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A GEOMETRIC COMBINATION ESTIMATOR FOR
d-DIMENSIONAL ORDINAL SPARSE
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A geometric combination estimator is proposed for d-dimensional
ordinal contingency tables. The proposed estimator is nonnegative. It is
shown that, assuming sufficient smoothness and boundary conditions for
the underlying probabilities, the rate of convergence of mean summed
squared error (MSSE) of this estimator is O(K~1N~8/(d+8)) for d-dimen-
sional tables (d < 4) with K cells and sample size N. This rate is optimal
under the smoothness assumptions, and is faster than that attained by
nonnegative kernel estimates. Boundary kernels for multidimensional
tables are also developed for the proposed estimator to relax restrictive
boundary conditions, resulting in summed squared error (SSE) being of
order O,(K"1N~8/(4*9) for all d > 1. The behavior of the new estimator
is investigated through simulations and applications to real data. It is
shown that even for relatively small tables, these estimators are superior
to nonnegative kernel estimators, in sharp contrast to the relatively
unimpressive performance of such estimators for continuous data.

1. Introduction. The problem of estimating the cell probabilities of a
contingency table has been an important issue in recent years. Let N be the
sample size and let K be the number of cells of the table. Suppose that the
underlying density possesses rth bounded derivatives. A table is said to be
sparse if the number of cells is large, relative to the number of observations;
formally, K-*N'/@"*1 - 0. It is well known that if the data are not sparse,
the optimal rate of decrease of mean summed squared error (MSSE) of any
estimator to zero is O(N '), which can be achieved by the cell proportions. In
practice, we are often faced with large tables. When a table is large, it is very
likely to be sparse. The cell proportion estimator can be improved in the sense
that MSSE converges to zero at a faster rate for large sparse tables.

Improvement on the cell proportion estimator can come from taking advan-
tage of smoothness in the underlying probabilities. Such smoothness would
be reasonable, for example, in a table with ordered categories. Hall and
Titterington (1987) (hereafter referred to as HT) proved that the optimal rate
of convergence is O(K !N~ 27/@r*D) for one-dimensional sparse tables. A
smooth version f defined on the interval [0, 1] of a discrete density was
introduced there so that smoothness conditions could be described using
derivatives. HT also developed a kernel estimator that achieves this optimal
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1144 d. DONG AND J. S. SIMONOFF

rate for one-dimensional tables. See Simonoff (1995) for discussion of these
and many other approaches to smoothing categorical data.

In this paper, we propose a new estimator, which is a geometric com-
bination of kernel estimators with different smoothing parameters, for d-
dimensional contingency tables. A geometric combination of two kernel esti-
mators was first introduced in the continuous density estimation context by
Terrell and Scott (1980) and Koshkin (1988). As noted by Jones and Foster
(1993), these estimators are direct nonnegative analogues of the generalized
jackknife kernels of Schucany and Sommers (1977). Jones and Foster de-
scribed other estimators of similar type as well.

The rate of convergence of MSSE of our estimator is O(K~'N~8/(@+8)) for
d-dimensional tables (d < 4) assuming appropriate boundary conditions. This
rate is optimal under the assumption that the underlying density has bounded
fourth partial derivatives. In particular, the convergence rate is O(K 'N~8/9)
for one-dimensional tables.

Although the HT kernel estimator can also achieve the optimal rate of
convergence, it does so at the cost of the possibility of negative probability
estimates. The existence of negative probability estimates is particularly
unattractive for discrete data, since a negative probability of falling in a
particular cell is clearly meaningless.

Burman (1987) also described kernel estimators for categorical data, in-
cluding multidimensional tables. His estimates are nonnegative, but achieve
an MSSE convergence rate of O(K !N~ %/(@+4) which is suboptimal if
smoothness at the level of bounded fourth partial derivatives is present.

