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TESTING CONDITIONAL MOMENT RESTRICTIONS

BY GAUTAM TRIPATHI1 AND YUICHI KITAMURA2

University of Wisconsin and University of Pennsylvania

Let (x, z) be a pair of observable random vectors. We construct a
new “smoothed” empirical likelihood-based test for the hypothesis E{g(z,

θ)|x} = 0 w.p.1, where g is a vector of known functions and θ an unknown
finite-dimensional parameter. We show that the test statistic is asymptotically
normal under the null hypothesis and derive its asymptotic distribution under
a sequence of local alternatives. Furthermore, the test is shown to possess
an optimality property in large samples. Simulation evidence suggests that it
also behaves well in small samples.

1. Introduction. In a series of papers, Owen (1988, 1990, 1991) studied the
use of inference based on the nonparametric likelihood ratio. This approach is par-
ticularly useful when testing hypotheses that can be expressed as moment restric-
tions. However, the attention of most of the literature seems to have been confined
to dealing with hypotheses expressed as unconditional moment restrictions. In this
paper, we extend the empirical likelihood paradigm to handle the testing of condi-
tional moment restrictions. Let x denote a continuously distributed random vector.
Throughout the paper, we will treat x as the conditioning variable. In this paper,
we extend the empirical likelihood approach to test

H0 : Pr
{
E[g(z, θ)|x] = 0

} = 1 for some θ ∈ �(1.1)

against the alternative that H0 is false.
Much progress has been made in the area of testing conditional moment

restrictions. See, among others, Newey (1985), Bierens (1990), de Jong and
Bierens (1994) and the references therein. Related to this literature is the work on
specification testing of a parametric regression function against a nonparametric
alternative. See, for instance, Eubank and Spiegelman (1990), Wooldridge (1992),
Yatchew (1992), Härdle and Mammen (1993), Whang and Andrews (1993), Hong
and White (1995), Fan and Li (1996), Zheng (1996), Andrews (1997), Bierens
and Ploberger (1997), Ellison and Ellison (2000), Aït-Sahalia, Bickel and Stoker
(2001) and Horowitz and Spokoiny (2001). Unlike these papers, we examine
a general class of conditional moment restrictions that nests conditional mean
regression as a special case. For example, our approach is capable of handling
the case where g is a vector of residuals from a system of static nonlinear
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simultaneous equations. We show that a test for H0 based on Owen’s empirical
likelihood provides a useful alternative to the procedures developed in the above-
mentioned papers. Our test is easy to construct and straightforward to implement.
Its distribution is asymptotically normal under the null, and it is able to detect
local alternatives that converge to the null at rates only slightly slower than
the parametric rate. A distinguishing feature of the proposed test is that it is
asymptotically optimal in terms of an average power criterion as used by Wald
(1943) and Andrews and Ploberger (1994). Moreover, it also appears to work well
in finite samples.

The following notation is used throughout the paper. By a “vector” we mean
a column vector. We do not make any notational distinction between a random
variable and the value taken by it. The difference should be clear from the context.
The symbol S denotes a subset of R

s which may be unbounded, I{A} is the
indicator function of set A, and for a matrix V the symbol ‖V ‖ = √

tr(V V ′)
denotes its Frobenius norm; ‖V ‖ reduces to the usual Euclidean norm when V

happens to be a vector. Unless stated otherwise, all limits are taken as the number
of observations n ↑ ∞.

2. The smoothed empirical likelihood approach. This section develops
an empirical likelihood-based test of conditional moment restriction E{g(z,

θ)|x} = 0. Our main tool is empirical likelihood (EL), though a kernel smoothing
technique plays an important part in formulating our test procedure. Recall
that smoothing arises naturally in the theory of local likelihood estimation by
considering the expected log-likelihood. See, for example, Brillinger (1977), Owen
(1984), Hastie and Tibshirani (1986), Staniswalis (1987) and Staniswalis and
Severini (1991). Our empirical likelihood ratio-based test can also be motivated
using an expected log-likelihood criterion.

Smoothing is necessary in our case because the conventional EL approach fails
when testing conditional moment restrictions for which the conditioning variables
are continuously distributed. The problem is analogous to the failure of likelihood-
based function estimation described in Hastie and Tibshirani (1986), Section 5.
The remedy they suggest is to maximize the expected log-likelihood instead.
Applying this idea to our situation, consider solving

max{pij : i,j=1,...,n}

n∑
i=1

n∑
j=1

wij logpij s.t.

(2.1)

pij ≥ 0,

n∑
i=1

n∑
j=1

pij = 1,

∑n
j=1 g(zj , θ̂)pij∑n

j=1 pij

= 0,

where θ̂ is a preliminary estimator of θ , pij denotes the probability mass placed at
(xi, zj ) by a discrete distribution with support {x1, . . . , xn} × {z1, . . . , zn},

wij = K((xi − xj )/bn)∑n
j=1 K((xi − xj )/bn)

= Kij∑n
j=1 Kij
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and the function K is chosen to satisfy Assumption 3.7. The wij ’s are kernel
weights familiar from the nonparametric regression literature. The bandwidth bn

is a null sequence of positive numbers satisfying certain conditions described later
in the paper.

