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AN OPTIMUM DESIGN FOR ESTIMATING THE
FIRST DERIVATIVE
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An optimum design of experiment for a class of estimates of the first
derivative at 0 (used in stochastic approximation and density estimation)
is shown to be equivalent to the problem of finding a point of minimum of
the function I defined by T(x) = det[1l, x3,..., x%2m"1]/
det[x, x3,..., 2™~ 1] on the set of all m-dimensional vectors with compo-
nents satisfying 0 <x; < —x, < - <(=1)™ !x, and Ilx;| = 1. (In the
determinants, 1 is the column vector with all components 1, and x! has
components of x raised to the i-th power.) The minimum of T is shown to
be m, and the point at which the minimum is attained is characterized by
Chebyshev polynomials of the second kind.

1. Introduction. An optimum design of experiment is considered for
estimating the first derivative at 0 of a function f on the real line when only
observations, subject to error, of function values are available. In Section 2
the optimum design problem is described and shown to be equivalent to the
problem of finding a point of minimum of a function T, defined below. The
solution is described in Theorem 1.2.

We assume throughout that m is an integer, m > 2. We define I as a
restriction of a function G; we will need G in Section 3.

DEFINITION 1.1. G is the function defined on the set
(1) 26-= {x;x =(%y,.0,%,0,0<x; < —xy < -+ < (—l)m_lxm}
by the relation

(2) G(x) =

det[1, x3, x%,..., x2m 1] 1/m
(l_[IxI) ,

det[ x, x3, x%,..., x2m 1]

where 1 =<(1,1,...,1) and x' = (xi,...,x!). [The denominator in (2) is
different from O by properties of the Vandermonde determinants.] The func-
tion I is the restriction of G to the set

(3) T = {x;x €aaG, [lx;| = 1}.
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THEOREM 1.2. The minimal value of T is m and is attained at exactly one
point x, namely, at x defined by

m+1-—1i
2m + 1

These x; are the roots of the polynomial Q defined by Q(¢) = U, (¢/2) +
(=D™U,,_(¢/2), where U,, is the degree m Chebyshev polynomial of the
second kind.

(4) xi=(—1)i_1200s( 77) fori=1,...,m.

Proof is given in Section 5.

REMARK 1.3 (Comments on the proof). The problem has arisen already in
Fabian (1968a); at that time the solution was not found. At the beginning of a
renewed effort, numerical studies and beginnings of the theoretical under-
standing gave a surprising result: for small m, the minimum of I" was found
to be close to m, and the coordinates of the minimal point x were roots of an
integer-coefficient polynomial. This and similar properties discovered later
helped us to believe there was a simple explicit answer to the problem and
sustained us in the effort to find it.

Attempts to use existing results on optimum design of experiments failed.
There, Wynn (1984) is a very useful review. Within the theory, there are
strong and simple results [e.g., Kiefer and Wolfowitz (1959, 1960) and Karlin
and Studden (1966)], but also problems where results have been obtained by
numerical computations with attendant difficulties of local versus global
minima [e.g., Mitchell (1974) and Galil and Kiefer (1980)].

The present solution proceeds as follows. First, in Section 3, it is shown
that T' attains its minimum and that the point at which it attains its
minimum is stationary (see Definition 3.1). Section 4 describes the property
I'(x) = y by three polynomials P, @ and R and uses these to characterize
the stationarity of x. This is used in Section 5, where these polynomials,
corresponding to a stationary point x, are determined. From there, the
unique stationary point x is determined, and this x is the point of minimum.

2. The optimum design problem.

REMARK 2.1. We consider the statistical problem of estimation of the first
derivative at 0 of a smooth function f on (—,®), The estimates considered
are linear combinations of estimates of the differences of f at 0 with the
coefficients chosen in such a way that the bias of the estimate is not
influenced by derivatives of order 2,...,2m of f at 0. The expected squared
error of the estimate depends on the steps used in the differences, and the
problem studied here is that of the optimal choice of these steps. Such
estimates have been used to obtain an improved rate of convergence for a
modification of the Kiefer—Wolfowitz stochastic approximation method in
Fabian (1967); later, the rate was shown to be optimal by Chen (1988). The
estimate was also used by Koronacki (1987) for estimation of densities, and a
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similar estimate was used by Fabian (1990) in cubic spline estimation of
nonparametric regression functions. Estimates of the first derivatives are
also used in the response surface methods, and Box and Draper (1959) and
Karson, Manson and Hader (1969) discuss optimum designs for problems
with a motivation very similar to ours. However, the assumptions and the
actual questions treated there differ from ours so that their results are not
applicable in our case.

