The Annals of Statistics
1995, Vol. 23, No. 4, 1331-1349

ON THE ASYMPTOTIC BEHAVIOUR OF THE MOVING
BLOCK BOOTSTRAP FOR NORMALIZED SUMS OF
HEAVY-TAIL RANDOM VARIABLES!

By S. N. LAHIRI

ITowa State University

This paper studies the performance of the moving block bootstrap
procedure for normalized sums of dependent random variables. Suppose
that X, X,,... are stationary p-mixing random variables with L p(2*) <
. Let T}, = (X; + - +X, — b,)/a,, for some suitable constants @, and
b,,and let T,% , denote the moving block bootstrap version of T, based on
a bootstrap sample of size m. Under certain regularity conditions, it is
shown that, for X,’s lying in the domain of partial attraction of certain
infinitely divisible distributions, the conditional distribution H m.n Of Tt
provides a valid approximation to the distribution of T, along every
weakly convergent subsequence, provided m = o(n) as n — . On the
other hand, for the usual choice of the resample size m = n, ﬁn,n(x) is
shown to converge to a nondegenerate random limit as given by Athreya
(1987) when T, has a stable limit of order a, 1 < a < 2.

1. Introduction. Let X, X,,... be a sequence of stationary random
variables (r.v.’s) with common (marginal) distribution F. When the X;’s are
independent and identically distributed (iid), it is well known that the
bootstrap procedure of Efron (1979) (the EB) provides very accurate approxi-
mations to the distributions of many commonly used statistics. However, for
dependent r.v.’s, the EB fails [cf. Singh (1981), Remark 2.1]. Recently, Kiinsch
(1989) and Liu and Singh (1992) have formulated a moving block bootstrap
(MBB) procedure which removes the deficiency of the EB for dependent data.
Under suitable conditions, the MBB method is second-order correct for a
large class of statistics based on sample means [Lahiri (1991), Gétze and
Kiinsch (1993)]. However, the asymptotic properties of the MBB for heavy-tail
dependent r.v.’s have remained unknown. This paper investigates the asymp-
totic behaviour of the MBB when the sample mean (with a suitable normal-
ization) has a nonnormal limit law.

For the sake of completeness, we now briefly describe the MBB procedure.
Suppose that the statistic of interest derives from a functional #(:) through

(1.1) T, =(F,),
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1332 S. N. LAHIRI

where F, denotes the empirical distribution of (X,..., X,). Given the data
X, =(X;,...,X,) and an integer [, 1 <! < n, define the observed blocks
Ci...,Cp by

(1.2) G=(X;,....,. X.021), i=1,2,...,b=n-101+1.

Next draw a simple random sample {},...,{}, £ > 1, with replacement from
{, ={(;: 1 <i < b}, and define the MBB version T, , of T, by

(1.3) T = E(F% L),

where m = kl and F; , is the empirical distribution of the m components of

¥, 1 <i <k. Then approximate the unknown distribution of f‘n by the
conditional distribution of 7}  given X, letting / and m increase to infinity
with n suitably. In practice, one usually draws k& = k, = [n/l] MBB blocks,
where, for any real number x, [ x] denotes the largest integer not exceeding
x. Although this choice of & is crucial for the second-order correctness of the
MBB under higher moment assumptions, it will be shown that as in the iid
case this is not necessarily the right choice for sums of heavy-tail dependent
r.v.’s.

Note that the EB can also be considered as a moving block resampling
scheme with block size [ = 1 for all n > 1. In contrast to the (general) MBB
method, the performance of the EB for sums of heavy-tail iid r.v.’s is well
studied in the literature. Starting with the pioneering work of Athreya
(1987a), a number of important papers appeared on this topic over the last
few years. See Athreya (1987a, b), Arcones and Giné (1989, 1991), Giné and
Zinn (1989, 1990), Knight (1989), Hall (1990), Wu, Carlstein and Cambanis
(1990) and references therein.

The main result of this paper (cf. Theorem 2.1) shows that, for F in the
domain of partial attraction [for the definition, see (2.2)] of a class of
infinitely divisible distributions (i.d.d.’s), the MBB works in probability for
normalized sums of stationary, p-mixing random variables, provided the
resample size m = o(n), or equivalently, the number of resampled blocks
kE = o(k,), as n — «. A direct implication of this result is that the same MBB
resampling scheme can be used to approximate the distribution of normalized
sums {T,}, say, even when {T,} converges to distinct distributions along
different subsequences. Since there exist distributions F that lie in the
domain of partial attraction of every infinitely divisible distribution, using
the large-sample distributions to approximate the distribution of 7, can be
very unreliable in such cases, particularly in finite samples. In comparison,
the bootstrap approximation adapts itself to the underlying forms of the
distribution of T, along every convergent subsequence and provides a valid
and practically viable way of approximating the distribution of T,.