In a bn-neighborhood of xi , wij assigns smaller weights to those xj ’s that are
farther away from xi . This has the effect of smoothing the empirical log-likelihood
at each xi . Since the objective function depends on pij only through log pij , the
nonnegativity constraint does not bind. Hence, (2.1) is solved by maximizing the
Lagrangian

n∑
i=1

n∑
j=1

wij logpij − µ

(
n∑

i=1

n∑
j=1

pij − 1

)
−

n∑
i=1

n∑
j=1

λ′
ig(zj , θ̂ )pij ,

where µ is the Lagrange multiplier for the second constraint and {λi ∈ R
q : i =

1, . . . , n} is the set of multipliers for the third constraint. It is easy to verify that
the solution to this problem is given by

p̂ij = wij

n + λ′
ig(zj , θ̂)

,

where each λi solves
n∑

j=1

wijg(zj , θ̂)

n + λ′
ig(zj , θ̂)

= 0, i = 1, . . . , n.(2.2)

Note that λi is shorthand for λ(xi, θ̂). Its dependence on θ̂ is suppressed for
notational convenience. Hence, we can rewrite the restricted (i.e., under H0) SEL
as

SELr =
n∑

i=1

n∑
j=1

wij log p̂ij =
n∑

i=1

n∑
j=1

wij log
{

wij

n + λ′
ig(zj , θ̂)

}
.

Next, we look at the unrestricted problem, which is similar to (2.1) except that
the conditional moment constraint is absent; that is, we solve

max{pij : i,j=1,...,n}

n∑
i=1

n∑
j=1

wij logpij s.t. pij ≥ 0,

n∑
i=1

n∑
j=1

pij = 1.

The solution to this is p̃ij = wij /n, and we can write the unrestricted SEL as

SELur =
n∑

i=1

n∑
j=1

wij log p̃ij =
n∑

i=1

n∑
j=1

wij log
{
wij

n

}
.

An analog of the parametric likelihood ratio test statistic would then be

2(SELur − SELr ) = 2
n∑

i=1

n∑
j=1

wij log
{

1 + λ′
ig(zj , θ̂)

n

}
,(2.3)
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where λi solves (2.2). Heuristically speaking, SELur − SELr will be small if
(1.1) holds. Therefore, it seems sensible to base the test for H0 on (2.3). However,
we use a modified version of (2.3) for our test because we now restrict ourselves
to a situation where we are interested in the behavior of x �→ E{g(z, θ)|x} only
on a certain fixed subset (say S∗) of S, the support of x. So define the smoothed
empirical likelihood ratio (SELR) as

SELR = 2
n∑

i=1

I{xi ∈ S∗}
n∑

j=1

wij log
{

1 + λ′
ig(zj , θ̂)

n

}
,(2.4)

where each λi solves (2.2). Our test for H0 is based on (2.4); namely, we reject the
null hypothesis for large values of SELR.

Note that S∗ is identical to the fixed trimming set used in Aït-Sahalia, Bickel
and Stoker (2001). Fixed trimming is useful for practical and technical reasons. As
Aït-Sahalia, Bickel and Stoker (2001) point out, a practical benefit is that we can
focus specification testing on regions in x-space which may be empirically more
relevant. Technically, it lets us avoid the usual edge effects associated with kernel
estimators [Härdle and Marron (1990), page 66].

Before proceeding any further, we mention some additional papers in the
empirical likelihood literature which may be relevant to us. The basic references
are, of course, the seminal papers by Owen cited earlier. Using i.i.d. observations,
Qin and Lawless (1994, 1995) and Imbens (1997) look at efficiently estimating
finite-dimensional parameters under unconditional moment restrictions. Kitamura
(1997) extends the treatment to weakly dependent data. Kitamura (2001) also
describes an optimal property of empirical likelihood-based tests for unconditional
moment restrictions. Not much work seems to have been done as far as applying
empirical likelihood to conditional moment restrictions is concerned. Some
exceptions include LeBlanc and Crowley (1995), Brown and Newey (1998) and
Kitamura, Tripathi and Ahn (2002). LeBlanc and Crowley (1995) and Kitamura,
Tripathi and Ahn (2002) are mainly concerned with estimation, while Brown
and Newey (1998) consider the bootstrap under a conditional moment restriction.
Some earlier papers in the econometrics literature that may be related to the
empirical likelihood approach include Cosslett (1981a, b) and Chamberlain (1987,
1992). None of these papers contains the results obtained here.

Finally, in a recent study, Chen, Härdle and Kleinow (2001) propose a method
that is closely related to our approach. They consider nonparametric specification
testing using empirical likelihood in a time series context. They use a version of
sample moments, localized at each point of a lattice over the space of conditioning
variable. This yields a sequence of localized empirical likelihood ratios defined
on the lattice. The fact that the user has to choose a lattice for the test brings
some arbitrariness into their method. In contrast, our test does not require choosing
such a lattice. Also, in this paper we demonstrate that our test has an asymptotic
optimality property.
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3. Basic assumptions and notation. Let Ii = I{xi ∈ S∗}, S
a = {ξ ∈ R

a :
‖ξ‖ = 1}, V (xi, θ) = E{g(zi, θ)g′(zi, θ)|xi} and V̂ (xi, θ) = ∑n

j=1 wijg(zj , θ) ×
g′(zj , θ). Here x(i) is the ith component of a vector x and M(ij) the (i, j)th ele-
ment of a matrix M . Furthermore, vol(S∗) = ∫

S∗ dx denotes the Lebesgue measure
of S∗, ∂g(z, θ)/∂θ is the q × p Jacobian matrix, D(xi, θ) = E{∂g(zi, θ)/∂θ |xi}
and “w.p.a.1” stands for “with probability approaching 1.” The following regular-
ity conditions help us determine the asymptotic behavior of our test.

ASSUMPTION 3.1. (i) {xi, zi}ni=1 is a random sample on S × R
d .

(ii) x is continuously distributed with Lebesgue density h, while z can be
continuous, discrete or mixed. (iii) � ⊆ R

p and g : Rd × � → R
q is known.

(iv) E{supθ∈� ‖g(z, θ)‖m} < ∞ for some m ≥ 6.