2.2. The estimate. Consider a function f on the real line with derivatives,
at 0, of order 1,...,2m + 1; denote these derivatives ¢i,..., @9, .1 We
assume that it is possible to observe function values subject to error; thus
also function differences. Averaging such independent observations we may
control (at cost) the variances. This will be summarized later more formally.
First, let us consider approximations of ¢, by linear combinations of function
differences:

]_ m
5 = — d )
(5) b= 55 Loid(ew),
where ¢ is a positive number, d(y) = f(y) = f(—y), u €D ={u;u € R™,
0<u < - <u, =1}, U is the transpose of the m-by-m matrix
[w,u?,...,u?"" 1] and
(6) Uv = (1,0,...,0).

For s = 1,...,2m + 1, the sth derivative, at 0, of the function ¢ — d(cy;) is
2¢,uf if s is odd, and O if s is even. Using a Taylor formula and relation (6),
we obtain that

| @amer tr(c)] am+1

_ — p2m ) . . _
(7 lg—ed=c @m T D) ig,lvlul with 31_1)1(1)7’(0) 0.
We assume our estimate Y is given by the right-hand side of (5), with d(cu;)
replaced by Y; for i = 1,..., m, where Y,,...,Y, are uncorrelated random

variables, and each Y, has expectation d(cu;) and variance 20 2/¢;, with
Y, & = 1. Under these assumptions,
o v
2¢2 7 &
The meaning of ¢; is rather standard in the design of experiment theory
since Kiefer and Wolfowitz (1959). Thus if, for each i, Y; is the arithmetic
mean of n; uncorrelated random variables with expectation d(cu;) and
variance 20, then Y, has variance 202/n; = 202%/¢;,, where ¢ =n;/N,
o?=0¢/Nand N =n, + - +n,,. If & and N are given, we can determine
n; to satisfy n; = N¢, approximately, or, conservatively, we may choose n;
the smallest integers such that n, > N¢;.

Suppose we have a bound ¢ for |¢,,,,; + r(c)l. We then obtain an upper
bound e for the expected squared error of Y:

(9) e="2+var(Y),

(8) EY=¢, var(Y)=
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where ¥ is defined by the right-hand side of (7) with ¢,,,,; + r(c) replaced
by ¢. We are interested in the optimal (i.e., mimimizing e) choice of the vector
u, provided ¢ and ¢ have been chosen optimally. A simplifying fact is that
this optimal choice of u depends only on m, the dimension of the problem. It
is easy to derive formulas specifying the optimal ¢ and ¢ (see Lemma 2.3
below), but the formula for ¢ involves, implicitly, the bound ¢. In most
asymptotic considerations, the estimate is applied with o approaching 0.
Then ¢ approaches 0 [cf. (10)] and the goal is to minimize (9) with ¢ = |¢,,, . 1|
[as in, e.g., Fabian, (1968a, b)l; ¢,,,.; can be estimated. The optimization
here is done for a given m, but the solution is also useful for deciding which
m to use.

In the lemma below, it is assumed that ¢ > 0. Consider thus, for a
moment, the case ¢ = 0 (an unlikely case, in particular, if ¢ is not restricted).
If also o = 0, then e = 0, and the optimization problem is trivial. If o > 0,
then the minimization concerns only var(Y); if ¢ can be chosen any number,
then e does not attain its infimum value O However, if ¢ is specified, then
var(Y) is minimized by minimizing Y7 ,v2/¢;, that problem has a known
solution, see Remark 2.4.