It should be pointed out that Arcones and Giné (1989) are the first to prove
a similar validity result for the EB for iid r.v.’s when F lies in the domain of
partial attraction of an i.d.d. For F lying in the class of distributions consid-
ered in this paper, Theorem 2.1 extends their result on the EB for iid r.v.’s to
the MBB for dependent r.v.’s.
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It is interesting to note that, under the assumed conditions, the EB (which
corresponds to blocks of size [ = 1) also yields a valid approximation for sums
of dependent heavy-tail r.v.’s whenever m = o(n) as n — . This is some-
what striking in view of the invalidity of the EB under dependence in the
finite-variance case [cf. Singh (1981), Remark 2.1]. See Remark 2.2 in Section
2 for further details.

The second main result of the paper concerns the case when the number of
resampled blocks % equals k,, that is, the resample size m satisfies mn~! -1
as n — «, In this case we show that, for F lying in the domain of attraction of
a stable law of order a, 1 < a < 2, the conditional distribution of the boot-
strapped sample mean has a random limit as in Athreya (1987a). Thus, for
sums of heavy-tail dependent r.v.’s, the MBB fails under the usual choice of
resample size. To obtain a valid approximation, one needs to choose a
resample size that grows at a slower rate than the size of the original sample.

The paper is organized as follows. Section 2 states the conditions and the
main results of this paper. Section 3 gives the proofs of the theorems. Proofs
of two technical lemmas used for proving Theorem 2.2 are relegated to
Section 4.

2. Main results. As defined in Section 1, let X;, X,,... be a sequence of
stationary r.v.’s, defined on a common probability space ({2, %, P), and let F
denote the marginal distribution of X; under P. Write S, = X; + - +X,
n > 1. For easy reference later on, define the strong-mixing coefficient a(-)
and the p-mixing coefficient p(-) of X;, X,,... as

a(n) = sup{lP(A N B) — P(A)P(B)l:
Aegi, Besgi,,, i>1},
p(n) = sup{|Bfz|((Ef*)(Eg*)) /*:

fE L,Z(yll)’ g€ EZ('g;:n)’ 1> 1};

(2.1)

where 9']; is the o-field generated by X;,..., X;, 1 <i <j <, and
Ly(57%) = {f: Q- RI [f?dP <, [fdP =0and fis gﬂ;-measurable}.

We say that the marginal distribution F of the stationary sequence
{X,},>1 belongs to the domain of partial attraction of an i.d.d. F, if there
exist a subsequence {N,}, ., and constants b, € R, a, > 0 such that

(2.2) (X~1 + e +XN" - an)/aN" _)d W,
where {X,}, . ; is the “associated” sequence of iid r.v.’s with common distribu-

tion F, W is a r.v. with distribution F;, and —; denotes convergence in
distribution.
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In this paper we will consider i.d.d’s F, with characteristic functions
(ch.f’s) of the form

(2.3) ¢o(t) = exp(fx‘2(exp(itx) - 1-itr(x))M(dx)|, teR,

where M is a canonical measure on R [i.e., M(I) < for all bounded
intervals I, and M*(x) = [, ., y ?M(dy) <, M~ (—x) = J= e~y 2 M(dy)
<o, for all x > 0], with M{0}) =0, and 7,(x) =xI(lx| <¢), x €R, ¢ > 0.
Here and throughout the paper I(A) denotes the indicator of a set A. Note
that the restriction on M in (2.3) excludes the normal distribution.

Let C(M) denote the set of continuity points of M. Then a necessary and
sufficient condition for the convergence in (2.2) of the sums of iid r.v.’s to W
having ch.f. ¢, of (2.3) and ¢ € C(M) is that as n — o, for all x € C(M),

N,(1 - F(xay)) > M*(x) .if x>0,
(2.4) N,F(xay) > M (x) ifx<0,
N,ay’EXPI(X,| < cay ) - M([—c,c]),
and
ay'by — N,E7(X,/ay )) = 0.

In this case, one can centre the X,’s at Er(X, /ay ) and get the convergence
of X ;onlay'X, — En(X, /ay )] to W. In general, it is not possible further
to replace E7(X, /ay ) by EX, /ay . However, if one additionally assumes
that

(2.5) }1_r)r:° lim sup N, ay ' E|X;|I(1X,| > Aay ) =0,

n—o

then it can be shown that, under some regularity conditions,
(Xy+ - +Xy — N, p)/ay, —4 Wy,

where u =EX, and W, has ch.f (2.3) with ¢ = +o. From the statistical
point of view, this seems to be the most important case where one can make
inference on the population mean pu.