Note that m = 6 will be required in the proof of Lemma A.1. The next
assumption describes the nature of S∗.

ASSUMPTION 3.2. The set S∗ is compact and contained in the interior of S

such that infx∈S∗ h(x) > 0.

This lets us avoid the boundary problems associated with kernel estimators.
Compactness of S∗ is required when we use uniform rates of convergence for
kernel estimators of conditional expectations to handle remainder terms in the
proofs. A consequence of this assumption is that our test will be consistent only
against those alternatives that differ from the null on S∗. As suggested by a referee,
it would be of interest (though technically challenging) to know how our results
change if we let S∗ expand so that the amount of trimming decreases with sample
size.

ASSUMPTION 3.3. There exists a θ0 ∈ int(�) for which (1.1) holds.

We assume that θ0 can be estimated by an n1/2-consistent estimator.

ASSUMPTION 3.4. θ̂ is an estimator of θ0 such that ‖θ̂ − θ0‖ = Op(n−1/2).

The n1/2-consistency of θ̂ guarantees that replacing θ̂ by θ0 does not change
the asymptotic behavior of our test statistics. Other details about the limiting
distribution of θ̂ are not required.

ASSUMPTION 3.5. (i) h(x) and V (x, θ0) are twice continuously differen-
tiable on S. (ii) h(x) and E{‖g(z, θ0)‖m|x}h(x) are uniformly bounded on S.
(iii) D(x, θ0) is continuous on S. (iv) (ξ, x) �→ ξ ′V (x, θ0)ξ is bounded away
from 0 on S

q × S∗.
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Conditions (i) and (ii) are used to obtain uniform (over x ∈ S∗) rates of
convergence for kernel estimators. (iii) will be used in the proof of Lemma A.9.
Condition (iv) implies that ‖V −1(x, θ0)‖ is bounded on S∗.

ASSUMPTION 3.6. For 1 ≤ i ≤ q and 1 ≤ j, k ≤ p, there exists an open
ball N0 around θ0 on which θ �→ g(z, θ) is twice continuously differentiable
w.p.1 such that supθ∈N0

|∂g(i)(z, θ)/∂θ(j)| ≤ d(z) and supθ∈N0
|∂2g(i)(z, θ)/

∂θ(j) ∂θ(k)| ≤ l(z) hold w.p.1 for some real-valued functions d(z) and l(z), where
Edη(z) < ∞ for η ≥ 6 and El2(z) < ∞.

Under this assumption, the mean value approximations ‖g(z, θ) − g(z, θ0)‖ ≤
d(z)‖θ − θ0‖ and ‖g(z, θ) − g(z, θ0) − ∂g(z, θ0)/∂θ(θ − θ0)‖ ≤ l(z)‖θ − θ0‖2

hold w.p.1 for θ ∈ N0. Note that η = 6 will be used in the proof of Lemma A.1,
and El2(z) < ∞ is required in the proof of Lemma A.5.

ASSUMPTION 3.7. K(x) = ∏s
i=1 κ(x(i)), where κ is a continuously differen-

tiable p.d.f. with support [−1,1]. The function κ is symmetric about the origin and
for some a ∈ (0,1) is bounded away from 0 on [−a, a].

Since the kernels in Assumption 3.7 are employed to estimate probabilities, the
use of kernels with order greater than 2 is ruled out. The nonnegativity of K is
also explicitly used several times in the proofs. Continuous differentiability of κ

means that K satisfies a Lipschitz condition. This allows us to use the uniform
convergence rates for kernel estimators in Newey (1994). The requirement that
K be bounded away from 0 on a closed ball centered at the origin allows us
to use a result of Devroye and Wagner (1980) in Lemma C.5. For later use,
define R(K) = ∫

[−1,1]s K2(u) du, K∗(x) = ∫
[−1,1]s K(v)K(x − v) dv and K∗∗ =∫

[−2,2]s {K∗(u)}2 du.

4. The test statistics and their distributions under the null. In this section,
we construct two statistics to test H0. Both statistics, subsequently denoted by
ζ1,n and ζ2,n, are based on SELR. The first step is to transform SELR so that
we can apply a CLT due to de Jong (1987). So let bn = n−α for 0 < α <

min{1
s
(1 − 4

m
), 1

3s
, 1

s
(1 − 2

m
− 2

η
)}. Then, following Lemma A.1, we can write

SELR = T̂ + op(1),(4.1)

where

T̂ =
n∑

i=1

I{xi ∈ S∗}
{

n∑
j=1

wijg
′(zj , θ̂)

}
V̂ −1(xi, θ̂ )

{
n∑

j=1

wij g(zj , θ̂ )

}
.
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Now decompose T̂ = T̂1 + T̂2 + T̂3 + T̂4 + T̂5, where

T̂1 = K2(0)

n∑
i=1

Ii

g′(zi, θ̂)V̂ −1(xi, θ̂)g(zi, θ̂)

{∑n
u=1 Kiu}2 ,

T̂2 =
n∑

i=1

n∑
j=1, j 
=i

Iiw
2
ij g

′(zj , θ̂)V̂ −1(xi, θ̂)g(zj , θ̂),

T̂3 = K(0)

n∑
i=1

n∑
j=1, j 
=i

Ii

g′(zi, θ̂)V̂ −1(xi, θ̂)g(zj , θ̂)wij∑n
u=1 Kiu

, T̂4 = T̂3,

T̂5 =
n∑

i=1

n∑
j=1, j 
=i

n∑
t=1, t 
=j 
=i

Iiwij g
′(zj , θ̂ )V̂ −1(xi, θ̂ )g(zt , θ̂ )wit .