In the course of deriving the d-dimensional geometric combination estima-
tor, we also generalize the univariate boundary kernel estimators of Dong
and Simonoff (1994) to multidimensional tables. These estimators do not
require restrictive boundary conditions on the probability matrix to avoid
having bias near the boundaries dominate the MSSE of the estimator. They
are then used as components of the geometric combination estimator. If this
is done, the resultant estimator has summed squared error (SSE) of order
O,(K"'N~8/14*®) for all d, without any boundary conditions on the underly-
ing probability matrix being necessary.

In the next section, the geometric combination estimator is described, and
the statements of its SSE and MSSE convergence rates are given. Section 3
provides discussion of the d-dimensional boundary kernels needed to form
the geometric combination estimator. Practical performance of the geometric
combination estimator is treated in Section 4, including Monte Carlo exami-
nation of its finite sample properties. Applications to real data sets are the
focus of Section 5. Proofs of the key results can be found in the Appendix.

2. The geometric combination estimator.
2.1. Kernel estimation for discrete data. Consider a d-dimensional table

with k; cells in the jth dimension, 1 <j < d. The asymptotics being used
here are based on large sparse tables, with the number of cells becoming
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infinite such that if k, -+ k; = K, then k;* = O(K'/%). That is, each di-
mension has the number of categories growing at the same rate. The cells of
the table can be indexed by a sequence of integers I = (i, ..., ;). Let p(I) be
the probability of falling in the Ith cell. Let X;,..., Xy be a random sample
from a distribution whose mass function is { p(I)}. Suppose X, = (X,,,..., X,4)
for d > 1. HT defined a kernel estimator for one-dimensional tables,

B 1h) = ()~ Zw( =),

where h is the smoothing parameter. Note that in HT [and Dong and
Simonoff (1994)] the estimator was defined with smoothing parameter equiv-
alent to 2~! here, but the present form is more natural, being similar to that
for continuous density estimators. To achieve the convergence rate of
O(K'N-2r/@r+1) HT used a kernel function w such that

J
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This kernel is defined to be of order r. In the case of r = 4 (four partial
derivatives), the above condition forces w(jh~!) < 0 for some j and therefore
p(i | ) can be negative for some i. To avoid negative estimates, the condition
Y w(jh~1)(jh1)? = 0 has to be dropped, thereby restricting the convergence
rate to O(K 'N~4/%). We propose to form an estimator that is a geometric
combination of HT type estimators with different smoothing parameters.
The HT estimator can be easily generalized to d-dimensional tables. Let
W, be a d-dimensional kernel function (we will discuss the properties of W;
later). The HT type estimator for a d-dimensional table can be written as

th i, — Xiq

— d
(I h) = (Nh) XW, ===t

For notational simplicity, we use a single smoothing parameter ~. However,
different smoothing parameters for each dimension can be used if they are of
the same order of magnitude.

2.2. The geometric combination estimator. Let p(I|jh) be HT type esti-
mators with smoothing parameters jh, j = 1,...,d + 1. Define

ig—1 ij—1

e 58wl
j()_ ug=iy—k u;=i —k ! h’.“,h h .
d d d 1741 1
Now, choose a,(h), ..., a4, (k) such that

d+1 d+1
(1) Y ah)=1 and Y a, h)Bj(sh)s®>=0, 1<j<d.

s=1 s=1
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The general form of the geometric combination estimator is then

p*(I1h) = p(I1R)" P H(I12h)™ ™ - p(I1(d + 1)h)*= .

In fact, the estimator can be simplified, if the kernel function satisfies a
simple symmetry condition and a common value of 4 is used for all dimen-
sions. If the kernel is symmetric in its ith and jth arguments (that is,

Wi, &y Xy 8g) = Wi(Rq, 00, %00, %5500, %)),
then B,(h) = Bj(h). Thus, if W; is a symmetric function [ie., W,(x,,...,
xg) = Wi(x;,..., x; ), where (iy,...,1,) is a permutation of (1,..., n)], then
Bi(h) = By(h) = -+ = By(h). Here, Y9! a(h)B,(sh)s?® =0 implies that

L4l a,(h)B(sh)s® = 0 for all j, and the only constraints for choosing
a(h),...,a,,(h) are

Yash)=1 and i a,(h)B,(sh)s? = 0.
s=1

This implies that, without loss of generality, we can take as(h) = -+ =
ay4,,(h) = 0, giving the simplified geometric combination estimator

p*(I1 k) =p(IIR)“Pp(I|2R)*",
where
ai(h) +ay(h) =1 and a,(h)By(h) + 4a,(h)B,(2h) = 0.

