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SOME PROJECTION PROPERTIES OF
ORTHOGONAL ARRAYS!

By CHING-SHUI CHENG

University of California, Berkeley

The definition of an orthogonal array imposes an important geometric
property: the projection of an OA(A2f,2*,¢), a A2%-run orthogonal array
with % two-level factors and strength ¢, onto any ¢ factors consists of A
copies of the complete 2° factorial. In this article, projections of an
OA(N,2%,¢) onto ¢ + 1 and ¢ + 2 factors are considered. The projection
onto any ¢ + 1 factors must be one of three types: one or more copies of
the complete 2°*! factorial, one or more copies of a half-replicate of 2¢*1
or a combination of both. It is also shown that for £ > ¢ + 2, only when N
is a multiple of 2‘*! can the projection onto some ¢ + 1 factors be copies of
a half-replicate of 2* 1. Therefore, if N is not a multiple of 2¢* !, then the
projection of an OA(N, 2%, ¢) with % > ¢ + 2 onto any ¢ + 1 factors must
contain at least one complete 2°*! factorial. Some properties of projections
onto ¢t + 2 factors are established and are applied to show that if N is not
a multiple of 8, then for any OA(N, 2*,2) with % > 4, the projection onto
any four factors has the property that all the main effects and two-factor
interactions of these four factors are estimable when the higher-order
interactions are negligible.

1. Introduction. Orthogonal arrays, first introduced by Rao (1946,
1947), have been used extensively in factorial designs. Specifically, an orthog-
onal array of size N, k constraints, s levels and strength ¢, denoted
OA(N, s*,¢t), is a £ X N matrix X of s symbols such that all the ordered
t-tuples of the symbols occur equally often as column vectors of any t X N
submatrix of X. It is clear that N must be of the form As’, where A is usually
called the index of the orthogonal array. In applications to factorial designs,
each row corresponds to a factor, the symbols are factor levels and each
column represents a combination of the factor levels. Thus every OA(N, s, ¢)
defines an N-run factorial design for k& factors each having s levels.

This definition imposes an important projection property of an orthogonal
array: when projected onto any ¢ factors, it yields A copies of a complete
factorial. Statistically this geometric property implies that all the main
effects and interactions of any ¢ factors are estimable when the other factors
are ignored. It also relates to the concept of resolution introduced by Box and
Hunter (1961): regular fractional factorial designs (those constructed by
using defining relations) of resolution ¢+ 1 are orthogonal arrays with
strength ¢. In general, an orthogonal array with strength ¢ = 2s (respec-
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tively, 2s — 1) can be used to estimate all the main effects and interactions
involving at most s (respectively, s — 1) factors under the assumption that
all the interactions involving more than s factors are negligible. For example,
an orthogonal array with strength two defines a design in which all the main
effects are estimable if the interactions are negligible. Important examples of
such arrays are the Plackett—Burman designs (1946), which are constructed
from Hadamard matrices. Recall that a Hadamard matrix of order n is an
n X n (1, —1)-matrix in which any two columns (and hence any two rows) are
orthogonal. Such a matrix can be normalized so that all the entries in the
first row are equal to 1. An OA(n,2" !,2) can be obtained by deleting the
first row. Therefore, if an n X n Hadamard matrix exists, then it can be used
to conduct an experiment with n — 1 two-level factors in only n runs. Such a
design allows the estimation of all main effects under the assumption that
the interactions are not present. The economy in run sizes provided by such
designs makes them suitable for screening experiments in which the primary
purpose is to identify important factors.

The purpose of this paper is to investigate the projections of orthogonal
arrays onto more than ¢ factors. Studying projections onto more than ¢
factors can shed light on other statistical properties of orthogonal arrays.
Even though many potential factors may be considered in the initial stage of
a study, the number of active factors which have significant effects is often
small. This is called effect sparsity. An OA(n,2"~1,2) can be used to estimate
all the main effects when the interactions are negligible. However, if there
are just a few active factors, then it may be possible to study their interac-
tions.