Define σ 2 = 2qK∗∗ vol(S∗). Then, under H0 and our choice of bandwidth,

b
s/2
n T̂1 = op(1) follows by Lemma A.2, b

s/2
n T̂2 = b

−s/2
n q R(K)vol(S∗) +

Op(b
2−s/2
n ) + op(1) by Lemma A.3, b

s/2
n T̂3 = op(1) by Lemma A.4 and

b
s/2
n T̂5

d→ N(0, σ 2) by Lemma A.5. Although b
s/2
n T̂1 and b

s/2
n T̂3 are asymptoti-

cally negligible in probability, b
s/2
n T̂2 explodes as n ↑ ∞. Therefore, SELR has to

be properly centered if we want a test statistic with a valid asymptotic distribution.

This is done by subtracting b
s/2
n T̂2 from SELR. Subtracting b

s/2
n T̂2 does not lead

to any loss of information as far as testing H0 is concerned. This follows from
Lemmas A.3 and B.3, which show that the asymptotic behavior of T̂2 remains
unchanged under H0 and the sequence of local alternatives in (6.1).

We are now ready to construct ζ1,n and ζ2,n. So define

ζ1,n = b
s/2
n SELR − b

s/2
n T̂2

σ
.(4.2)

By (4.1) and the above facts, ζ1,n = b
s/2
n T̂5/σ +op(1). Hence, the following result

is immediate.

THEOREM 4.1. Let Assumptions 3.1–3.7 hold. Furthermore, assume that

bn = n−α for 0 < α < min{1
s
(1 − 4

m
), 1

3s
, 1

s
(1 − 2

m
− 2

η
)}. Then ζ1,n

d→N(0,1)

under H0.

A size-γ test for H0 can be obtained by comparing ζ1,n with critical values
obtained from a standard normal distribution. Notice that σ does not depend on
any unknown parameters and can be calculated analytically. However, to use ζ1,n,
we do need to calculate T̂2. Even this calculation can be eliminated when we
have at most three conditioning variables. To see this, observe that if s ≤ 3, then
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b
s/2
n T̂2 = b

−s/2
n q R(K)vol(S∗) + op(1). Hence, we can use

ζ2,n = b
s/2
n SELR − b

−s/2
n q R(K)vol(S∗)

σ
(4.3)

to test H0 when s ≤ 3. This leads to the following result.

COROLLARY 4.1. Let Assumptions 3.1–3.7 hold. Furthermore, assume that
s ≤ 3 and bn = n−α for 0 < α < min{1

s
(1 − 4

m
), 1

3s
, 1

s
(1 − 2

m
− 2

η
)}. Then

ζ2,n
d→N(0,1) under H0.

In practice, ζ2,n seems more useful than ζ1,n because s ≤ 3 is a reasonable
bound for most applications of nonparametric regression. A nice interpretation of
Corollary 4.1 can be obtained by observing that we can express its result as

SELR − c1γn

c2
√

2γn

d→N(0,1),(4.4)

where c1 = R(K), c2 = √
K∗∗ and γn = b−s

n q vol(S∗). Equation (4.4) can be
regarded as a nonparametric analog of Wilks’ theorem: If SELR were distributed
as a χ2 random variable with c1γn degrees of freedom and we had used a K for
which R(K) = K∗∗, then (4.4) would be interpreted as the normal approximation
of a χ2 random variable with large degrees of freedom. See Fan, Zhang and Zhang
(2001) for more discussion regarding a nonparametric analog of Wilks’ theorem.

5. Practical considerations. Implementing our SELR-based test is straight-
forward. To see this, first observe that since λ �→ log(1 + λ′g(zj , θ̂)/n) is well
defined and strictly concave for large enough n, the λi ’s in (2.2) are numerical
solutions of

max
λ∈Rq

n∑
j=1

wij log
{

1 + λ′g(zj , θ̂)

n

}
.(5.1)

This optimization problem can be uniquely solved for λi by a standard Newton–
Raphson procedure. Therefore, we can rewrite (2.4) as

SELR = 2
n∑

i=1

I{xi ∈ S∗} max
λ̄i∈Rq

n∑
j=1

wij log
{

1 + λ̄′
ig(zj , θ̂)

n

}
.(5.2)

A useful feature of SELR is that it is invariant to nonsingular linear transfor-
mations of the moment conditions. Let C(x, θ) be a q × q matrix which is
nonsingular w.p.1 for every θ ∈ �. Clearly, E{g(z, θ0)|x} = 0 if and only if
E{C(x, θ0)g(z, θ0)|x} = 0. If the preliminary estimator θ̂ is invariant to this lin-
ear transformation [e.g., the maximum smoothed empirical likelihood estimator
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proposed by Kitamura, Tripathi and Ahn (2002) satisfies this requirement], then it
is easy to show that SELR (hence, ζ1,n and ζ2,n) is also invariant.

Calculating SELR in (5.2) may be computationally demanding as it requires
n maximizations. As suggested by a referee, one way to circumvent this problem
is to use a one-step approximation for λi in constructing SELR. Since V̂ (xi, θ̂) is
invertible on S∗ w.p.a.1, it is straightforward to verify that when n is large enough
and xi ∈ S∗, a one-step approximation (starting from 0) for the solution to (2.2)
is given by λi,(1) = nV̂ −1(xi, θ̂ )

∑n
j=1 wij g(zj , θ̂ ). Hence, a one-step version of

SELR is

SELR(1) = 2
n∑

i=1

I{xi ∈ S∗}
n∑

j=1

wij log
{

1 + λ′
i,(1)g(zj , θ̂ )

n

}
.(5.3)

The asymptotic theory for ζ1,n and ζ2,n remains unchanged if we substitute
SELR(1) for SELR in (4.2) and (4.3). To see this, examine the proof of Lemma A.1.
Note that if we set the remainder term r1,i identically equal to 0 in (A.1), we obtain
the one-step approximation λi,(1). Hence, following the rest of the proof, it is easily
seen that

SELR(1) = T̂ + Op

({
logn

n1/3bs
n

}3/2)
.