In recent years, a number of pdpers have appeared in the literature
dealing with the weak convergence of normalized sums of weakly dependent
r.v.’s to id.d’s. See Davis (1983), Samur (1984), Jakubowski and Kobus
(1989), Denker and Jakubowski (1989) and references therein. For proving
such results, in addition to the usual assumptions on the tails of F, one needs
to impose different regularity conditions depending on the form of the canoni-
cal measure of the limiting i.d.d. For simplicity, we restrict attention to i.i.d.’s
which can appear as weak limits of normalized sums of X/’s [in (2.2)],
satisfying (2.5), and for which M({0}) = 0. One can treat the other cases
similarly.
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For proving the results of this paper, we will assume the following depen-
dence structure: the X,’s are p-mixing with

(26) ilp(zn) <,
and

.1 P(X,>x,X,,,>x)
(2.7) = lim sup sup 5 < oo,
x=0 nx1 (P(Xl >x))

Condition (2.6) is quite common for proving central limit theorems for
p-mixing r.v.’s [cf. Ibragimov (1975) and Peligrad (1982)]. The quantity ¥* in
(2.7) is closely related to the well-known ¥-mixing coefficient, defined by
IP(ANB)—-P(A)P(B)|

P(A)P(B)
Both (2.6) and (2.7) appear in Jakubowski and Kobus (1989) and Denker and
Jakubowski (1989) in the context of proving the weak convergence of S, to a
nonnormal stable law.

Next, following the description of the MBB in Section 1, define the boot-
strap version of the normalized sample mean

¥(n) = sup :Aeyg,Bey;;n,izl},

(2.8) T,=(S, —nu)/a,
as
(29) Tr;':,n = (S:L,n - E*S;';L,n)/am’

where S}, | = {* + - +{*, m =kl and {* is the sum of the / components
of the resampled block {¥, 1 <i < k. Here and in the following, E, denotes
the conditional expectation under the MBB resampling scheme, given X,.
Also let p, denote a metric, metricizing the topology of weak convergence on
the set of all probability measures on R. Unless otherwise specified, limits in
all order symbols are taken as n — . Furthermore, for notational simplicity,
whenever feasible we drop n and other subsequential indices from the
subscripts.
Now we are ready to state the main result.

THEOREM 2.1. Suppose that (2.2) holds with W having ch.f. ¢, of
(2.3). Let k> © such that mn~' =0(1), and let (2.5), (2.6) and (2.7)
hold. If the subsequence {mNn: n = 1} is contained in {N,: n > 1} and
ky'*(my N, ' Nay /a,, )=o), then

A

Po(HmN N, HN”) — 0 in probabilityasn — o,
where Iff] %) = E (T, <x) and H,(x) = P(T, <x), x € R.
Thus, Theorem 2.1 shows that if F belongs to the domain of partial

attraction of the i.d.d. in (2.3), then under suitable conditions the MBB can
capture all subsequential weak limits of the normalized sums T, provided
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the resample size m grows slower than n through the given subsequence. In
particular, when T, converges in distribution to a stable distribution of order
1 < a < 2, then (2.2), (2.3) and (2.5) hold and the MBB works for any choice of
k, |l and m satisfying k™! = o(1) and m = o(n).

REMARK 2.1. Under the conditions of Theorem 2.1, Hy(x) converges

weakly to an i.d.d. F|, having ch.f. ¢((¢) of (2.3) with ¢ = +o (cf. Lemma 3.5
below) Hence, H ,n, also converges weakly to F, in probability [ie.,

po(H, N,F)—O(l)]

REMARK 2.2. Note that Theorem 2.1 admits the choice [ = 1 for all n > 1.
Thus Theorem 2.1 shows that, under the above condition, the EB (which
corresponds to the MBB with blocks of size [ = 1) provides a valid approxima-
tion to the distribution of the normalized sum 7, under weak dependence in
the heavy-tail case. This may seem somewhat surprising since the EB is
known to fail drastically under dependence when X, has enough finite
moments and T, is asymptotically normal. A simple justification for this
phenomenon comes from the observation that, under the assumed regularity
conditions, the limit distribution of T, depends only on the characteristics of
the marginal distribution F of X, as opposed to depending on the joint
distribution of X;’s in the finite-variance case. As a result, the EB, which
resamples from an estimator of the marginal distribution of the X,’s, can
approximate the limit distribution of T, in our case, but fails in the finite-
variance case.

REMARK 2.3. When the constants {aN} are unknown, Theorem 2.1 may
not be very useful for constructmg confidence intervals (CI's) for . If,
however, there exist estimators &, = ,(X) satisfying d5/ay — 1 in probabil-
ity, then it is possible to apply a “hybrid” MBB to approximate the distribu-
tion H,y of the “studentized” statistic T,y = (Sy — Nu)/dy. Let H,, denote
the conditional distribution of TikmNA: @, T /Gy, given X, . Then, under
the conditions of Theorem 2.1, p,(H,y, H;5) — 0 in probability and, hence,
one can use the quantiles of H,, to construct bootstrap CIs for u.

REMARK 2.4. An alternative data-based approximation for the distribu-
tions of normalized sample means can be obtained using the subsampling
method [cf. Politis and Romano (1994) and Hall and Jing (1994)], which
corresponds to the MBB with & = 1 for all n. Validity of the approximation in
the present problem essentially follows from a very general result (namely
Theorem 3.1) of Politis and Romano (1994).