Projections of Plackett—-Burman designs were studied by Lin and Draper
(1991, 1992). Their computer searches found all the projections of 12-, 16-,
20-, 24-, 28-, 32-, and 36-run Plackett—-Burman designs onto three factors. For
example, they found that for each of these designs, the projection onto any
three factors must be one of the following three types: one or more copies of
the complete 2 factorial, one or more copies of a half-replicate of 2% or
a combination of both. In particular, the projection of a 12-run Plackett—
Burman design onto any three factors is always a 2° complete factorial plus a
half-replicate. This was also observed by Box and Bisgaard (1993), who
commented that the interesting projective properties of Plackett—-Burman
designs, which the experimenters have sometimes been reluctant to use for
industrial experimentation due to their complicated alias structures, provide
a compelling rationale for their use.

Lin and Draper further considered projections of 12-, 16-, 20- and 24-
run Plackett-Burman designs onto four and five factors. Projections onto
four factors begin to look messier. However, projecting the 12-run Plackett—
Burman design onto any four factors always yields a design with the property
that all the main effects and two-factor interactions of the four factors are
estimable when the higher-order interactions are negligible [Lin and Draper
(1993), Wang and Wu (1995)]. Wang and Wu (1995) also observed this
important property for 20-run Plackett~Burman designs, and coined the term
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hidden projection. They attributed the success of Hamada and Wu’s (1992)
strategy for entertaining and estimating two-factor interactions from Plack-
ett—-Burman type designs to the hidden projection property. Wang and Wu
(1995) further examined projections onto five factors. In this case, even
though the resulting projections may not allow the estimation of all the
two-factor interactions, many of them can be estimated when the others are
assumed negligible.

These are mostly computer works. This paper is an attempt to derive some
general results on the projections of two-level orthogonal arrays. Some of the
structures evidenced in earlier computation results can be derived analyti-
cally and shown to hold more generally than the scope limited by the
computer power. Such a study also provides more insight.

Section 2 is devoted to properties of projections of an OA(N, 2*,¢) onto
t + 1 factors. A result by Seiden and Zemach (1966) implies that for any
OA(N, 2%, t), the projection onto any ¢ + 1 factors must be one of three types:
one or more copies of the complete 2/*! factorial, one or more copies of a
half-replicate of 2/* ! or a combination of both. So the pattern observed by Lin
and Draper (1992) for Plackett—-Burman designs is a special case. We also
show that for 2 > ¢ + 2, only when N is a multiple of 2!™! can the projection
onto some ¢ + 1 factors be copies of a half-replicate of 2! 1. This result has
important statistical consequences. Section 3 discusses projections onto ¢ + 2
factors for the case in which ¢ is even. These results are applied in Section 4
to show that if N is not a multiple of 8, then for an OA(N, 2*,2) with £ > 4,
the projection onto any four factors allows the estimation of all the main
effects and two-factor interactions.

Throughout the rest of the paper, only two-level orthogonal arrays will be
considered. The levels of each factor will be denoted 1 and —1. For any two
1 X N vectors x = (x,,..., xy) and y = (y4,..., yy), we define their Hadam-
ard product xoy to be the vector (x,y4,..., xyyn)-

2. Projections onto ¢ + 1 factors. Proposition 2.2 of Seiden and
Zemach (1966) showed that in an OA(A2¢,2/*1,¢), any two columns differing
in an even number of components appear the same number of times, while
any two columns differing in an odd number of components appear together A
times. This result can be rephrased as the following theorem.

THEOREM 2.1. Suppose X is an OA(N,2*,t) with k >t + 1. Let Y be a
(¢t + 1) X N submatrix of X. Then there exist two nonnegative integers o and

B such that each (t + 1) X 1 vector x = (xq, Xg,..., %, 1)" with x,xy =+ %,,,
= 1, wherex;, = 1 or —1, appears a times as a column vector of Y, and each
of those with x,x5 - x,,, = —1 appears B times.