Therefore, our asymptotic results for ζ1,n and ζ2,n do not change.
To summarize, implementing the test involves the following steps. Step 1:

Obtain θ̂ , a preliminary estimator of θ0. Step 2: Pick a bandwidth bn. Step 3:
Use (5.2) to calculate SELR or (5.3) to calculate SELR(1). Step 4: Depending
on the dimension of x, construct ζ1,n or ζ2,n as defined in (4.2) and (4.3). Once
θ̂ and bn have been chosen, no other parameters need be estimated. Obtaining θ̂ is
straightforward. However, as in any other nonparametric procedure, the choice
of bn requires a little more effort. Suppose, for example, we wish to carry
out specification testing for a parametric regression function. In this case, it is
natural to cross-validate the average squared errors or a similar goodness-of-fit
measure for nonparametric regression to select an appropriate bandwidth. See,
for example, Härdle (1990). This strategy covers a large majority of practically
interesting situations, and has been used widely in the nonparametric specification
testing literature. See, for instance, Hart (1997). If, however, the model is not in
a regression form, we need to find an alternative loss function for a bandwidth
selector. One possible avenue for exploration is described in LeBlanc and Crowley
(1995), Section 3.2. A detailed analysis of automatic or data-driven bandwidth
choice for SELR is beyond the scope of the current paper and is left for future
research.

Finally, notice that the above discussion makes sense only if (5.1), or,
equivalently (2.2), has a solution. A look at (2.1) reveals that a necessary and
sufficient condition for the solution to exist is that the origin is contained in the
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convex hull of {g(z1, θ̂), . . . , g(zn, θ̂)}. We now show that this condition holds
w.p.a.1 if we assume that E{g(z, θ0)g

′(z, θ0)} exists and has full rank and that

Pr
{
z : ξ ′g(z, θ) = 0

} = 0 for each (ξ, θ) ∈ S
q × B0,(5.4)

where B0 is some compact neighborhood of θ0. For example, (5.4) holds
whenever g(z, θ) has a density with respect to the Lebesgue measure for
each θ ∈ B0. Let a(z, ξ, θ) = I{ξ ′g(z, θ) > 0}. Since θ̂ is consistent for θ0,
supξ∈Sq |n−1 ∑n

j=1 I{ξ ′g(zj , θ̂) > 0} − Pr{ξ ′g(z, θ0) > 0}| ≤ (1) + (2) holds

w.p.a.1, where (1) = sup(ξ,θ)∈Sq×B0
|n−1 ∑n

j=1 a(zj , ξ, θ) − Ea(z, ξ, θ)| and

(2) = supξ∈Sq |Ea(z, ξ, θ̂) − Ea(z, ξ, θ0)|. But, under (5.4), (ξ, θ) �→ a(z, ξ, θ)

is continuous on S
q × B0 w.p.1. Hence, by Newey and McFadden [(1994),

Lemma 2.4], it follows that (1) = op(1) and (ξ, θ) �→ Ea(z, ξ, θ) is contin-
uous on S

q × B0. Since S
q is compact, the latter fact implies that θ �→

maxξ∈Sq |Ea(z, ξ, θ) − Ea(z, ξ, θ0)| is continuous on B0. Hence, (2) = op(1) by
the continuous mapping theorem. Thus, we have shown that (1) + (2) = op(1).
Owen [(1990), Lemma 2] shows that infξ∈Sq Pr{ξ ′g(z, θ0) > 0} > 0 provided
E{g(z, θ0)g

′(z, θ0)} exists and has full rank. Therefore, infξ∈Sq n−1 ∑n
j=1 I{ξ ′g(zj ,

θ̂ ) > 0} > 0 holds w.p.a.1. As a consequence, the origin lies in the convex hull of
{g(z1, θ̂), . . . , g(zn, θ̂ )} w.p.a.1.

6. Limiting behavior under local alternatives. We now derive the asymp-
totic power function of ζ1,n and ζ2,n under a sequence of alternatives that approach
the null hypothesis as n ↑ ∞. To generate these local alternatives, we follow the
approach of Hong and White [(1995), Section 3]; namely, we keep the joint distrib-
ution of (x, z) fixed and assume that there exists a nonstochastic sequence θn,0 ∈ �

such that

H1n : E{g(z, θn,0)|x} = δ(x)

n1/2b
s/4
n

(6.1)

holds w.p.1 for some δ :S → R
q .

Notice that the null hypothesis is obtained if δ(x) = 0. We need some additional
assumptions in order to obtain the asymptotic distribution of ζ1,n and ζ2,n under
the sequence of local alternatives defined in (6.1). For the next assumption, recall
the definition of N0 as given in Assumption 3.6.

ASSUMPTION 6.1. (i) h(x) and V (x, θ) are twice continuously differen-
tiable on S for θ ∈ N0. (ii) h(x) and supθ∈N0

E{‖g(z, θ)‖m|x}h(x) are uni-
formly bounded on S. (iii) D(x, θ) and V (x, θ) are continuous on S × N0.
(iv) inf(ξ,x,θ)∈Sq×S∗×N0 ξ ′V (x, θ)ξ > 0 and sup(ξ,x,θ)∈Sq×S∗×N0

ξ ′V (x, θ)ξ < ∞.