Next we briefly consider the asymptotic behaviour of the MBB when the
number of resampled blocks % equals k, =[n/l], so that mn™! > 1 as
n — . As one might expect, the MBB does not provide a valid approximation
to H,(-) in this case; under suitable conditions the bootstrap distribution of
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T} , converges to a random distribution. Here we establish this fact when F
belongs to the domain of attraction of a stable distribution F, of order a,
1 < @ < 2. More specifically, assume that there exist constants p > 0, ¢ > 0,
p + q = 1, such that, for all x > 0,

(2.10) P(X;>=x) =px °L(x) and P(X; < —x)=qx “L(x),
where 1 < @ < 2, and L(x) is a function varying slowly at o, that is,
. L(#x)
3%1_1)130 L(x)
Let {a,}, ., be a sequence of constants such that
(2.12) nL(a,)/a; » 1 asn — «.

Then 7T, [defined by (2.8) with a, as in (2.12)] converges in distribution to a
stable law of order a with ch.f. ¢,(¢), where

(2.11) =1 forall > 0.

(2.13) log ¢,(t) = f (exp(itx) — 1 —itx) dA,(x), tER,

and, for any Borel subset A of R,

(2.14) A (A) = a[j px 1" dx + glxl ™ " dx|.
AN(0,®) ANn(—»,0)

However, the (random) distribution function Hm (%) of T¥ | converges in
distribution to a random limit distribution H (say) as in Athreya (1987a, b).
To describe it, let %#(R) denote the Borel o-field on R. Also, let N(-) be a
Poisson random measure on (R, Z(R)) with mean measure A (), that is:

{N(A): A € 2(R)} is a collection of r.v.’s defined on some
(a) probability space (Q , P) such that, for each @ €
N(-)(®) is a measure on (R, Z(R)),

and

for every disjoint collection of sets A,,...,A; € Z[R),

(b) N(A)),...,N(A)) are independent Poisson r.v’s W1th re-
spective means A, (A)),..., A, (A)), where () is as de-
fined in (2.14), and j=1

Then, the chf. ¢ of the random limit H is given by

(2.15) log &(¢) = j(exp(itx) C1- itx)N(dx), teR.

THEOREM 2.2. Suppose that (2.6), (2.7) and (2.10) hold and that T, and
T , are defined by (2.8) and (2.9) with a,, from (2.12). Let1™* + n~ 1721 = o(1)
as n —> o, and m =1lky=1[n/l], n > 1 If, in addition, na(l)/l = O(1),
then, for every x,,...,x, € R, r > 1,

(I—?m’n(xl),...,ﬁm’n(x,)) -y (ﬁ(xl),,ﬁ(x,)) asn — o,
where () is as in (2.1).
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Thus, for the usual choice of the resample size, the MBB fails to provide a
valid approximation to the distribution of the normalized sum 7,,.

3. Proofs. Let S, (x,y) =X X, I(x < IX;| <y), S,(x,0) =8,(x),0 <x
<y<® n>1 Also, let S;; =X, + - +X;, 1 <i <j <o For any two se-
quences {r,},.; and {¢,},,, of positive real numbers, write r, < t, if r, =
o(t,), as n — «. Thus, “1 < ¢,” is equivalent to “¢, - ® as n - ».” Let D
denote a generic positive constant, not depending on n.

LEMMA 3.1. Assume that (2.4), (2.5), (2.6) and (2.7) hold. Let 1, = o(n),
1<k, be such that m,=k,l, <n for all n21 and {my: n=1}C
{N,: n > 1}. Then, the following hold:

(a) forally > 0 and A = +1 with A-y € C(M),
max kNIP(A (S, —rup) > amNy)
N

1<r<l

—rP(A- (X, = p) > a,,y) =o(1);

(b)  lim lim kya,? B(S,, — Lyw) 1S, — Lyl < ay,) = 0;
(c) lim lim kNa,;IlvEISlN - lNM|I(|SzN —Lypl > )tamN) =0.

Ao n—o®

Proor. Without loss of generality, assume that u = 0. Since in parts
(a)—(c), 1,, k, and m, occur only along the subsequence {N}, for further
notational simplicity, set I, =/, ky = k and my = m.

Proof of (a). Without loss of generality, let A = +1. Fix y > 0. Then for
any 6 and &, satisfying 0 < 8, < 6 + §; <y, (2.7) implies

P(S,>a,y)
<P(S,(a,(y — 8;)) > 0) + P(S,(0, 8a,,) > a,,8;/2)
+ P(Sr(aam,(y —-8)a,) >a,(y — 2‘181))
r

31) <Pl U{X >a.(y - 8)}| + P(S,(0, 8a,)| > a,,8,/2)
i=1

+ P(IXiI > ba,,,|X;| > 8a,, forsomel <i +#j < r)
<rP(X,>a,(y - 8;)) + P(S,(0, da,,)| > a,,8,/2)
+ DI?P(IX,| > 8a,,)’.