In Theorem 2.1, if @ = 0 (or B8 = 0), then the projection of X onto these
t + 1 factors is 27N copies of the half-replicate of 2¢*! consisting of the
combinations satisfying x,x, - x,,;, = —1 (or x,x, - x,,; = 1) where
X1, Xg,..., %, are the levels of the ¢ + 1 factors onto which the orthogonal
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array is projected. We call this kind of projections type I. If « = B, then the
projection is 2" ¢T VN copies of the complete 2! ! factorial and is called type
II. Otherwise the projection contains copies of a complete 2¢*! factorial plus
copies of a half replicate and is called type III.

Both types II and III projections contain at least one copy of the complete
2¢*1 factorial. Type II projections are the best, while type I projections are
the least desirable. From the statistical efficiency point of view, a and B
should be as close to each other as possible. Unfortunately, type I projections
always arise in projections of the regular fractional factorial designs, which
are popular in practice because of their simple alias structures. For a regular
fractional factorial design with strength ¢, there must exist certain ¢t + 1
factors such that all the combinations in the design satisfy x; x; - x;, =1
(or —1), where x;, x, ,... and x; are the levels of these t + 1 factors. It
follows that the prOJectlon onto these factors is of type 1.

Even nonregular designs can produce type I projections. For any 2 X N
(1, — 1)-matrix X, let X be obtained from X by interchanging 1 and —1 and let

X = [3‘1 ’1_‘] where 1 is the 1 X N vector of 1’s. This array is called the

foldover of X. Seiden and Zemach (1966) proved that if X is an OA(N, 2% t)
and ¢ is even, then X is an orthogonal array with strength ¢ + 1. Let X be an
OA(n,2"1,2) obtained from an n X n Hadamard matrix, as described in the
Introduction. Then X is an OA(2n,2",3). Pick any row of X and form its
Hadamard product with each of the remaining n — 1 rows. Supplementing X
with these ¢ — 1 products as row vectors, we obtain an OA(2n,22""1,2).
Clearly the projections of this array onto certain sets of three factors are of
type I. If the conjecture that an n X n Hadamard matrix exists for every n
which is a multiple of 4 is true, then we would have shown that for every N
that is a multiple of 8, there exists a two-level orthogonal array of size N and
strength 2 whose projections onto certain sets of three factors are of type 1. In
the following, we shall prove that for £ > 4, this can never happen when N is
not a multiple of 8. In general, if N is not a multiple of 2/*!, then the
projection of an OA(N, 2%, ¢) with & > ¢ + 2 onto any ¢ + 1 factors must be of
type III. We first prove a preliminary result.

LEMMA 2.2. Let X be an OA(N, 2% ¢t) with k > t + 2. If the projection of
X onto certain t + 1 factors, say factors iy,1iy,...,1,,1, 1S of type I, then its
projection onto any other t + 1 factors which have exactly t factors in common
with i,,14,...,1,,, must be of type II. *

Proor. Without loss of generality, we may assume that the projection of
X onto the first ¢ + 1 rows is of type I, and we shall show that its projection
onto rows 2,..., and ¢ + 2 is of type II. Since the projection of X onto the first
t + 1 rows is of type I, by changing, if necessary, the signs of all the entries in
the same row, we may assume that every column vector x = (x, %y, ..., x;,)7
of X satisfies x;x, -+ x,,, = 1; that is,

(2.1) X1 = Xg " Xysae
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Suppose the projection of X onto rows 2,...,¢ + 2 is not of type II. Then by
Theorem 2.1, it must be of either type I or type III. We shall show that this
would lead to a contradiction. Let Z be the submatrix of X consisting of rows
2,..., and t + 2. Then without loss of generality, we may assume that there
is a nonnegative integer s (which can be zero) such that the first s2¢*!
columns of Z are s copies of all the 2/*! vectors of + 1’s each of length ¢ + 1,
and all the last N — s2¢"! columns of X satisfy