Assumption 6.1 is a generalization of Assumption 3.5.
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ASSUMPTION 6.2. (i) θn,0 is a nonstochastic sequence such that (6.1) holds,
and ‖θn,0 − θ0‖ ↓ 0 as n ↑ ∞. (ii) δ :S → R

q is continuous and E‖δ(x)‖m < ∞.
(iii) θ̂ is n1/2-consistent for θn,0, that is, ‖θ̂ − θn,0‖ = Op(n−1/2).

Condition (i) ensures that θn,0 ∈ N0 for large enough n so that the regularity
conditions in Assumptions 3.6 and 6.1 hold. Continuity of δ and existence of
moments in (ii) are required for technical reasons and are used in the proofs.
Condition (iii) guarantees that replacing θ̂ by θn,0 in ζ1,n and ζ2,n does not change
their asymptotic distribution under H1n.

By Lemma B.1, (4.1) remains valid under H1n. Hence, by Lemmas B.2 and B.4,
ζ1,n = b

s/2
n T̂5/σ + op(1) as before. Define µ = E[I{x1 ∈ S∗}δ′(x1)V

−1(x1, θ0) ×
δ(x1)]. Using Lemma B.5, we can show the next result.

THEOREM 6.1. Let Assumptions 3.1, 3.2, 3.6, 3.7, 6.1 and 6.2 hold.
Furthermore, assume that bn = n−α for 0 < α < min{1

s
(1− 4

m
), 1

3s
, 1

s
(1− 2

m
− 2

η
)}.

Then ζ1,n
d→N(µ/σ,1) under H1n.

Therefore, the asymptotic local power function of a size-γ test using ζ1,n is
given by 1 −�(cγ − µ

σ
), where �(t) = Pr{N(0,1) ≤ t} and �(cγ ) = 1 −γ . When

s ≤ 3, a similar result holds for ζ2,n.

COROLLARY 6.1. Let Assumptions 3.1, 3.2, 3.6, 3.7, 6.1 and 6.2 hold. Fur-
thermore, assume that s ≤ 3 and bn = n−α for 0 < α < min{1

s
(1 − 4

m
), 1

3s
, 1

s
(1 −

2
m

− 2
η
)}. Then ζ2,n

d→N(µ/σ,1) under H1n.

7. Asymptotic optimality of the SELR test. As noted in the Introduction,
there are alternative tests for conditional moment restrictions available in the
literature. All of these tests are nonparametric and are consistent against general
alternatives. There is, of course, a price one pays for this generality: nonparametric
tests tend to have lower power than parametric ones. Therefore, it is important to
find a nonparametric test with good power properties.

This section identifies an optimal test among a class of conditional moment
restrictions tests. Aït-Sahalia, Bickel and Stoker (2001) provide a convenient
framework for this purpose. They consider a testing procedure based on a weighted
sum of squared residuals from kernel regression. Many earlier tests, at least
asymptotically, can be regarded as a special case of this test with a particular
choice of weighting function. Härdle and Mammen (1993), Fan and Li (1996),
Zheng (1996) and our SELR test, for example, fall into this category. Hong and
White (1995) apply a similar principle, though they use series instead of kernels.

To simplify our argument, let q = 1, s = 1 and S∗ = [0,1]. In implementing the
test of Aït-Sahalia, Bickel and Stoker, the researcher chooses a piecewise smooth,
bounded and square integrable weight function a : [0,1] → R+ and calculates
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G(a) = bn

∑n
i=1 Ê

2{g(z, θ̂)|xi}a(xi), where Ê{g(z, θ̂)|xi} = ∑n
j=1 wijg(zj , θ̂).

The statistic for testing H0 proposed by Aït-Sahalia, Bickel and Stoker is

τ (a) = b
−1/2
n {G(a) − R(K)

∫ 1
0 V (x, θ0)a(x) dx}√

2K∗∗ ∫ 1
0 V 2(x, θ0)a2(x) dx

.(7.1)

We can replace V (x, θ0) with an appropriate consistent estimator without affecting
the asymptotic properties of the test. Since τ (ca) = τ (a) for any c 
= 0, without
loss of generality we assume that

∫ 1
0 a2(x) dx = 1. Now let

M(a, δ) =
∫ 1

0 δ2(x)a(x)h(x) dx√
2K∗∗ ∫ 1

0 V 2(x, θ0)a2(x) dx

.(7.2)

As Aït-Sahalia, Bickel and Stoker show, under H1n,

τ (a)
d→N

(
M(a, δ),1

)
.(7.3)

The asymptotic power of their test with critical value cγ is thus given by

π(a, δ) = 1 − �
(
cγ − M(a, δ)

)
.(7.4)

Comparing (7.4) and Theorem 6.1, we can see that our SELR test is asymptotically
equivalent to the τ (a) test with the weighting scheme

aSELR(x) = 1

V (x, θ0)

√∫ 1
0 V −2(x, θ0) dx

.(7.5)

We shall demonstrate that this choice of weighting, which is implicitly achieved
by the SELR test, is optimal in a certain sense.

If δ is known counterfactually, it is easy to derive the optimal weighting function
that maximizes (7.2). For a known δ, an application of the Cauchy–Schwarz
inequality on (7.2) shows that (7.4) is maximized by choosing

a(x, δ) = δ2(x)h(x)

V 2(x, θ0)

√∫ 1
0 δ4(x)V −4(x, θ0)h2(x) dx

.(7.6)

The notation a(x, δ) indicates that the optimal choice of a depends on δ. This
result is not terribly useful since δ is unknown in practice. It is also clear from (7.6)
that there is no uniformly (in δ) optimal test. This resembles the multiparameter
optimal testing problem considered in the seminal paper of Wald (1943).