LEMMA 2.3. Assume ¢ > 0. The optimal choice of ¢ and c is

oyl .. lo, D B ]1/(2”2)

(10) &= o] and c¢ = [;Z

’

where s = 2m,

2 2/ m 2
11 A= vustt and B = z vl | .
i 2 13
i=1

(s + 1)'
With these ¢ and c,

@ 2/G+ D[ 52 s/(s+1)
(12) e = (1 + S)S“S/(s*-l) _______] —_— [h(u)]zs/(s+1)’

(s + 1)! 2

where
(13) h(u) = [Zlv IH —F(Tu)
and T is defined on D by T(u) = (u uy - um) Vmluy, =g,y ..., (D™ 1uy).

ProoF. The optimal ¢ minimizes H(¢) = XM v2/¢. By the Schwarz
inequality, applied to <(|v,l/ 1/_:, vy ot/ \/_f_\ and (1/_:, .. \/—f:)
H(¢) = (Zlv;D? The ¢ given in (10) is optlmal because, for it, H (§) equals
the lower bound established.

With the optimal ¢, e = Ac?® + Bc™ 2. Differentiating gives the result
concerning c. For this c,

e =Al/(s+l)Bs/(s+1)S—s/(s+1)(1 + S),
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and thus (12) holds with

m 1/s

m
(19) ) = | Elad]| £ vutne
i=1 i=1
Set @ = (IT,u;)"!/™ and set z = au, w = v/a. Note that () is equal to (14)
with u and v replaced by z and w. Let Z denote the matrix obtained from U
by replacing u by z and note that (6) holds with U and v replaced by Z and
w. Thus w is the first column of Z~' and thus, with Z, ; the cofactor of the
(1,7) element in Z,

15 P i1
(15) w; = 9= Z) ori=1,...,m.
As a consequence, if ¢; are numbers, then
det(C)
16 w. = ,

where C is the determinant obtained from Z by changing its first row to
[e1s.--5¢p,] Use (16) with ¢; = 22™*! to obtain that the left-hand side of (16)
is (-D™ 1,22 = (- 1™ !, and thus

(17) h(u) = f‘,lwil.
i=1

Since w = v/a, the first equality in (13) holds.

By properties of Vandermonde determinants, det(Z) is positive and so are
the (1,i) minors of Z. By (15), the sign of w; is (—=1)'"'; thus h(u) =
T, (=1 'w, and, by (16),

L det(C)
() = Fex2)
where C is Z with its first row replaced by [1, —1,...,(—1)""1].

Next, multiply the even columns in both matrices in (18) by —1, transpose
the matrices and set x; = (—1)'"'z,. Then A(u) = I'(x) with x = T(x) and
the second equality in (13) holds.

(18)

REMARK 2.4 (A related result). Using results in Kiefer and Wolfowitz
(1959), Fabian [(1968a), Theorem 5.1] found the solution to the problem of
minimizing the expression L ;v2/¢,;, mentioned at the end of Section 2.2,
giving a heuristic argument that the solution will approximately minimize e.
Choosing £ optimal makes the expression equal to g(u)?, where g(u) =
" ,lv;l. The point u, minimizing g(w), is given by u; = cos[(m — i)m/(2m —
D] for i =1,2,..., m. For this u, the value of 4 defined in (13) is given by
h(uw) = 2/™(m — 1/2)[see (5.1.4) in Fabian (1968a) and note that v there is 1
times the present v]. This h(u) is slightly larger than the minimal value m.
For four values of m, Table 1 gives the last factor in (12) for u optimal, the
suboptimal u that minimizes g(u) only, and the equidistant choice u; = i/m
fori=1,...,m.
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TABLE 1
The values of [ h(u)]2¢/(s*+D

u
m Optimal Suboptimal Equidistant
2 3.0314 3.3310 3.3310
5 18.6576 19.8210 25.5865
10 80.3086 83.1132 137.5495
15 188.9321 193.4869 372.9216

3. Attainment of minimum.

DEFINITION 3.1. A point x is stationary if it is in 2T and the gradient of
G at x is 0.

LEMMA 3.2. Ifxisin 2G and a is a positive number, then G(ax) = G(x).
The function T attains its minimal value at a stationary point x; the minimal
value is positive.