(2.2) Xirg = Xg " Xpyae

Now consider the first and the (¢ + 2)nd rows of X. It is clear that all the four
pairs (1, DT, (1, —1)7, (=1,1)7 and (—1, — 1) appear equally often in the
first s2¢7! columns (if s > 0). However, it follows from (2.1) and (2.2) that
only (1, 1) and (=1, — 1)T can appear in the last N — s2¢*! columns. This
contradicts the assumption that X is an orthogonal array. O

Since N must be a multiple of 2¢™! if the projection onto some ¢ + 1
factors is of type II, the following theorem follows immediately from Lemma
2.2:

THEOREM 2.3. Let X be an OA(N, 2%, ¢t) with k >t + 2. If there are t + 1
factors onto which the projection of X is of type I, then N must be a multiple
Of 2t+ 1‘

From Theorems 2.1 and 2.3, we have the following corollary.

COROLLARY 2.4. If N is not a multiple of 2'™!, then the projection of an
OA(N, 2%, t) with k >t + 2 onto any t + 1 factors must be of type III, and
therefore contains at least one copy of the complete 21 factorial.

Corollary 2.4 has important statistical implications. Lemma 2.2 is also
interesting in its own right. We expect it to be useful for studying projections
onto more than ¢ + 1 factors.

3. Projections onto ¢ + 2 factors. Results on projections onto ¢ + 2
factors can be obtained by considering foldovers. For convenience, two
(1, — 1)-vectors which can be obtained from each other by interchanging 1 and
—1 are called mirror images. We shall denote the mirror image of a vector x
by X.

Suppose X is an OA(N, 2%, ¢), in which ¢ is even. Since its foldover X has
strength ¢ + 1, the projection of X onto any ¢ + 2 rows must be one of the
three types given in the last section. The following can easily be obtained by
applying the results in Section 2 to X.

COROLLARY 3.1. Suppose X is an OA(N,2*,t) in which t is even and
k>t+2 Let Y be a (t+ 2) XN submatrix of X. For each x =
(%1, %9,...,%,,9)7 with x;, =1 or —1, let f(x) be the number of times x
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appears as a column vector of Y. Then there exist two nonnegative integers o
and B such that f(x) + f(X) = a for all x such that x,x, -+ x,,5 = 1, and
f(x) + f(X) = B for all x such that x xy =+ x,,9 = —1.

COROLLARY 3.2. Suppose t is even, N is not a multiple of 2'*! and
k>t + 2. Then for any x = (x, X5,..., %,.9)" with x; =1 or —1, at least
one of x and its mirror image must appear in the projection of an OA(N, 2%, t)
onto any t + 2 factors.

Lin and Draper (1992) found that except for permutations of columns
and/or sign changes, there is only one possible projection of a 12-run
Plackett-Burman design onto any four factors. As an example to demonstrate
how Corollaries 3.1 and 3.2 can be applied, we shall derive this result
analytically. In fact, the same result holds for all OA(12,2*,2) with 4 < % <
11, not just for the Plackett—Burman design. What happens is that there is
only one OA(12,24,2).

Let X be an OA(12,24,2). We first observe two simple facts which follow
from Theorems 2.1 and 2.3 and Corollaries 3.1 and 3.2.

FAcT 1. In any three rows of X, either each x = (x,, x,, x3)7 with x,x;x,

= 1 appears twice as a column vector and each of those with x;x,x5 = —1
appears exactly once, or each x with x,x,x5 = 1 appears once and each of
those with x,x,x5 = —1 appears exactly twice.

Fact 2. For each x = (x,, x,, x5, x,)7, let f(x) be the number of times x
appears as a column vector of X. Then either f(x) + f(X) = 2 for all x with
x1x5%53%, = 1 and f(x) + f(X) = 1 for all x with x,x,x5x4, = —1, or f(x) +
f&) =1 for all x with x;x,x5x2, =1 and f(x) + f(X) = 2 for all x with
X1X9%3%4 = — 1.