We are ready to prove the following theorem.

THEOREM 1. Suppose that f possesses bounded fourth partial derivatives.
Let h be of order KY¢N-Y@*® Suppose p(I) is of order K~1. Then

SSE(p*(I | h)) — OP(K_IN_S/(d+8))~

A sketch of the proof of the theorem is given in the Appendix. Full details
of the proof are available from the authors.

Theorem 1 is not as strong as we would like, in that convergence is in
probability, rather than in quadratic mean. Theorem 2 corrects this, but at a
cost. The convergence rate of MSSE in O, rather than SSE in O,, is obtained
in Theorem 2. A similar result for continuous density functions was obtained
by Koshkin (1988) [see also Cramér (1946)]. The condition W;(6x) > W,(x) for
0 < 0 <1 is required in the proof of Theorem 2. Boundary kernels do not
satisfy this condition, and therefore cannot be used. For this reason, bound-
ary conditions on the underlying probability matrix have to be assumed.
These are stated in terms of an underlying true density f defined on the
region [0, 1]¢. In addition, the MSSE result is only proved for d < 4. In fact,
the simulations of Section 4 suggest that the MSSE of p*(I | h) converges to
zero as expected under the conditions of Theorem 1, despite the weaker result
given in that theorem.
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THEOREM 2. Suppose that f has bounded fourth partial derivatives. Sup-
pose that
0 of 0
f(xq,...,24) =0, 7%, &x~(x1’m’xd)_ ,
1 J2
33f
PP (%9,...,25) =0
J1 J2 Js
whenever at least one x; = 0 or 1. Let h be of order KYIN~1/(¢+® Syuppose
p(I) is of order K™1. Then for d < 4,

MSSE(p*(I1k)) = O(K-'N-8/@+®),

Since the conditions of Theorem 1 are more general (and realistic) than
those of this theorem, we do not present the proof of this theorem here;
details are available from the authors. In the proof, an estimate that satisfies

p*(I|h) < Ch™® is used, where C is a constant. Since A is of order
K/ AN-1/d+8)

p*(I1h) < CKIN/(@+9),

The larger d is, the worse the upper bound of p*(I | h) becomes, to the point
where if d > 4, the bound becomes too weak. This is the reason for the
requirement d < 4 in the theorem.

Theorem 1 immediately leads to an important corollary:

COROLLARY 3. For a one-dimensional table under the same conditions,
SSE(p*) = Op(K‘lN‘B/Q).

The choice of smoothing parameters h, 2h,...,(d + 1)A in the estimator is
arbitrary. We can, in fact, choose any distinct positive real numbers

ah, ..., a;,1h as the smoothing parameters, without changing the conver-
gence rate of the estimator, as long as a,(4),..., a,, (k) are chosen appropri-
ately.

Note, by the way, that these asymptotic results closely parallel the corre-
sponding results for continuous density estimation, as do results for the
kernel estimators themselves.

2.3. Choosing a(h). Suppose that the d-dimensional kernel function is
symmetric. For instance, W,(x4,..., x;) = I | w(x,), where w(x,) is a one-
dimensional kernel function (that is, W; is a product kernel). Let p*(I | k) =
P | R)YW5(I | 2R)%™ be the simplified geometric combination estimator,
where a,(h) = 4/(4 — g(h)), ay(h) = 1 — a,(h) and g(h) = B{(h)/B,(2h). Ifa
product of Epanechnikov kernels is used, then