Wald shows that the likelihood ratio test, and other asymptotically equivalent
tests, for a hypothesis about finite-dimensional parameters is optimal in terms of
an average power criterion. Loosely put, he considers a weighted average of the
power function where uniform weights are given along each probability contour
of the distribution of the estimator he uses (MLE). This criterion is natural and
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attractive since it is impartial—it puts heavy (light) weights in directions where
the detection of departures from the null is difficult (easy). This approach has been
used in the literature quite effectively. For example, Andrews and Ploberger (1994)
consider optimal inference in a nonstandard testing problem. They derive a test that
is optimal with respect to a Wald-type average power criterion. Their optimal test
performs well in finite samples [see Andrews and Ploberger (1996)], indicating the
practical relevance of Wald’s approach.

Our testing problem is different from the ones considered by Wald in that
instead of being finite dimensional, our parameter of interest is an unknown
function. A natural extension of Wald’s approach is to consider a probability
measure on an appropriate space of functions and let the measure mimic the
distribution of the “estimator.” Then the local average power criterion is obtained
by integrating (7.4) against the probability measure. Note that the tests we are
comparing rely on the kernel regression estimator Ê{g(z, θ̂)|x}, either explicitly or
implicitly. Therefore, we propose to use a probability measure that approximates
the asymptotic distribution of the sample path of Ê{g(z, θ̂)|x}.

So let δ̃ be a C([0,1])-valued random variable given by δ̃(x) = V 1/2(x, θ0) ×
h−1/2(x)y(x), where y(x) = ∫ 1

0 k( x
β

− z) dW(z − �z�), W is the standard
Brownian motion on [0,1], k(·) an appropriate weighting function, β a positive
adjustable parameter and �z� the integer part of z. For each x in [0,1], y(x) is a
stochastic integral. Note the use of dW(z−�z�) as the integrator. This implies that
the covariance kernel r(s) = E[y(x)y(x + s)] of the Gaussian process y is circular,
that is, r(s) = r(1− s). Circular processes are widely used for analyzing stationary
processes on a finite interval [see, e.g., Hannan (1970) and Priestley (1981)]. In
our case, it lets us avoid treating y(x)’s close to the end points of the interval [0,1]
differently from the ones in the middle. Consequently, for an arbitrary function f

such that the integral
∫ 1

0 f (y(x)) dx is well defined, the joint distribution of the
bivariate random vector (

∫ 1
0 f (y(x)) dx, y(x0)) does not depend on the location

x0 ∈ [0,1]. Other properties of δ̃, such as its Gaussianity, are not important in our
argument below.

Note that the variance function of δ̃(x) coincides with the asymptotic variance
function of Ê{g(z, θ̂)|x} up to scale. This is one of the features we intend to
replicate by using δ̃. The Gaussian process δ̃ is based on an approximation of
Ê{g(z, θ̂)|x} derived by Liero (1982). Also see Johnston (1982) and Härdle (1989)
for related results. In our theory, however, k and β do not have to be the same as
K and bn. Here k determines the pattern of autocorrelations of y(x) and β is used
for scaling x. A large β and a spread-out k correspond to stronger dependence,
yielding paths of y and δ̃ that look smoother. Our optimality result does not depend
on the choice of β and k.

We are now ready to define our average power concept. Let Q be the probability
measure induced by δ̃ on C([0,1]). Using the definition of δ̃, rewrite the random
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variable M(a, δ̃) as

M(a, δ̃) =
∫ 1

0 V (x, θ0)y
2(x)a(x) dx√

2K∗∗ ∫ 1
0 V 2(x, θ0)a

2(x) dx

= 1√
2K∗∗

∫ 1

0
A(x)y2(x) dx,

where

A(x) = V (x, θ0)a(x)√∫ 1
0 V 2(x, θ0)a2(x) dx

.(7.7)

Note that
∫ 1

0 A2(x) dx = 1 and it is sometimes convenient to deal with A rather
than a. Note also that M(a, δ̃) = M(A/V, δ̃). Let FA be the c.d.f. of M(A/V, δ̃).
The average asymptotic power of the test proposed by Aït-Sahalia, Bickel and
Stoker (2001) [see (7.4)] is the following functional of A:

π̄(A) =
∫

π(A/V, δ̃) dQ(δ̃) =
∫ ∞

0
[1 − �(cγ − m)]FA(dm).(7.8)

Observe that the integrand in (7.8) is strictly increasing in m. So if there exists a
piecewise smooth, bounded, square integrable function A∗ : [0,1] �→ R+ such that∫ 1

0 A∗2(x) dx = 1 and for all A the c.d.f. FA∗ first-order stochastically dominates
FA [i.e., FA(m) ≥ FA∗(m) for all m], then A∗ maximizes π̄(A). By (7.7), the
optimal weighting function a∗ is given by

a∗(x) = A∗(x)

V (x, θ0)
√∫

A∗2(x)/V 2(x, θ0) dx
.

To find A∗, fix m ∈ R arbitrarily and consider solving the following variational
problem over all piecewise smooth, bounded, square integrable functions from
[0,1] → R+:

min
A

FA(m) s.t.
∫ 1

0
A2(x) dx = 1.(7.9)

For any x0 ∈ [0,1], let FA(m|y(x0)) be the conditional c.d.f. of M(A/V, δ̃) given
y(x0). Let fA(m|y(x0)) be the conditional p.d.f. corresponding to FA(m|y(x0)).
Now it is clear that FA(m) = Ey(x0) [FA(m|y(x0))], where the symbol Ey(x0)

indicates that the expectation is over y(x0). Furthermore,

∂FA(m|y(x0))

∂A(x0)
= ∂E[I{∫ 1

0 A(x)y2(x) dx < m}|y(x0)]
∂A(x0)

= y2(x0)fA

(
m|y(x0)

)
.