Now we shall use these two facts to prove the following theorem.

THEOREM 3.3. Let X be an OA(12,2%, 2). Then X must have exactly two
identical columns. Furthermore, all OA(12,24,2) can be obtained from one
another by permuting columns and /or changing the signs of all the entries in
the same row.

ProoOF. From Fact 1, by appropriately changing signs and/or permuting
columns, we may assume that the first three rows of X are

t+++—-———++ - -
++ - -+ 4+ - -+ -+ -
4+ - ———++ -+ + -,
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where + and — represent 1 and — 1, respectively. We first prove that X must
have at least two identical columns. If not, then all the columns of X are
distinct and X can be written as

++4++ - - - —++ - -
++ - -+ + - -+ -+ -
++ - - ——++ -+ + -
e I i T

where * is to be determined. Without loss of generality, suppose the first of
the four #’s is +. Applying Fact 1 to the last three rows of X, we conclude
that X must be

+ +

- - -+
+ - -+
-+ -+ -+

I+ |

+++ +
I+ + +
++ 0+
I+ + |

However, then + + would appear four times in the first and last rows of X.
This is not possible because X is an orthogonal array with strength 2.
Therefore, X has at least two identical columns. Without loss of generality,
suppose they are (1,1, 1, 1)7. Then X is

++++ - - - =+
F+—-—4++- -+
++ - -+ + -
4+ 4+ ok % ok ok ok ok ok

* 4+ 1+
* 4+ + |

*

By Fact 2, the last column must be (=1, —1, —1,1)7; otherwise (1,1, 1,1)7
together with its mirror image would appear three times. Furthermore,
f(x) + fX) = 2 for all x with x;x,x5x, = 1 and f(x) + f(X) = 1 for all x with
xX1x9%3%, = — 1. Then we apply Fact 1 to the last three rows to show that the
third and fourth columns of X must be (1, =1, —1,1)7 and (1, -1, -1, — 17
Considering (1, —1, — 1, 1)T and its mirror image, we see that the next to last
column of X must be (—1,1,1, —1)7. Continuing this kind of argument, we
conclude that X must be

F+4++—-—-——+4+- -
(3.1) t+—-—++ -+ -+ -
t+—-———++ -4+ -

4+ -+ -+ - - +.

Therefore, array (3.1) is the unique OA(12, 2%, 2) (up to possible permutations
of columns and/or changes of signs). This completes the proof. O

The following corollary is an immediate consequence of Theorem 3.3:

COROLLARY 3.4. Let X be an OA(12,2*,2) with 4 <k < 11. Then any
4 X 12 submatrix of X can be obtained from (3.1) by permuting columns
and /or changing the signs of all the entries in the same row.
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4. Projections of an OA(N, 2%,2) onto 4 factors. Corollary 3.4 shows
that the projection of an OA(12,2%,2) with 4 < & < 11 onto any four factors is
unique up to permutations of columns and /or changes of signs. The comput-
er work of Lin and Draper (1992) shows that projections of larger Plackett—
Burman designs are more complex. For instance, uniqueness no longer holds.
Although more laborious, one can still work out the possible projections
analytically. However, we shall not pursue it here.

Notice that array (3.1) contains 11 distinct columns. It can easily be
verified that these 11 columns constitute a design under which all the main
effects and two-factor interactions can be estimated when the higher-order
interactions are negligible. Therefore, as observed by Lin and Draper (1993)
and Wang and Wu (1995), all the projections of the 12-run Plackett-Burman
design onto four factors have this important statistical property. The main
purpose of this section is to prove that it holds generally for all OA(N, 2*,2)
with 2 > 4 as long as N is not a multiple of 8. By contrast, unless a regular
fractional factorial design already has resolution at least 5, not all its
projections onto four factors enjoy this property.