4h2—4)(16h2—4)d

) g(k) = (4h2—1 16h7 — 1
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The proof of (2) is given in the Appendix. In practice we can use the above
formula to find the exact values of a,(%) and a,(h) easily. It should be noted,
however, that this formula is only exact when the underlying Epanechnikov
kernels are not boundary-corrected. Note that lim,_, g(kh) = 1. Thus
lim, . a,(k) =4/3 and lim, ., a,(h) = —1/3, which corresponds to the
choices suggested by Terrell and Scott (1980). In fact, lim, . g(h) = 1 for
any kernel (not just the Epanechnikov), including boundary kernels, since
both B;(h) and B,(2h) converge to the variance of the underlying kernel
function. Thus, the simple form

(3) p*(I1R) =p(I1h)**p(112R)""

approximates the simplified geometric combination estimator for any under-
lying kernel function, and can be termed the simplified asymptotic geometric
combination estimator. We recommend the use of this simple form in practice.

3. d-Dimensional boundary-corrected kernel estimators. In this
section we derive d-dimensional boundary-corrected second order kernel
estimators. These estimators generalize the one-dimensional estimators of
Dong and Simonoff (1994). If boundary-corrected estimates are used in the
construction of the geometric combination estimator, then its SSE properties
will be valid even if the underlying probability matrix does not satisfy any
boundary conditions.

It is required that the kernel function W, satisfy the conditions:

ig—1 -1

u u
(4) R Y % W,(f,...,—}-l‘i)ﬂ,
ug=iq—ky U =i;—ky
ig—1 i;—1 u u u su Sy £3
e x5 ) ) e
( ) ud=%_kd u1=§—k1 ! h h h h h

where ¢, =0or 1, 6, + 65 + e5=1or3and 1<t <t, <t; <d.If we wish
to use the simplified form

p*(I1h) = p(I1R)" W B(112h)" ",
then we also need B;(h) = B(h), 2 <j < d. The kernel function should also
satisfy the boundedness conditions
2 lg
Wl—,...,—
i)

sup (A~ ¢ Z[
1
sup{ x4 4wl Wi(xq,...,%4)| >0 forsomel <h < w} < oo,

0<h<1
Recall that I =(i,,...,iy). If 1+ h <i; <k; —h for all j, then the Ith
cell is not a “boundary cell.” In this case, let W;(X) = W(X), where W(X) is a
second order symmetric kernel function defined on [ —1, 1]%. If the Ith cell is
a boundary cell, i; & (1 + k, k; — h) for some j, a special boundary kernel
function is defined to correct the boundary effect. Note that (4) and (5) can be

. t
lg

4 eee 4
h

b for t <4
— < oo
A or <4,

and
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approximated by equations of integrals. For example, (5) can be approxi-
mated by

b b
(5,) f ¢ f IWI(X)xZ‘xf;xf; dxl o dxd = 0, 1 < tl < tz < t3 < d,
aq @

where a; = max{—1, (i; — k;)/h} and b, = min(1, (i; — 1)/h}. Now, let W, be
a polynomial with undetermined coefficients. Solving equations (5") for the
coefficients of the polynomial yields W;.

The construction of a d-dimensional boundary-corrected kernel function W;
based on using a product of Epanechnikov kernels illustrates the use of these
equations. Let

d
W,(%y,..., %) = tl;_llwt(xt), if e, <x,<b,,1<t<d,
0, otherwise,

where w,(x) = a, + a;1x + a,5x% + a,3x23, 1 <t <d. The coefficients
{a;;11<i<d, 0<j<3}can be determined by solving d systems of four
equations,

fb'wt(x) dx =1, fbtwt(x)xdx=0,

t a;

fb'wt(x)x3dx=0, fbtwt(x)xzdx=B,

a,; a;

where t =1,...,d and B = [}, (8/4)1 — x*)x? dx = 1/5. Note that these
equations are, in fact, linear equations of {a,;}. The solutions can be easily
obtained as follows:

ay = 48(af + 9a3b, + 15a2b? + 9a,b + bt)(b, —a,)

+ 16(af — 9a}b, + 45a/b? + 65a3b} + 45a}b; + 9a,b} + b})

