward calculation shows that the second addend in the right-hand
side of (3.2) is less than o.(1)¢. Hence, (2.9) will follow from inequality

At Z(2k)[®k(®k+n O 5 (2k)0,

E=S+1

sup E
(33) festa@) |

<(1+o0,(1))e.

Due to (2.7) and inequality S > N(n*, @, @), which is valid whenever
A = n*, we can restrict our attention to the case

(3.4) A<n* and &> a(I).
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Under (3.4) and due to the definition of 4, the following inequality holds:
(3.5) R1(4,s) < &,
and therefore

S K
E (A 2 (2k)0,(0, + A" )+ ¥ (2k)0,
k=

E=S+1

(3.6) <E,,{ -1 2(2k)|®k(®k+n n” —f\l(k,&)l}

+Ef{ Y (2k)(0, - @1(k,m))} +e

k=S+1
£ w; +w, + e&.
To estimate wl, we note that

-1

w, <Ef{ -1 2 (2k)10,(0, + /) " — OL(k, i) (OL(k, ) + A7) |
Xx(O1(k,m) —In"}(k + 3)ﬁ‘1)}

+ Ef{ -1 Z (2£)0,(0, + A1) X(ln‘l(k +3)A~ @l(k,ﬁz))}.
Line (3.3) in Efromovmh (1994) yields that
(3.7)  sup Ef{|®1(k n) — 0,1') < 128(2k) *n"2(0, +n" 1),
feHa,Q
and we use (3.7) and the Chebyshev inequality to estimate w;. Write n; =
n(a(?), ), m; = m(a(i), &), S(i) = S(a(i), £) and generic positive constants as
C. We get, similar to (A.9) in Efromovich and Pinsker (1989a), that
8G) @l(k,n%)
EEf _1 2(219) -1 A -1
®k+n O1(k, m;) + n;

Xx(01(k, m;) —In"'(k + 3)n{1)}
+ Ef{ﬁ-l S (2k)21n 1k + 3)x(2In'(k + 3)A~1 — @k)}
E=1
k=1

I-1 S(@) . 1
‘Y E { T (@0)0,(8, + 1) k[0, - 01k, m) - 76,
i=0

Xx(0, —2In"'(k + 3)ni‘1)}
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I-1 S@i@)
<C L nit ¥ (2R)(2k) P m; 20, + mi 1) (0, + n7 1)

i=0 k=1
le-—l/lOyJ+1

ﬁ‘l[z Y (2F)

k=1

+ E; + [2In7 (6107 + 3) 7 187]

-1 5G) B
+C Y n' Y (2k)0,[0, + n!]
i=0 k=1

x|(2k) "V m; 112(0, + mi )20, x (0, - 2In71(k + 3)nY).

Under the stated assumptions, the inequality 2~1$2 < C In(g)g'/2% holds,
and therefore straightforward simplifications show that

I-1 S@G)
w; <CY nt Y (2k)Y%In2(g)
i=0 k=1
(3.8) + Cng'e /% + In(g) g~ V/%]|
I-1
<Cln?(g)| X n;18%%(i) + £'/20% +g_1/28] =o,(1)e.
i=0

To estimate w,, we use the following corollary of equality (3.2) in Efro-
movich (1994):
2}
K

<4m;1[ Y (2k)(®k+m;1)}.

k=S@)+1

K

Y (2k)(O1(k, m;) - 0,)
kE=SG)+1

E;

(3.9)

The Chebyshev inequality, (3.9), inequality YX ¢,,(2k)O1(k, A) < &,
which follows from (3.5), and elementary K2m, ! < Ce yield that

w, < E, f (2k)(®k—@1(k,ﬁz))'
E=S+1
K
x{x Y (2k)®k—2a)
E=S+1
K R K
><x[ > (2k)(®k—®1(k,ﬁ¢))]—% Y (2k)0,
E=S+1 E=S+1
K
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I-1 K K -t
<CY m{l( Y (2R)0, + szi‘l)( Y (2k)®k)
i=0 k=S@)+1 E=8@()+1
K
X x Y (2R)0, — 2¢
E=SG@)+1
-1 X 1/2
+ czmgl/z( Y (2k)0, +K2m;1)
i=0 k=S@)+1
K
k=SG)+1

< CIKmg'(1 + Kmg'e ") + CImg'/%"/2.