Next, using the inequality P(A) > P(B) — P(A' N B), for any 8, > 0 one
gets
P(S,>a,y) = P(S/(a,(y + 8;)) > 0)

(3.2)
- P(S,<a,y,S,(a,(y + 8)) > 0).
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Also, for any 0 < 8 < §; + y, as in the derivation of (3.1),
P(S,<a,y,S.(a,(y + 8;)) > 0)
<P(S8,(0, 8a,,) < —b,a,,/2)
(3:3) + i P(S,(8a,) <a,(y +27%,),X; > a,(y + 81))
i=1
< P(IS,(0, 8a,,)| > 8,a,,/2) + DI?P(X,| > 8a,,)".
By Bonferonni’s inequality and Lemma 3.4 of Peligrad (1982),
(3.4) P(S,(an(y + 8,)) > 0)
> rP(X, > a,(y + 8,)) — DI?P(X; > a,,(y + 8;)),
and
max{P(S,(0, 8a,,)| > 8,a,/2):1 <r <1}
< D(8,a,,) [IEX2I(X,| < 8a,,) + (IEX,I(X,| < ba,,))’].
Since {m,} c {N}, by (2.4) and (2.5), for any & > 0 with M({-34, 8}) = 0,
lim a2 EX2I(X,| < 8a,,)

n—oow

= lim a;2 my EXZI(X,| < ba,,,) = M((-$, 5)),

n— o

lim ka;22(EX,I1(X,] < 8a,,))’

(3.5)
(3.6)

. _ 2
3.7 < lim 2k [Amy P(IX,] > 8a,, )]

. - — 2
+ lim 2ky![mya,l EIX, (X, > Aa,,, )]
=0 ifone chooses A > 0 large.
By (8.1)-(8.7), for any 0 < §; < 6 + §; <y with y + &;, £8 € C(M),

lim max k|P(S, > a,y) —rP(X; > a,y)l

n-w l<r<i
<D lim [mIP(X, > (v - 8))a,) — P(X, > ya,,)
' +m|P(X; > (y + 8,)a,) — P(X; > ya,)
+kI?P(X,| > 8a,,)’]
(38) +D872M(( -6, 8))
< D[(M*(y — &) - M*(y +8,))
+ lim (' (M'(8) + M-(—a))z)]
+ D672M(( -8, 9)).
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Letting 6 » 0 + and then 8, » 0+ [such that +48,y + 8, € C(M)], the
result follows.
Proof of (b). By (3.5), for any §,, 8 > 0,

ka;2E(S))’1(IS) < 8a,,)
= ka2 E(S)*I(S)| < ba,,, IS,(8,a,,)] > 0)
+E(S,)°1(1S)] < 8a,,, 1S,(8,a,,)| = 0)]
< ka;2[(8a,,) IP(X,] = 8,a,,) + E(S,(0, 8,a,,))’]
< D8*mP(X,| > 8,a,,)
+ Dka;?[IEXPI(X,| < 8,a,,) + (IEX,I(X,| < 8,a,,))7].
Hence, using (3.6) and (3.7), as in the proof of part (a), for +8, + §; € C(M),
lim limsupkya,2E(S,, — lyn)'I(S,, — lyul < 8a,,)

-0+ oo

< lim [D8%(M*(8,) + M~ (—8,)) + DM((-8y,8,))]

= DM(( -6y, 51))’
which tends to zero as §; — 0+. This proves part (b).

Proof of (c). Fix A; > 0 such that +A; € C(M). Then, by Lemma 3.4 of
Peligrad (1982) and the proper convergence of Nx2 dF(xay) to M(dx) [cf.
Feller (1966), page 5271,

lim sup ka,,'E(IS,II(IS,| > Aa,,))

n—w

< limsup2ka,;}{EIS;(0, \ya,,) — ES;(0, \a,)II(1S,(0, Ma,,)

n— o
—ES)(0, ha,,)|l > 27'a,,) + 2EIS,(Ma,)|}
< limsup [ DA~ 'ka;,? Var(S,(0, Ma,,)) + Dka, MEIX,|I(1X,] > Aa,,)]

n—o
<DAT'M([ Ay, A1) + D lim mya, EIX (X, ] > Ma, ).
n— o
Hence, the result follows by (2.5). ]

LemMA 3.2. Under the conditions of Lemma 3.1, for all x > 0 with A-x €
Cc(M),
by
Var|kyby' ¥ (I(A- ¢ > xa,,) — P(A- ¢ > xa,))| = O(myN™Y),
j=1

PrOOF. As in the proof of Lemma 3.1,set [y =1, ky =k, my=m, by =0
and u = 0. Without loss of generality, take A = 1 and write Y; = I({; > xa,,)
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= P({; > xa,), j = 1. With [, =1 + 1, define the block sums of the Y}’s as
Y. = - nio<jsrYp r = 1. Also, let K =[b/21,]. Then L0_,Y; = Z, 1 er
YK | Y, + Ry, where R, is defined by subtraction. Note that {Y,,), si1isa

mean-zero stationary sequence with p-mixing coefficient p(r) < p(rl, — 1) <
p(r) for all r > 1. Hence, by Lemma 3.4 of Peligrad (1982),

K 2 ©
E( y y"z,) < 8000[ T+ p(2’))]KE(Y2)2.
= r=1
Hence, using similar arguments for X | Y, _,, by Lemma 3.1 one gets
b
Var(kb’1 Yy YJ)

Jj=1
2 LA
<4(kb7 1) E( Y Y.