X (b, —a)",
a, = 60(a, + b,)(9a; + 2a; + 24a,b, + 16a]b, + 9b;
+34a2b? + 164,67 + 2b%)(a, — b,) ",
a,, = 48(27a7 + 5af + 5la,b, + 45a3b, + 276} + T5a; b}
+45a,b3 + 5b1)(b, —a,) ",

a5 = 140(a, + b,)(6 + a? + 8a,b, + b?)(a, — b,) ",

where a, and b, are defined as above. Note that lim, ;.11 w,(x) =
2(1 — x2), the Epanechnikov kernel. Boundary-corrected kernels for kernel
functions other than Epanechnikov kernel can be found in a similar way. It
should be noted, however, that [based on the results of Dong and Simonoff
(1994) for univariate kernels] it is likely that these kernels will not perform
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adequately unless the number of categories in each dimension is large
enough (say at least 20).

Other approaches to the boundary bias problem are also possible. See
Jones (1993) for a thorough discussion of many approaches in the continuous
density estimation context.

4, Practical performance and implementation of the estimator.
The asymptotics of Section 2 do not address the question of the properties of
the geometric combination estimator for finite samples. In this section the
results of a small Monte Carlo study designed to investigate those properties
are summarized.

Table 1 summarizes the results of simulations for one-dimensional tables.
The underlying probability vector was generated based on discretizing two
underlying probability densities—Beta(3, 3) and Beta(0.6, 0.6)—which were
then used to generate multinomial probabilities, using code adapted from
Press, Flannery, Teukolsky and Vetterling (1986). The Beta(3, 3) density is
one without boundary bias effects, while the Beta(0.6, 0.6) density exhibits
such effects.

The table presents results for various values of K, with either N = K or
N = 5K, for six estimators: a second order kernel estimator without bound-
ary correction, a fourth order kernel estimator without boundary correction, a
geometric combination estimator based on second order kernels without
boundary correction and versions of each of these three estimators with
boundary correction performed. Values of N X MSSE are given for each
estimator. The number of simulation runs in each situation was 500, and
differences in N X MSSE greater than approximately 0.002 were significant
at a 0.05 level, based on a pairwise ¢-test. The kernel estimators were based
on an Epanechnikov kernel, and the geometric combination estimator used
was of the simplified asymptotic form (3). For each simulation run, the value
of h for each estimate was chosen in one of two ways: so as to minimize the
true sum of squared error (SSE) of the estimate for that data set (so the
values in the table are as small as they could be) or in a data-dependent way.
The latter entries are given in parentheses.

We discuss the results based on minimizing SSE first. The most obvious
pattern is that boundary effects dominate the performance of all of the
estimators. The estimators without boundary correction work best when
there are no boundary effects, while those with boundary correction work
best when boundary conditions exist. The advantage of non-boundary-
corrected estimators when there are no boundary effects generally diminishes
as K increases. This is consistent with the results of Dong and Simonoff
(1994), and illustrates the difficulties of performing boundary bias correction
in small tables.

Given these boundary-related effects, the most striking result is that the
higher order estimators (the higher order kernel and geometric combination
estimator) clearly outperform the second order kernel. While this is exactly
what the asymptotics would suggest, it is still a particularly pleasing result.
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Results of Monte Carlo simulations comparing the accuracy of various estimators*

Beta(8, 8) Density Beta(0.6, 0.6) Density
N=K N =5K N=K N =5K

K=20

Second order (nbc) 0.064 (0.144) 0.108 (0.188) 0.271 (0.341) 0.819 (0.868)
Fourth order (nbc) 0.053 (0.169) 0.079 (0.195) 0.275 (0.341) 0.616 (0.708)
Geometric (nbc) 0.055 (0.155) 0.089 (0.186) 0.270 (0.365) 0.800 (0.881)
Second order (bc) 0.095 (0.180) 0.129 (0.219) 0.156 (0.312) 0.352 (0.511)
Fourth order (bc) 0.232 (0.364) 0.279 (0.397) 0.150 (0.353) 0.345 (0.557)
Geometric (bec) 0.099 (0.203) 0.123 (0.239) 0.143 (0.325) 0.326 (0.496)
K =150