For any orthogonal array X with % factors and N runs, we say that a
defining relation exists among factors i,,...,i,, where s <k, if the corre-
sponding rows X, ,...,X,;, of X satisfy x;, o--ox; =1 or —1, where 1 is the
1 X N vector of 1’s. In this case, the main effect of any of these s factors is
totally aliased with the interaction of the other s — 1 factors, and the
interaction of any subset of the s factors is totally aliased with the interac-
tion of the remaining factors. It is clear that if a defining relation exists
among a subset of four or fewer factors, then not all the two-factor interac-
tions can be estimated. For regular fractional factorial designs, the converse
is also true (although it does not hold in general). This is the well known rule
of using the length of the shortest word in the defining relation to determine
the resolution of a regular fractional factorial design. Therefore, in a regular
fractional factorial design, if no defining relation exists among any four or
fewer factors, then all the main effects and two-factor interactions are
estimable. We shall first show that this is true for all OA(N,2*%,2) with
k = 4, even though in general, effects which are not totally aliased are not
necessarily orthogonal.

THEOREM 4.1. Let X be an OA(N,2%,2). Then all the main effects and
two-factor interactions are estimable under the assumption that the higher-
order interactions are negligible if and only if no defining relation exists
among all the four factors as well as any three of them.

Proor. It is sufficient to prove the “if” part. Since no defining relation
exists among all the four factors and any three of them, similar to the two
facts mentioned in Section 3, we have the following statements:

(1) In any three rows of X, each x = (xy, x5, x3)7 with x;, =1 or —1
appears at least once.
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(ii) For each x = (x,, ¥y, %3, x,)7 with x; = 1 or —1, at least one of x and
its mirror image appears as a column vector of X.

Now consider the 16 4 X 1 vectors of 1’s and —1’s. If all of them appear at
least once as column vectors of X, then there is nothing to prove. So it is
enough to consider the case in which at least 1 of these 16 vectors does not
appear. Without loss of generality (by changing signs if necessary), we may
assume that at least one vector with x,x,x5x, = 1is absent. By (ii), at most
four such vectors can be absent, and no two of them can be mirror images. We
shall divide the proof into four cases:

Case 1. There is exactly one x with x,x,x5x, = 1 which does not appear
as a column vector of X. We may assume that this vectoris (-1, —1, -1, — 17T,
Then by (i), all the four vectors (1, —1, -1, —-1)7, (-1,1, -1, - D", (-1,
-1,1, -1 and (-1, -1, —1,1)" appear as column vectors of X. Together
with the seven vectors other than (=1, —1, —1, —1)7 which satisfy x;x,2x5%,
= 1. they give 11 distinct columns of X. It is easy to verify that these 11
columns define a design which allows the estimation of all the main effects
and two-factor interactions: let D be the 4 X 11 matrix whose column vectors
are the 11 vectors that we have just shown to be ¢olumn vectors of X, and let
F be the 11 X 11 matrix whose row vectors are the four row vectors of D
(corresponding to main effects), the 1 X 11 vector of ones (corresponding to

the general mean) and the (;) = 6 Hadamard products of pairs of row vectors

of D (corresponding to the two-factor interactions). Then we show that FF' is
nonsingular. This can be verified, for example, by a computer.

Case 2. There are exactly two x with x;x,x3x, = 1 which do not appear as
column vectors of X. We may assume that they are (-1, =1, —1, —1)” and
(-1, —1,1,1)". Then by (i), all the six vectors (1, -1, —1, —1)7, (=1,1, -1,
-7, (-1,-1,1, -7, (-1,-1, -1, D7, (1, -1,1,1)" and (- 1,1, 1, 17T ap-
pear as column vectors of X. Together with the six vectors other than
(-1,-1, -1, -7 and (-1, — 1, 1, 1)” which satisfy x,x,x3x, = 1, they give
12 distinct columns of X. Again, it can be verified that these 12 columns
define a design with the desired property.