Proor. The first assertion follows easily from (2). Consider an x in 2T.
Dividing each row of the matrix in the denominator D in (2) by the first
element gives a Vandermonde matrix, and D = IT;x,I1, . (x? — x2). Expand-
ing the numerator by the minors of the first column, we express it as a sum of
terms M; (for i = 1,...,m) with M; = (=" 'TT;x3IT, . (x2 — x2), where
the prime means the subscripts in the product are different from i. Since
lx;1® = (=1~ x? and IT;lx;| = 1, we obtain an alternative expression for I':

m 1
(19) [(x) = %

i=1 |xt3|l_ls<z(xz2 _xf)ni<r(xr2 - xtz) ‘

There exists a sequence {x,) in 2T such that (I'(x,)) converges to y=
inf{I'(x); x €2T}. The sequence is bounded, because, if not, I'(x,) — « by
(19) and by (38). Thus, changing the sequence to a suitable subsequence, we
obtain x, — x, for an x,. It is easy to see from (19) that x, € 2T, because, if
not, again I'(x,) — . From the continuity of T, it follows that I' attains its
minimal value y at x, and that vy is positive.

Because of the property G(ax) = G(x), the ranges of G and I'" are equal.
Thus I attains its minimal value y at a point x, and G has a minimal value
at x. Since the gradient of G obviously exists, x is stationary. O

4. A polynomial description.
LEMMA 4.1. If x €9T and Q@) =T1,(¢t — x,), then there is a unique

polynomial R of degree at most m — 1 such that, for P = QR, P — 1 is odd.
For these P, @ and R, and for v = I'(x), with [ m /2] the largest integer less or
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equal tom/2,
(20) Q(0) = R(0) = (—=1)"*"* and P'(0) = —.

ProoF. From 7y =T(x) it follows that det[1 — yx, x%, ..., 22" 1] =0.
Since the columns 2 to m are linearly independent, it follows that 1 — yx is a
linear combination of x2, x5, ..., 2™~ 1, Consequently, there is a polynomial
P of degree at most 2m — 1 such that P — 1 is odd, and satisfies the second
part of (20). The components of x are roots of P. Thus P is divisible by @ and
equal to QR with a polynomial R of degree at most m — 1. The unicity of P
follows from the linear independence of x, x2,...,x2™ ! and implies the
unicity of R; Q(0) = IT1,(—x,) = (—=1)™*[™/2 by (1) and (3); and 1 = P(0) =
R(0)Q(0), proving the first part of (20). O

4.2. Convention. Within the context where an x in 9T is specified, we
shall use the notation y and P, @ and R in the sense of Lemma 4.1.

LEMMA 4.3. Let x be a point in 2T. Then x is stationary if and only if, for
all ¢,

(21) R(t) =3[2Q(¢) —utQ(t) +(~ 1)" wtQ(~ 1)] where u=(= 1)"y/m.

Proor. Write (2) as G = (f/h)g. The functions f, h and g do not acquire
value 0 at any point in 2 G (cf. Definition 1.1 and Lemma 3.2). Denote the
partial derivative with respect to the £th coordinate by a subscript k. The
phrase for all k will mean for every k = 1,..., m. Note that g(x) = 1. We
have

1
22 =
(22) 8a(x) =
and hG, = f,g + (f/h)hg, — (f/h)gh,. Thus x is stationary if and only if
vh(x)
(23) fi(x) — vh,(x) = — for all &.
mx,

The derivatives f, and h, are obtained by replacing the kth row of the
defining determinant by its derivative and, consequently, the left-hand side
in (23) is equal to the determinant of the matrix with rows r; = (1 —
yx;, x5, ..., x2m7 1), for all j, except that r, =<(—v,3xf,...,2m —
Dx2m~%) Recall that the components of x are roots of the polynomial
P = QR. Denote the coefficients of P by p;. If we add, to the first column, the
second column multiplied by pj,... and the last column multiplied by p,,, ,,
then the changed matrix has the first column elements 0 except that the £th
element is P'(x,). However, P'(x,) = Q'(x,)R(x,), since Q(x,) = 0.
Expanding the determinant by the first column then gives

(24) fi(x) — yhu(x) = (=1)*7'Q'(x,) R(x,)W, forall ,
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where W, = det{w?,...,w?" "] and w is the vector obtained from x by
deleting the k2th component (w thus depends on k).
Next we obtain

nx) = ([La) (L1 (=2 - 22)). We = (TT2) (10 (2 - #2),

i<j i

where [T’ indicates a product with subscript 2 omitted.