Second order (nbc) 0.034 (0.076) 0.059 (0.098) 0.281 (0.333) 0.770 (0.799)
Fourth order (nbc) 0.026 (0.084) 0.042 (0.090) 0.286 (0.367) 0.625 (0.678)
Geometric (nbc) 0.028 (0.077) 0.048 (0.093) 0.283 (0.351) 0.768 (0.817)
Second order (bc) 0.040 (0.084) 0.058 (0.100) 0.140 (0.242) 0.315 (0.412)
Fourth order (bc) 0.099 (0.160) 0.112 (0.168) 0.144 (0.290) 0.273 (0.406)
Geometric (be) 0.042 (0.093) 0.052 (0.096) 0.133 (0.238) 0.314 (0.429)
K =100

Second order (nbc) 0.022 (0.049) 0.036 (0.061) 0.273 (0.307) 0.714 (0.734)
Fourth order (nbc) 0.017 (0.047) 0.025 (0.053) 0.280 (0.329) 0.602 (0.640)
Geometric (nbc) 0.018 (0.046) 0.030 (0.055) 0.277 (0.319) 0.719 (0.752)
Second order (bc) 0.024 (0.052) 0.036 (0.059) 0.133 (0.202) 0.284 (0.347)
Fourth order (bc) 0.056 (0.086) 0.060 (0.090) 0.117 (0.197) 0.239 (0.309)
Geometric (bc) 0.025 (0.052) 0.034 (0.059) 0.129 (0.203) 0.291 (0.356)
K =500

Second order (nbc) 0.008 (0.011) 0.012 (0.018) 0.236 (0.246) 0.604 (0.612)
Fourth order (nbc) 0.008 (0.011) 0.009 (0.015) 0.244 (0.256) 0.564 (0.583)
Geometric (nbc) 0.007 (0.010) 0.011 (0.017) 0.241 (0.253) 0.619 (0.631)
Second order (bc) 0.008 (0.012) 0.012 (0.017) 0.123 (0.138) 0.233 (0.251)
Fourth order (bc) 0.014 (0.016) 0.014 (0.019) 0.099 (0.119) 0.195 (0.223)
Geometric (be) 0.007 (0.010) 0.011 (0.018) 0.122 (0.141) 0.247 (0.266)

*Entries represent N X MSSE. The smoothing parameter in all cases is chosen to minimize
either SSE or the cross-validation criterion (in parentheses). The notation nbc refers to estima-
tors without boundary correction, while bc refers to estimators with boundary correction.

There is real question about whether density estimators with faster asymp-
totic convergence rates for continuous data are useful in practice for sample
sizes that are not in the hundreds or even thousands; see Marron and Wand
(1992) and Scott [(1992), pages 133-138]. Clearly the usefulness of higher
order estimators is much more promising in the categorical data context.

If it were known whether boundary effects were going to occur, the best
estimator is apparently the fourth order kernel, rather than the geometric
combination estimator. There is a (small) cost to this, however, in that
typically the probability of the occurrence of a negative probability estimate
is about 0.01. This is not necessarily a reasonable way to view these results,
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however, since typically the existence of boundary bias is not known until
after the data are examined. Given this fact, the boundary-corrected geomet-
ric combination estimator is much more attractive, in that when it is subopti-
mal, it is not nearly as bad as the other estimators. If there are no boundary
effects, the boundary-corrected geometric combination estimator never has
MSSE more than 80% higher than the best choice (it is usually much closer
than that). In contrast, the boundary-corrected fourth order kernel estimator
can have MSSE more than four times larger than the best value if no
boundary effects are present. Use of the estimators without boundary correc-
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tion is not advisable, either, since they have generally twice the MSSE of the
boundary-corrected versions when boundary effects exist.

The values discussed thus far are based on knowledge of the true underly-
ing probability vector, and so do not address performance of a practical
method. This requires a data-based choice of . HT and Dong and Simonoff
(1994) investigated the use of cross-validation for kernel and boundary kernel
estimators, respectively; this method can also be used for the geometric
combination estimator. The entries in parentheses are results where 4 has
been chosen by cross-validation for each estimator.