The second addend in the right-hand side of the last inequality is equal to
0,(1)¢; to estimate the first one, we note that Km;'e™! = 0,(1) and that

IKm;" < CogieV/#r=1/UCr—1e 1 < Coglet /5% = o (1),

Thus, w, = 0,(1)¢ and this, together with (3.6) and (3.8), yields (3.3). Asser-
tion (2.9) is proved.
Now we prove (2.10). The proof is based on the following inequality:

A
{5 e =m0
A 1/2a+1)
<(1+ 08(1))Ef{(n—*)
which is to be valid uniformly. Let us show that (3.10) implies (2.10) and then
prove (3.10). Equation (2.10) straightforwardly follows from the elementary

inequality (A/n*)x(n* — A) < (A/n*)/@**Dy(n* — f), Jensen’s inequality
and (3.10). Indeed, we see that, for sufficiently small & uniformly,

B <o)

(3.10)
x(f - n*)} +0,(1),

A 1/2a+1)
< (1+oe(1))Ef{($) } +0,(1)

A 1/Q2a+1)
<1+ 08(1))[Ef{n—*}] + 0,(1)

<(1+ 05(1))[Ef{n—:}]l/(2a+n +0,(1).

Thus, to complete the proof, we need to verify (3.10). Notice that all
statistics considered from now on are based only on Z1. Write R(i) =
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R1(a(i), &) and RG) = n;'L$0(2k)0,(0, + n; )~ ! + £, ,,(2)0,, and
note that due to (2.7) and definition of n; the inequality R(z — 1) > & holds
for sufficiently small ¢ whenever A > n*. Using this remark, we write

I

< Ef{[ﬁ(n*a)—l(R(f— 1) + R({ - 1) = R({ - 1)) x(A - n*)}
= Ef{ﬁ(n*g)_lR(l“_ l)X(ﬁ _ n*)}

SG-1)

ﬁ(n*s)_l[ﬁ‘l Y (2k)
k=1

3.11
(31D x[Al(k,a({— 1)) — 0,(0, + n;_ll)‘l]l
Xx(A - n*)}
K
+ E {Ai(n*e) " z (2k)(01(k, m;_;) — 0,)x(A —n*)}
E=SG-1+1
AV, +V,+ V,.

To estimate V,, we recall that S = |g!/%~1/4é] + 1. Therefore, for # > n*
and sufficiently small ¢, the inequality S(4, &) > g'/*2!/?®**D holds and,
together with (2.7), yields that the inequality sup;c g, o) RG -1 <1 +
0,(1))PA~2%/@e+D holds uniformly. Now note that, due to (1.3),

ﬁPﬁ—Za/(2a+l)(n*€)_1 - Pﬁl/(2a+l)(Pn*)_1/(2‘1+1)(1 +0,(1))

n

_ (n_;)l/(zam(l +0,(1)).

Therefore, the following inequality holds uniformly:

4 \1/@a+D
(3.12) V< (1+ og(l))Ef{(F) }
To estimate V, we define S’a = min(S,, S(i — 1)}, where S, =lgl¥2% V4|
+ 1. Then
S(-1)

V,=E, ﬁ(n*a)_l[ﬁ‘l Y (2k)[f\1(k,a(f—1))
k=1

—0,(0, + nf—ll)_ll

x(f —n*)}
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Sa
ﬁ(n*a)_llﬁ_l Y (2k)[f\1(k,a({— 1))
k=1

=Ef

(3.13)

—0,(0, + nf—ll)_ll} x(A — n*)}

+Ef{X(S(£— 1) - 8,)A(n*) "
S(-1)
x[ﬁ‘l Y (2k)|A1(k, (i - 1))
k=8 +1

—0,(0, + nf—11)_1]])((ﬁ - n*)}
Set D(k,i — 1) = |01k, m; ;) — 0,0, + A7)~ ! and note that the fol-
lowing inequality always holds:

(3.14) 1A1(k,a(f - 1)) - 0,(0, + ni}y) | < min{1, D(k,{ - 1)}.

There are only two possible cases: either D(k,i — 1) < (2k)* or D(k, i —
1) > (2k)~*, where A = . Using the obvious inequality S, < S,, we write

Vo < E;

S,
A(n*e) HA! E [(2k)(2k) | x (A - n*)]}
(3.15) 'ls
+ Ef{ﬁ(n*a)_l[ﬁ‘l k§1(2k)1+3*(13(k,{— 1))4].

To estimate the first addend in the right-hand side of (3.15), we recall that,
lation shows that

by (1.8), & = P(n*)~22/@«+1)(1 4 0_(1)), and therefore straightforward calcu-

Sg—)\ < Cg(Z—A)/2 -~@-M/da Cg(n*)za(z—A)/(2a+1)(4a)
— Cg(n*)1/(2a+1)(n*)—A/2(2a+1)

and, for sufficiently small &, the following holds uniformly:
Ef

S,
ﬁ(n*e)_l[ﬁ‘l kg [(2k)(2k) ] x (7 - n*)]} < C(n*e) 'S27* = 0 (1)
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To estimate the second addend in the right-hand side of (8.15), we imple-
ment inequality (3.7) and then see that

E;