Thus W, is not zero. Since I'l;|x;| = 1, we obtain
h(x)
3 2 _ .2 2 _ .2
=x xXp — X; x? —x
=< (xf =) T (F — )

= (—l)m‘klej’(xk + x,>§l'(xk - x;).

On the right-hand side, the first product is (—=1)"Q(—x,)/(2x,). The second
product is nonzero (a fact used again soon below) and is equal to @'(x,); this
is easy to see when Q(z) is written as (z — x,)C so that Q'(z) = C + (z —
x,)C’'. Consequently,
h(x)
W

1
(25) = (-1"5xQ(~x) Q' (%)
A condition equivalent to (23) is now obtained by dividing both sides of (23)
by W,Q'(x,) and using (24) and (25): the condition so obtained is

(26) R(x) = %ku(—xk) fork=1,...,m.

The proof will be complete when we show that (26) and (21) are equivalent.
That (21) implies (26) is immediate. Assume (26) holds. Since the highest
terms of the polynomials tQ(¢) and (—1)"tQ(—¢) are equal, the polynomials
on both sides of (21) are of degree at most m. Next, (21) holds at each x, and
it holds at 0, because @(0) = R(0). Thus (21) holds. O

5. Unicity of the stationary points. The properties of the polynomials
P, @ and R will be used in this section to prove that there is only one
stationary point and to determine that point. For that, a rescaling of polyno-
mials P, @ and R will simplify the proofs. In addition, we shall express the
new polynomials in terms of polynomials S,, renormalized Chebyshev poly-
nomials of the second kind.

CoONDITION 5.1. In the remainder of this section we assume that x is a

stationary point in 2T, use Convention 4.2 and assume that u is as in
Lemma 4.3, that is,

(27) p (-1
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REMARK 5.2 (Polynomials S,). Define the polynomials S, by S_; =0,
Sy =1,8,(t) =t and
(28) Sk =S1Sk—1_Sk—2 fork = 1,2,...

[see Rivlin (1990), Exercise 1.5.54b]. It follows that each S, is a monic
polynomial of degree 2 and the same parity as 2 [Rivlin (1990), Exercise
1.5.53], and satisfies

sin[(k + 1)6]

(29) S,(2cos 0) = pr

for every 6 € (0, 7)

[Rivlin (1990), (1.23)]. For any i,j in N, and for i A j the minimum of i and j,

(30) SiSj = Z Si+j—2s‘
0

For i = 1, (30) follows immediately from (28) and the proof of (30) is com-
pleted by induction, applying the inductive assumption to (30) with the
left-hand side replaced by (S,S;_; — S,;_,)S;.

NOTATION 5.3. Define polynomials A, B and C by
t t
(31) B(t) =;u,"‘Q(—), C(t) =p,'"R(—), A = BC,
7 W
and express these in terms of S,:
A=aySy+ " +ay,_1Som_1, B=1b,S,+ - +b,8,,,

32
( ) C’=COSO+ +cm—1Sm—1;

set a;, b, and c; equal to zero for integer subscripts not appearing in the
representations.

We shall use x,4q and x,,., for indicator functions of the set of all odd and
even integers, respectively, and set N = {0, 1,...}.

The next lemma is an easy result needed in the proof of Theorem 1.2.

LEMMA 5.4. The numbers

i-lo m+1-—1 .1
xi—( ) COos —m’ﬂ forl— yeees M
are the roots of the polynomial S,, + (—1D™S,, _,.

Proor. Let @ denote the polynomial in the assertion, let « denote the
argument of the function cosine in the formula for x;, and set ¢ = x;
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and 7 = [|t|. By the parity of S,, Q@) = (=m0, (r) +
(—pm+m-bl-1g  (7)and

sin 6; + sin 6,

33 _1 m(i—1) t —
9 (-1 Q) sin a
with 8, = (m + Da and 6, = (- D" " 'ma.
The numerator in (33) is 0 because, if m + 1 — i is even, then 6, = — 6,

[mod 2], and, if m + 1 — i is odd, then 6, = 7 + 6, [mod2+]. O

LEMMA 5.5. For each t,

(34) C(t) = 2[2B(t) — tB(t) + (-1)"tB(-1)].
Also,
(35) b,=b,_1=c,_,1=1, a, = 0 for positive even k,

and, for all kin N,

Cp = bk - Xeven(m - k)(bk+1 + bk—l)’

(36)
by, = ¢ + Xeven(m — k) (chir +cpoq).