The latter entries are often much larger than those discussed earlier,
particularly for small tables, emphasizing that the cross-validated choice of A
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F1c. 2. Geometric combination estimate using boundary kernel estimates of Figure 1.
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can be far from the optimal choice. Unfortunately, as is typical in smoothing
problems, cross-validation sometimes leads to too small a value of A, and
undersmoothing. Methods analogous to the “plug-in” method of Sheather and
Jones (1991) used for kernel smoothing of continuous data, for example,
would be welcome. Still, the geometric combination estimator’s performance
is not unreasonable. For larger values of K and for the N = 5K case, the
higher order estimators still outperform the second order ones. The perfor-
mance of the fourth order kernel is sometimes much worse than before;
apparently it can be quite difficult to choose the smoothing parameter in that
case [it can be argued that this is true in the continuous density estimation
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context; see Scott (1992), pages 136-137]. The fourth order kernel is also
more likely to be negative when using cross-validation, with a probability of a
negative cell being as high as 0.03.

5. Application to real data sets. Simonoff[(1985), Table 1] examined a
50-cell multinomial adapted from Hald [(1967), page 329], that gives the
range in terms of percentage concentrations of calcium carbonate for 52 sets
of 5 samples each, taken from a mixing plant of raw metal. Hald [(1967), page
322] presented a theorem stating that these data should follow a normal
distribution, but Simonoff noted that a Gamma distribution fits even better
[see also Leonard (1978)].

Figure 1 gives boundary kernel estimates for these data using an Epanech-
nikov kernel and 4 = 10 (solid line and solid circles) and # = 20 (dashed line
and open circles). Note that we are using the form of the kernel described in
Section 2, rather than that of Dong and Simonoff (1994), where the smooth-
ing parameter corresponds to 2 ~'. Although a generally asymmetric shape
(consistent with a Gamma density) is apparent in both estimates, the esti-
mate corresponding to 2 = 20 is oversmoothed, while that corresponding to
h = 10 is too rough in the tails (exhibiting an alarming dip in the right tail).

Figure 2 gives the simplified asymptotic geometric combination estimate
based on these boundary kernels; that is, (3) with 2 = 10 [note that for this
value of A, (2) implies that the asymptotic form of the simplified estimator
and the exact form are virtually identical]. By combining the two boundary
kernel estimates, the geometric combination estimate clearly minimizes the
weaknesses of both, being smooth in the tails while still identifying the mode
around the 20th cell clearly.

In fact, this estimate can be improved further by recognizing that bound-
ary bias correction is only needed in the left tail. Figure 3 gives the geometric
combination estimate based on kernel estimates that only correct for bias in

TABLE 2
Table of observed counts for hockey data

g;;:: Goals Scored
Up o 1 2 3 4 5 6 17 8 9 10 11 12
0 0 0o o0 o O 0 0 0 1 o0 0 0 0
1 o o o 1 2 1 0 1 1 o0 0 0 1
2 0o 1 3 2 o0 3 1 0 0 0 1 0 0
3 0o 1 o 2 3 2 6 3 0 1 0 0 0
4 2 2 1 38 3 2 2 0 0 1 0 0 0
5 o 1 2 3 2 1 2 o0 0 1 0 0 0
6 o 1 1 2 1 1 o0 1 0 0 0 0 0
7 0o 1 1 o0 1 2 0 o0 0 o0 0 0 0
8 i 0o o o0 1 1 0 ©0 0 0 0 0 0
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the left tail. The estimate now clearly shows the structure, while avoiding
completely the dip in the right tail.

Table 2 and Figure 4 summarize application to a two-dimensional table.
Table 2 gives the observed counts for a cross-classification of the 80 games
played by the Pittsburgh Penguins of the National Hockey League during the
1991-1992 season, classified by the number of goals scored in the game
(columns) by the number of goals given up (rows) [National Hockey League
(1992), page 73]. The team was only moderately successful during the season,
with 39 wins, 32 losses and 9 ties, despite the fact that it ultimately won the
Stanley Cup.