< DE’N-B(Y,) + EB(¥,)" + E(R,)’]
< DEAN-'"[I2EY}]
=O(myN~1).

This completes the proof of Lemma 3.2. O

For Lemmas 3.3 and 3.4 and the proof of Theorem 2.2, define

b= min[1(p(1121)) ] n24),
=1+ (LYY, L=L+1, m=[b/],
T(J) = Y kb TU((g - lu)ate€d), 0<i<my,

ilog<j<ily+ly

(39 Ay ) = Y kob U((¢ — In)as  €d), 0<i<my,

ilo+1,<j<(@+ 1),

An(I)= X ked (g~ Ip)at €d), J<RN0},
myla<j<b '
N,= Y T and N, = Y A,
O<i<m, O0<i<m,

LEMMA 3.3. Suppose that the conditions of Theorem 2.2 hold. Then, for
any two intervals J; € R\{0}, i = 1,2, with sup{x: x € J;} < inflx: x € J,},

m, ET,(J)T1(J;) = o(1).
See Section 4 for the proof.
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LEMMA 3.4. Assume that the conditions of Theorem 2.2 hold, and let
J € R \{0} be an interval. Then we have the following:

(@ mET(J)2I(T(J) — 1| > 8) = o(1) for every & > 0;
(b) mET(J)? = A (J) + o(D).

See Section 4 for the proof.

LEMMA 3.5. Assume that (2.4)—(2.7) hold. Then
ay'(Sy —Np) >, W, asn - o,
where W, has ch.f.

(3.10)  @(2) = exp(f(exp(itx) —1—itx)x 2M(dx)|, teR.

Proor. We only outline a proof here. Let I; = I, and I, = [, be positive
integers such that /,I;! + I3N~! = o(1) and p(I,XNI3!) = o(1). Set u =0
and write Iy =13+ 1,, K [N/l 1, Vi=86_11,41, S(, s ¢ =1 (where
Sy=0), S;y=X1.;<x Vi, Soy =Sy — S;n- Then, using (2. '4), Lemma 3.1
(with my = N), a truncatlon at some ¢ > 0 with +¢ € C(M) and Lemma 3.4
of Peligrad (1982), one can show that S,,/a, — 0 in probability and that

itS itV |\ ¢
ay a,
1111(} lim sup Kay?EVZI(|Vy| < Say) =0 = hmM([ 5,8)),

n— o

< DKp(l,) = o(1),

lim KP(A -V, > xay) = M*(A-x) forallA-x € C(M), x > 0,

n—©

lim lim sup Kay'E|V,|I(|V,| > Aay) = 0,

AD® 5L

and by Fatou’s Lemma, integration by parts, and (2.5),
lim [ || I(lxl > A) M(dx)
Ao

lim2 " M () + M ()] dy

<
Ao
(3.11)
< hm lim sup 2f NP(IXll >ayy)dy
n—o
Aay
< lim limsup 2Nay'E|X, II(IX | > ——2—) =0.

Ao 5L

Lemma 3.5 now follows by standard arguments. Details are omitted. O

ProoF oF THEOREM 2.1. By Lemma 3.5, it is enough to show that
(312) po( Hp,, o H) = 0p(1),
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where [ exp(itx) dH(x) = ¢(¢),t € R [cf. (3.10)]. Let $n(t) = E, exp(it(¢{F —
E.S¥)), t € R. Since a sequence of r.v.’s converges in probability if and only
if, given a subsequence, there is a further subsequence through which it
converges almost surely, (3.12) would hold if, for any subsequence {N"} of
{N}, there is a subsequence {N'} of {N"} such that, for every sample point
w € A for some A € ¥ with P(A) =1,

(51* - lN'.Uv)

my

=o(1),

oo
(3.13)

Ky [ fi(%) dG, (%) = [ f(x)x*M(dx) + o(1) forallt <R,

where f,(x) = exp(itx) — 1 — itx, x € R, and G,, = G,, , denotes the condi-
tional distribution of (¢ — lu)/a,, given X,,.