Proor. Equality (34) follows from the assumed stationarity of x by
Lemma 4.3. From (28) and the parity properties of S,, we obtain that
tS,(qt) = q*[S,, (t) + S,_ ()] for g € {—1,1}. From (34), we obtain

C=3 )% bk[2sk — (Spe1 + S 1) + (D) ( Sy + Sk—l)]
0

b, [Sy = Xoaa(m — k)(Syi1 + S;,-1)]
b

S0k = Xeven(m — B)(bysq + b_1)].

k=
o«
)y
k=0
o
)y
k=0

Since C = X;_,c,S,, we obtain the first part of (36) for all £ > 0.

When m — k is odd, then both relations in (36) become b, = c;. For m — k
even, the first relation is ¢, = b, — b,,, — b,_; =b, —c¢,,, — ¢,_,, which is
the second relation. This proves (36). Further, since B and S,, are monic, we
have b,, = 1. Using (36) for b,, and then for b,, _, gives the first part in (35).
The second part follows from the fact that, for £ even, S, is even and A — 1
is odd. O

NoOTATION 5.6. For % in N, set

k o o
(37) e, = Z bicp_i» fr = Z biChioirs 8r = Z byiaiiCr
i=0 =0 1=0
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LEMMA 5.7. Suppose k is even. Then

fo t 8., ifk=2,

(38) %= o, ifk>m — 1.

PROOF. From relations (31), (32) and (30), we obtain

>
<
8

k

= Z Z i¢;S;S; = =) ZbichSHj—ZI and a, = Z Z i+1Ch—i+1
i=0 =

1=0,j=0 1= 1=0i=
Write a,_, with the summands corresponding to i = 0 and i = & + 2 sepa-
rately, thus obtaining
© k+1

(39) Qoo =Tr+ 8+ 1 XL bisiChizir-
1=0 i=1

Write q,, treating the case [ = 0 separately, and change the summation
indices as indicated:

o k o k+1
ap=e,+ 2 X bl 1y+a-1)Ch+2-i+D+a-1) = € T Y X biiChia v
1=1i=0 1=0i=1

This and (39) give the first part in (38), because a, = a,,, = 0 if & is positive
even by (35). If & is even and 2 > m — 1, then all summands in the expres-
sions for f, and g, in (37) are trivially 0 and thus also the second part in (38)
holds.

LEMMA 5.8. We have

(40) —¢;_=c¢;=b,=b;,, ifm—iisodd
and
(41) e, = 0 ifkis positive even.

PrROOF. Denote by I the set of integers i such that m — i is odd. Let D,
denote the condition that (40) holds for all ¢ in I such that i > s. Introduce a
weaker condition:

C,: (a) ¢; = b, = b;,; holds for every i in I such that i > s;(b) ¢; = —¢;_;
holds for every i in I such that i > s + 2.

First we shall prove:
(1) if C, holds for an s in I such that s < m — 1, then D, holds.

Assume the premise of the implication. It is enough to prove that c, =
—c,_;. If s < —1, that relation holds trivially. Thus, it remains to consider
$§>0.Set Bk =m +s — 1; k is even and satisfies m — 1 <k < 2(m — 1). By
(388), e, = 0. Thus, using (37), we obtain

0= [bscm—l + bs+lcm—2] + o +[bm—303+2 + bm—2cs+1]
+[bm—lcs + bmcs—l]'
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In all the brackets except the last one, condition C, applies and makes the
sum in the bracket 0. Thus also the last bracket is zero. Since b,,_; = b,, = 1
by (385), we obtain ¢, = —c,_, and D, holds.

Next we shall prove:

(ii) if C, holds for an s in I such that 1 <s <m — 1, then D;_, holds.