Unsmoothed counts

Goals given up
S

8
0 2 4 6 8 10 12
Goals scored
(a)
Smoothed counts
0 -

Goals given up
D

Goals scored

(b)
FiG. 4. Shade plots for hockey data: (a) unsmoothed counts (b) smoothed counts.
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As is typical for a sparse table like this, drawing any conclusions from the
table is difficult, past the impression that in most games the team both scored
and gave up between 1 and 7 goals. Figure 4 gives a shade plot of the original
table and smoothed counts (that is, n X pf), based on A = 1.7. The plot
represents each value by a shaded box, according to the legend provided. The
underlying kernel estimates were not boundary-corrected. The picture is now
much clearer. The dominant probability region noted earlier is still apparent,
but now a high probability region exhibiting negative correlation is also
indicated (note the higher counts in cells corresponding to both wins and
losses with scores 5-2 and 5-3), as well as a highest probability region
corresponding to 5-3 and 6-3 wins. Thus, it appears that the Penguins had a
tendency to be in (slightly) lopsided contests, whether they won or lost, with a
slightly greater tendency to win them.

APPENDIX

ProoF oF THEOREM 1. Let f(X) be the underlying density function. Then

f(Xp) 1 & 9° f(Xp)
p(T)=f...[Rf(X)dX= % +ﬂj=1a—sz %

kj—2 + O(K_(d+4)/d),

where R = [(t; — D/k,, t,/k)] X - X[(t; — D/ky, t;/k;] and X, =
2¢t, — D /2ky,...,@2¢; — 1)/2¢,). Thus,

i, —t ig—t

E,=E(p(IIth)) =h¢ ZW,( 2, 1<t<d.
th th
Let U=1-T and U/K = (u,/ky,...,uy/k,). Then

E,=h ZW,(%)[f(X, - %)K‘l

1 If U
+—VyY — —|K 172 K- (@+4/dy ]
o1 o 722 (X, K)K k% + O( )}

Taking Taylor series expansions of f(X; — U/K) and (9*f/dx?XX; — U/K)
around X; yields

d u ug\(u\? th \* 9%f
= -1 el S I pil ki
E=pl)+ X Elgw’(th"”’th)(th)(th) (2kj) c?sz(XI)
+ O(K_(d+4)/dh4).

Note that (4) and (5) are used here to make the terms associated with (u;/th)
and (u;/th)’ be equal to zero. Note that

Var(5(11h)) = O((KNk?) ).
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By Theorem 14.4-1 of Bishop, Fienberg and Holland (1975),

B =p(I) + K ¥ ZWz(ﬁ ﬁ)(%)z(th)_d(

th \? o%f
ST th’ " th

2k, o—,_xjg(Xl)
- ~1/2
0L ) 0,k .
By the choices of a,(h),
p*(I1h) =P(I)(1 + O(K *4p*) + Op(Kl/Z(th)‘1/2) + R),
- -1
R = OP(K 4/dh4) + OP(K(th) )
Thus,
(LIA) = pU1) + O 415 0,y ) +0,{(i) ),

SSE(p*(I1h)) = K(O(K~ @4/ 4h#) + 0,((ENhY)™V?) + Op((th)_l))z

= O(K~ ¥/ %) + O,(N"'h™%) + O,(KN2h"29),
Let A be of order K/ ¢N~1/(d+8) Then

SSE(p*(I1h)) = O,(K 'N-8/@+8) O
PRrOOF OF (2).
ig—1 ii—1 ” ” U2
—p-d 1 Zal[ 1
Bl(h) —h ud=lZd:—kd u1=121:—k1WI( h T h )( h )
h i\2 Ro3 Jj 2y 471
o3l 2014
( ,2;14 n) | J_Z;h4 h

feleill2) w2l 3
e 2

Taking the ratio of By(2) to B,(2h) yields (2). O
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