Let u = 0. Then, by a diagonalization argument involving suitable count-
able dense subsets of x, & and A’s, it is enough to show that

i\’
(3.14) kNE*(al ) =o0p(1),
(3.15) kEyP (ALY > xa,, ) = M*(Ax) + 0p(1),

{*
(3.16) kNE*(al

) I(I¢f] < day,,) =M((-8,8)) +0p(1),

my

I

(3.17)  EkyE,

1(¢#1 > ha,,,) = fl |>A|x|—1M(dx) + 0p(1),

my

forall x >0,8>0, A>0, A= +1such that Ax, +6 and +A € C(M).
For £ > 0 by (2.4), Lemma 3.4 of Peligrad (1982) and Lemma 3.5,

a
Ry *aph by ylSyl = Op(k;v‘/z(MNN‘l)( = )) =op(1)

N
amN

and

Y (- IV(X; + XN—j+1) > &

1<j<liy

P(k}v/za,;}, by'

<2y P(IX,| > ca,, )

2
+ 28"2kNa;ibN2E( Y Uy —NXI(X)| < camN))

1<j<lIn

< Dky' + De™?(N721% + ¢ 2N°13) = o(1) wherec € C(M),c > 0.
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This proves (3.14). Also, (3.15) follows from (2.4) and Lemma 3.2. Next, let
Yy, = a2 %104 < da,, ) and Y, = Y;; — EYy;, i > 1. Then, by (2.4), Lemma
3.1 and the blocking argument in the proof of Lemma 3.2,

* |2 2
k,%,Var(E* L) (g < day,) =k,2vb;,2E( T x.)
\ Ay N 1<i<by
< Dk by%(byly)EY
< DMy by'(28)(kyEYy;)
My
=0(—1_V—)’

which implies (3.16). Hence, it remains to prove (3.17). Let {A,} be a sequence
such that A, = o(1) and A, < (N/my) for all N. Define Y,; = a,,}1£11(14,] =
M), Yg =a,tlGlI(A <14 /a, | < Ay), i >1. Then, by (2.4), (3.11) and
Lemma 3.1, the expected value of the Lh.s. of (3.17) is equal to k,(EY,; +
EY,,), which tends to lx| " I(lx| > D M(dx). Hence, (3.17) follows by noting
that &y EY,; = o(1) so that, for every ¢ > 0, for sufficiently large n,

1<i<by
sP(ko,gl Y Y, > s) + Plkybytl Y (Y3 —EYy)|> ¢
1<i<by 1<i<by

< o (kyEYy,) + 62k by? Var( v Y3,.)

1<i<by

< & (MyN "Wy ){kya, EIG (4] > Aa,,)} +o(1) = o(1),

by the blocking argument of Lemma 3.2. This completes the proof of Theorem
21. O

PrOOF OF THEOREM 2.2. By Theorem A of Athreya (1987a), Lemma 3.1
and (3.14), it is enough to show that, for any disjoint collection J;,..., J, of

closed intervals in R \{0} and for any c;;...,c,, r > 1,
(3.18) ko 2 c;G(J) =g X ¢;N(J)),
j=1 j=1

where G, (x) = E,I(|{{*] <xa,), x € R. Note that k,G,(-) = N;,(-) + N,,(),
where the N,,’s are as in (3.9). For any J =[ B8, y] € R \{0},

EN,,(J) < mlikob™"P(IZ,] > Da,) + kb *P(IZ,] > Da,) = o(1).
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Hence, (3.18) holds if X}_,¢;N,,(J;) =, E7_; ¢;N(J)). By the a-mixing condi-

tion on the X;’s,

Eexp(it Xr: Clen(Jj)) — (E exp(itUy))™"

Jj=1

<Dma(l} - 1) sD(f—c%(—-ll)(ll‘ll) =0(1),

where {U;: i > 1} are iid and U, =; L}_c;T(J)). Since N(J,),..., N(J,) are
independent Poisson r.v.’s, it is enough to show that, for § > 0 small,

(3.19) mlEUl = Z CJ)\J + 0(1),
Jj=1
(3.20) mlf x2dG,(x) = Acf+o(l), l<j<r,
lx—c;l <8
and
(3.21) mlf x2dG,(x) = o(1),
As

where A; = A, (J;) and A; ={x: [x —¢;| =8 forall 1 <j <r}.
Equation (3.19) is implied by (2.10) and Lemma 3.1. Note that, by Lemma
3.3 and Lemma 3.4, forall0 < § < 1,

mlfA x2dG, (x)

= mE(Le,Ty(J)) I(|Ze;Ty( ;) — ;| > & forall jy)

< Dm,

L ETy(J)Ty(J;) + Zr: EI}(Jj)2I(

i#j j=1

<o(1l) + Zr‘, mlEl“l(Jj)ZI(lch A0y(J;) — 11 > g)
j=1

Z e, I(J;) — ¢
i=1

g

+ i mlErl(Jj)2I( L le, Ty ()l + ley(Ty(J)) — 1) > 8,
j=1

i#]

le;(Ta(J;) = 1)l < g

<o(1l) + D§! i‘, mlEI‘l(Jj)( Y le,Ty( Ji)l) =o0(1),
j=1

i#j

proving (3.20). One can prove (3.21) similarly. Hence, Theorem 2.2 follows. O
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4. Proofs of Lemmas 3.3 and 3.4. Without loss of generality, let u = 0.

Proor OF LEMMA 3.3. Without loss of generality, let J;, = (B;, 8,), i = 1,2,
where 0 < B; < v, < B, < 8, < . Note that J, N J, = & implies
my ET;(J1)T1(J5)
SDnl_2 Z P(gl e'Jlan, gi EJr2an)

1<ixl!