Assume the premise of (ii). By (i), D, holds. Wehave b, _; =c¢,_; + ¢, + ¢,_,
by (36) and c,_, +c, =0 by D, so that b,_; =c,_,. By (36), we have
c,_g = b,_, and (a) of condition C,_, holds. Part (b) of condition C_, follows
from D, and thus C,_, holds. By (i), D,_, holds. This proves (ii).

For s > m + 1, condition D, holds trivially. For s = m — 1, part (a) of
condition C, follows from (35), and part (b) holds trivially. Properties (i) and
(ii) and an induction show that D, holds for all s in I such that s > —1. For
i < —2, (40) is trivially satisfied. This proves the first assertion.

Consider the second assertion. If £ > m — 1, then e, = 0 by (38). Consider
the case 2 < 2 < m — 2. Then, by (37),

(42) e, =boc, + [byc,_y +bycy_o] + - +[by_1e; + byeo].

Suppose m is even. We obtain, by (40), that b, = b_; = 0 and that each of
the sums in brackets is 0 by (40). Thus e, = 0. Suppose m is odd. Then, by
(40), ¢, = —c_; = 0, and the last term on the right-hand side can be omitted;
moving the brackets one term left and using the same argument as before
gives e, = 0 again. This proves the second assertion. O

LEMMA 5.9. We have b, = - =b,,_,=0andc;= - =c¢,_53=0.

ProoF. For even nonnegative &, consider the condition
C,ic;=b,=0foralli=0,1,...,m —3 — k.

Note that C, implies C,,, for even nonnegative £ and that C, is trivially
satisfied for £ > m — 2.

Suppose C, holds for an éven & such that 2 < 2 < m — 2. Equalities (38)
and (41) give f, + g, = 0 for all even positive k. Relation b,.c,,_,_, = 0 is
obtained from the defining formula (37), omitting terms that are trivially 0
and those that are 0 because of C,. Since b,, = 1 by (35), it follows that
Cpn—a-_ = 0. Applying (40) for i = m — 1 — k, we obtain that also

(43) bm—k = bm—l—k =’cm—1—k = —Cp_5;=0.

In addition, (36) gives ¢,,_y_, =b,,_9_, = b,,_1_ — b,,_5_, and thus, be-
cause of C, and (43), we obtain &,, _,_, = 0.

It follows that C, implies C,_,. By induction, C, holds and b, = ¢; = 0 for
i=1,...,m — 3. By (40) also b,,_, = 0. This completes the proof. O

LEMMA 5.10. We have
(44) B=S,+8,_1,y=m and Q=S8, +(-1)"S,,_,.
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ProoF. The first relation in (44) follows from (35) and Lemma 5.9. |B(0)|
= 1 follows from the first relation in (44) and (28). Similarly, |Q(0)| = 1 by
(20), and (31) then implies |u| = 1. Since y is positive by Lemma 3.2, we
obtain the second relation in (44) from (27). As a consequence, u = (—1)™. By
(31) and the first part in (44), Q(¢) = u(S,,(ut) + S,,_(ut)), and the last
relation in (44) follows from the parity of S, (see Remark 5.2). O

Proor oF THEOREM 1.2. By Lemma 3.2, I" attains its minimal value y at a
stationary point x. By Lemma 5.10, the components of x are the roots of @
specified in (44), y = m. This is the same @ as in Theorem 1.2, and (4) follows
from Lemma 5.4. O

REMARK 5.11. We do not need to determine the polynomials C and R, but
it may be of interest that they are also of simple form. Indeed, using
subscripts to indicate the independence of @, R and P on m, we have

(45) Cm=Sm_1_Sm_2, Rm=(_1)QO_1, Pm=(_1)m82m_1+1.

The first relation follows from Lemma 5.9 since ¢,,_; = 1by(35) and ¢, _, =
—c,,_, by (40). The second relation follows then from (27). To prove the last
relation, note that

Pm = QmRm = (_1)m[SmSm—1 - Sm—lsm—2] + [SY%L—I - SmSm—2]

and use (29). It is also easy to show that @,(#) is proportional to
P1/2-1/2(t /9) for m even and to PS 1/%1/2(t/2) for m odd, where P{*#
are the Jacobi polynomials [see Szegd (1939), Section 4.1].
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