Se
ﬂ(n*s)l[ﬁl Y (2k)1+3)\|®1(k,mill) - ®k'4(®k + nfll)4l}
k=1

I S,
<CY (n%) " ¥ (2k) ""(Ing)’
i=0 k

-1
< CI(n*¢) 'S*(In g)*
< Cg2+3)‘(n*)f1/(2a+1)+3)\/4a =0 (1)
Thus, V,; = 0,(1). To estimate V,,, we consider separately two different
cases: 0, < (FIn ' (K)n; ! and 0, > (DIn (K)n; . For the first case we
write
A ~ _ -1 _ _
[Al(k,a(z - 1)) — ®k(®k + n;}l) ]X((%)ln (K)nil - @k)
< (01(k, m; ) — 0,)(0, + nil)
XX((:)l(k, m;i_ 1) =0, - (%)lnfl(K)nf—ﬂ)
Xx((z)n Y(K)nil — 6,)).
To consider the second case, we note that for each positive natural [ the
inequality sup c 54, g) Zr-1(2%)0;, < CQI™** holds, and therefore
sup Y (2R)x(0, — (3)In (K)niY))
feFa,@) k=5,+1
< CQS. **log(K)#A
<Cln(g)g ?*In(K)eh =o,(1)&A.
Using the last inequality and applying (3.7), we obtain that

Vyy < Ef{X(S(f— 1) -8, )(n%) "

S(i-1)

X Y (2k)

A 4 1
(01(k, m; ;) — 0,) X((_)IHI(K)nfll - ®k)
k=S,+1 2

-1

X

(0 + n;ll)[(%)lnl(K)ngllr)

+X(®k - (%)lnl(K)nfll)])((ﬁ. - n*)}
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1 1 SG-1)
<C(n*s™!) " L x(S(i-1)-8,) ¥ n’K)n‘(g)(2k)"
i=0 k=S,+1

+ 0, (1) E/{(n*e) " efix (i — n*))

A

< CI(n*)—l/(2a+1)1n2(S(I))ln(g) + Oe(l)Ef{(:—*)X(ﬁ — n*)}

<o,(1)(1 +Ef{(nl;)x(ﬁ - n*)},

and therefore, uniformly,
ﬁ, 1/2a+1) . .
1+ E; (?) x(A —n*)}].

Finally, we estimate V,. Write B(k,i) = TK g; ). (2kXO1(k, m;_)) —
0,) and consider two cases when 2B(k,zﬁ is either less than or equal to A, & or
greater than A, s; here A, = £¢ /297", Using (3.9) we see that

V, = B {a(n%) " B(k, ) x (A ~ n*)|[ x(A,& = B(k,1))

+x(B(k,0) - A,2)]}

< /\sEf{(:—*)X(ﬁ - n*)} + Ef{ﬁ(n*g)_le(k,{)(Agg)_lx(ﬁ - n*)}

< )tsEf{(-:—*)X(ﬁ - n*)}

1 K

(o)t Y n,-<n*e>‘10n;1[ Y (@k)(O + 1Y) | x(n, - n*).
i=0 E=S@)+1

For n; > n*, the inequality « > a(7) is valid, and therefore

K
sup x(n,—n*) Y (2k)0,<CQ[S(a,s)] **<Cln(g)g %.
fedla, @) E=S@)+1
From the definition of K we also get

K .
(3.17) Y. (2k) < CK? < Cgl/?%1/2aD),
k=SO)+1

We have noted in Section 2 that a(I) > y + (1/2)g~1/? for sufficiently small
. Using this inequality for estimating the right-hand side of (3.17), we obtain
that, for sufficiently small &, the inequality

K

Y (2k) < CgV%V/CrHETY) £ Ogl/2 1/ 20g8 P 5y}

E=S0)+1
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holds, and therefore

A

A
V, < AeEf{(F)X(n - n*)}

+C(Ae) ' I(n*e) [In(g)g e + (n*) gV /g8 V5]

& A *
= /\sEf n_* X(n - n )
+ CA;I[(n*e)‘lg*“ + (n*e)’2g5/28—1/<2v>+g*1/2/<5y2>].
It is easy to verify that (n*s) 2 < P~ @a+D/agl/a and therefore
(n*g)—2g5/28— 1/(2y)+g~ /2 /(5v?) < C(ln(g))2g5/28g—1/2/(5y2) < ng—l/z/(loyz)'

Thus we see that, uniformly,

Vs

IA

rAL -1/2 2
/\EEf{(-—*)X(ﬂ — n*)} + CA[ 8 2/0y*)
n
(3.18)

IA

og(l)Ef{(:;*)X(ﬁ - n*)} +0,(1).

Substituting (3.12), (3.16) and (3.18) into the right-hand side of (3.11), we
get (3.10). Theorem 2.2 is proved. O
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