Case 3. There are exactly three x with x;x,x5x, = 1 which do not appear
as column vectors of X. We may assume that these three vectors are
(-1,-1,-1,-D7, (-1, -1,1,17, and (- 1,1, — 1, 1)". Then the same argu-
ment shows that X has at least 12 distinct columns: (1, -1, —1, — D7,
(-1,1, -1, -7, (-1,-1,1,-D7, (-1,-1,-1,D%, (1,-1,1,D%, Q,1,
~1,17, (-1,1,1,1)7, and the five vectors other than (—1, -1, -1, —1)7,
(-1,-1,1,17 and (—1,1, —1,1)7 which satisfy x,x,x3x, = 1. This also
gives a design under which all the main effects and two-factor interactions
are estimable.

Case 4. There are exactly four x with x;x,x3x, = 1 which do not appear
as column vectors of X. We may assume that these four vectors are (-1, —1,
-1, -7, (-1,-1,1, D7, (-1,1,-1, D7, (-1,1,1, - D7, or (-1, -1, -1,
-7, (-1,-1,1,D7, (1,1, -1, D7, 1, — 1, — 1, D", Proceeding in the same
way, we can handle these two subcases separately. In the first subcase, all
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the eight x with x,x,x5x, = —1 must appear, giving a total of at least 12
distinct columns in X, while in the second subcase, all the x with x;x,x3x, =
-—1, except possibly (1,1,1, —1)7 must appear, giving a total of at least 11
distinct columns. O

For a resolution 3 or 4 regular fractional factorial design, there are always
certain sets of three or four factors such that a defining relation exists among
these factors. On the other hand, suppose N is not a multiple of 8 and X is an
OA(N,2* 2) with %k > 4. Then by the results in Sections 2 and 3, the
projection of X onto any three factors and the projection of X onto any four
factors are of type III. It follows that defining relations cannot exist among
any three or four factors of X. Therefore we have the following theorem.

THEOREM 4.2. Suppose N is not a multiple of 8. Let X be an OA(N, 2*,2)
with k > 4. Then the projection of X onto any four factors has the property
that all the main effects and two-factor interactions of these four factors are
estimable when the higher-order interactions are negligible.

In a regular fractional factorial design, any two factorial effects (main
effects or interactions) are either totally aliased or orthogonal. As mentioned
in Section 2, such a simple alias structure is one reason why these designs
are popular. It is interesting to note that the important projective property
obtained in Theorem 4.2 can be attributed to the complex alias structures of
the nonregular designs.

We conclude this article with the following theorem.

THEOREM 4.3. Let X be an OA(N, 2%, 2) with k > 4. Suppose the projec-
tion of X onto certain three factors is of type III. Then the projection onto these
three and any other factor has the property that all the main effects and
two-factor interactions are estimable when the higher-order interactions are
negligible.

Proor. Without loss of generality, assume that the projection of X onto
the first three factors is of type III. We shall show that its projection onto the
first four factors has the property described in this theorem. By Lemma 2.2,
the projection onto any three of the first four factors cannot be of type I.
Therefore, there is no defining relation among any three of the first four
factors. By Theorem 4.1, it remains to show that there is also no defining
relation among all four factors. Let Y be the submatrix of X consisting of the
first four rows. Suppose there is a defining relation among these four factors.
We shall show that this would lead to a contradiction. We may assume that
all column vectors x = (xq, x,, x3, x,)7 of Y satisfy

(4.1) Xy =X1X9%3g,
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and there is a postive integer s such that in the first 8s columns of Y, each of
the eight 3 X 1 vectors of 1’s and — 1’s appears s times in the first three rows,
and each of the last N — 8s columns of Y satisfies

(4.2) Xy = X1Xg.

From (4.1) and (4.2), we have x, = (x;x,)(x;x,) = 1 for each of the last
N — 8s columns of Y, that is, all the last N — 8s entries of the fourth row of
Y are equal to 1. On the other hand, 1 and —1 are equally represented in the
first 8s entries of the fourth row of Y. This contradicts the fact that Y is an
orthogonal array. O
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