+Dnl™® ) P(l&4] > Bia,)(p(1 = i) + P(I44] > Bia,))

I<i<ly

= Rln + R2n (say).

(4.1)

Note that, for any sequence {I'}, 1 < !’ < n, by Lemma 3.1(a) and (2.12),
(4.2) max P(|S,| > Da,) = O(n~1'l").

l<r<l’

For any r.v’s W,, W, and W; and real numbers 0 < a < b; <c¢ <d (with
a,=a/2),

Pla<W +W,<b;,c<W,+W; <d)
<PWy>ay, W, <b;, —W;,c<b, — W, +W,)
+P(W,<ag,a —a,<Wy,<b;, —W;,c<b; — W, + W)
<P2W,>a,W;>c +a;— b
+P(2W; < — (¢ — by),2W, > a)
+ P(a < 2W,, (c — b;) < 2Wj).

Let Iy =[1%2], 1, =[1¥?] and A, ={|S; — S;_1,] < 8pa,}, i > 1;, where 83,
= min{ B;, By — ¥;}. Then, by (4.2) [see Lahiri (1993)],

(4.3)

Ry, <Dni™® Y, P({{1edia,, Liedya,}nA,NA)+0(1)

lg<i<l—lg
=Ry, +o(1) (say).

USing (4.1) and (4.3) (Wlth Wli = Si—l7’ W2i = Sl—l7 - Si—l and W3i = {i -
S,_,), one gets

Ry, <Dnl™®> ). [P(Wy > éa,, Wy > 8a,)

lg<i<l-lg
+P(Wy; < —8pa,, Wy, > 8a,)
+P(Wy, > 8ya,, Wy, > 8ya,)]

< Dl 21(n" )" + p(17)(n 1)
<D[n '+ p(l;)] = o(2).
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By similar arguments,
Ry, <Dnl™P(I44] > Bya,) - [Ig + 1 p(lg) + n=11,1]
“9 = O(I g + 17y p(lg) + n7'Ly).

This proves the lemma. O

Proor oF LEMMA 3.4. Using Lemmas 3.1 and 3.3, one can show [see
Lahiri (1993)] that it is enough to prove Lemma 3.4 only for JJ =[x,9), x>0,
_ Proof of (a). Let Z; = L ;_1, ;< kob ' I(; € Ja,); let S, (respectively,
S,) denote the sum of Z’s over all even i (odd i), 1 <i < 2l,; and let
Ry, =T(J) — Ly .9, Z;, where I3 = [I,/21]. Clearly,

myERZ, < Dm,1*(kob™ 'V E(I(¢{, € Ja,))’ < DIj 1,
and

my Y. (2l —i)EZZ,
2<i<2lg

(4.5)
< Dni; Y I,EZ, Z, + 13(EZ,)" + 12EZ, p(1)] = o(1),

by (4.2). Note that |Z;] = O(1) a.s. Hence by (4.5), for large n,
m ESZ(Ty(J) — 1] > 8)

1
<Dnli* Y EZZZ,-[I(IZQL._1 +Zy +Zyiq — 1] > -2—)

l<i<ly

)
+I(|F1(J) —Zy 1 —Zy —Zyql > ‘2‘) +o(1)

!
<Dnl~%"2 Y EI({;,, € Ja,)(Z, + Zy + Zy — 1)* + o(1)
(4.6) i=1

<Dnl= %2

21 2
EI(¢{ Jan)(l"1 Y I(¢ € Ja,) —.1) }

j=1

+Dnl™%72 ), P({ €da,, € da,) + o(1)
l1<j<2l

2

+ 0(1),

21
=Dnl % 2EI({, € Jan)(l_1 Y I({eda,) -1
Jj=1

where the last step follows from an argument similar to (4.4).



1348 S. N. LAHIRI

Next, a lengthy but straightforward calculation shows that

21 2
nl 'EI({, € Jan)(l_l YI(g e Jan))

Jj=1

=6nl3), ) P({ €da,,€da,,l€da,)+o(l).
(4.7) l<i<j<l

) [61_3 r —J)][nP(Xl > xa,)] +o(1)
1<i<j<l
=px~ %+ o(1).

Also, by similar arguments,

21
(4.8) 2nl72EI( ¢ eJan)( Y I({ €da,)| =2px~ + o(1).

Jj=1

Now, part (a) can be proved using (4.6), (4.7) and (4.8). See Lahiri (1993).
Proof of (b). As in the proof of Lemma 3.3 [cf. (4.4)],

m,ETy([ 2,%))*

l
= ml(kob_l)z[llp( { > xa,) + 2.2 (L =) P(& > xay, &4y > xay,)

i=2
+ 0(1)

l
2nl72 Y P({ > xa,, {1 > xa,) + o(1).
i=1

The rest is as in (4.8). See Lahiri (1993) for further details. O
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