These results imply that

∂FA(m)

∂A(x0)
= Ey(x0)

[
y2(x0)fA

(
m|y(x0)

)]
for all x0 ∈ [0,1].
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Thus, the Euler–Lagrange equation for the variational problem (7.9) is

Ey(x0)

[
y2(x)fA∗

(
m|y(x0)

)] = 2λA∗(x0) for all x0 ∈ [0,1],(7.10)

where λ is the Lagrange multiplier for the constraint in (7.9) and A∗ the solution.
To solve (7.10), we use a guess-and-verify approach. So suppose that A∗(x) =
I{x ∈ [0,1]}. Clearly, this is a feasible guess. As noted in our earlier discussion
on the nature of the random process y, the joint distribution of M(A∗/V, δ̃) =
(1/

√
2K∗∗ )

∫ 1
0 y2(x) dx and y(x0) does not depend on x0 ∈ [0,1]. Therefore,

Ey(x0)[y2(x0)fA∗(m|y(x0))] def= K (say) does not depend on x0 ∈ [0,1]. So (7.10) is
satisfied with A∗(x) = I{x ∈ [0,1]} and λ = K/2. We have verified that A∗(x) =
I{x ∈ [0,1]} solves (7.9). The optimal a corresponding to A∗(x) = I{x ∈ [0,1]} is

a∗(x) = I{x ∈ [0,1]}
V (x, θ0)

√∫ 1
0 V −2(x, θ0) dx

.

Comparing this with (7.5), we immediately obtain that the weight aSELR is optimal.
The above result shows that the SELR test attains maximum average local

power. An alternative way of achieving this optimality is to estimate a∗ by

â∗(x) = I{x ∈ [0,1]}
V̂ (x, θ̂ )

√∫ 1
0 V̂ −2(x, θ̂ ) dx

.

We then use â∗ to calculate G for the test statistic in (7.1). While this approach is
valid asymptotically, such a “plug-in” method often leads to poor finite-sample
behavior. At the very least, it would require a good nonparametric estimator
of V (x, θ0). An advantage of our statistic over plug-in statistics is that this
optimal weighting is carried out automatically and implicitly, eliminating the need
for estimating V (x, θ0). This feature is similar to the “internal Studentization”
property of other empirical likelihood ratio statistics emphasized in the literature.
Empirical evidence suggests that internal Studentization often improves finite-
sample properties of the tests substantially. See, for example, Fisher, Hall, Jing
and Wood (1996).

8. Simulation experiments. This section reports some experimental evi-
dence on the finite-sample performance of the SELR test against two well-known
competitors.

8.1. Scope of the simulation study. We compare the SELR test with two tests
considered in the Horowitz and Spokoiny (2001) simulation study, namely, the
tests by Härdle and Mammen (1993) and Horowitz and Spokoiny (2001).

The Härdle–Mammen test is a kernel-based test. It is widely used and is often
considered as a benchmark of nonparametric conditional mean specification tests.
Also, their test and the SELR tests can be put in the asymptotic framework used
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in Section 7, where we have demonstrated that the SELR test is optimal in Wald’s
sense. It is therefore interesting to investigate the performance of our test relative
to the Härdle–Mammen test in finite samples.

The Horowitz–Spokoiny test is also kernel based. It is based on nonparamet-
ric goodness-of-fit statistics calculated over a range of bandwidths. Horowitz and
Spokoiny show that their test is adaptive and rate optimal (i.e., it is uniformly con-
sistent at the fastest possible rate). Our test complements, rather than substitutes,
for their test. The result in Section 7 suggests that SELR has a desirable theoret-
ical property under a sequence of local alternatives, though it is not rate optimal.
In contrast, Horowitz and Spokoiny obtain a test that is adaptive and rate optimal,
though they do not discuss the local power of their test. By adopting Horowitz and
Spokoiny’s strategy and using many bandwidths, it may be possible to construct
an adaptive and rate-optimal version of the SELR test. However, such an extension
is beyond the scope of the current paper.

Finally, it should be noted that the tests of Andrews (1997) and Bierens
and Ploberger (1997) (which do not require any nonparametric smoothing) are
consistent against alternatives of the form n−1/2δ(x). Other Cramér–von Mises-
type and Kolmogorov–Smirnov-type tests typically share this property as well.
However, as Härdle and Mammen [(1993), page 1931] point out, “(t)hese tests
. . . are of more parametric nature—in the sense that they look into certain one-
dimensional directions.” This point, that is, the relative merits of specification
tests with smoothing over tests without smoothing, has also been emphasized by
Hart (1997) and other researchers. Indeed, Horowitz and Spokoiny report that
the Andrews test is dominated by the Härdle–Mammen test in terms of power,
uniformly over their experimental designs. But, as we shall see immediately, the
Härdle–Mammen test is, in turn, dominated by the SELR test uniformly in the
same experimental designs. This fact provides useful evidence on the finite-sample
performance of the SELR test compared with tests like that of Andrews.

8.2. Simulation design. Our simulation design is nearly identical to the design
used by Horowitz and Spokoiny (2001). The null hypothesis specification takes

the form yi = β0 + β1xi + εi , where β0 = β1 = 1 and xi
i.i.d.∼ N(0,25) with

its 5% upper and lower tails truncated. In our simulation study, a series of xi

(for i = 1,2, . . . ,250) is drawn for each Monte Carlo replication. This is the
main difference between our experiments and those of Horowitz and Spokoiny,
who generated a series of i.i.d. draws {xi}250

i=1 from N(0,25) once and then
kept it fixed throughout the simulations. Note that εi is i.i.d. and independent
of xi . We experiment with three specifications for εi as used by Horowitz and
Spokoiny: normal with mean 0 and variance 4, mixture of normals [N(0,1.56)

with probability 9/10 and N(0,25) with probability 1/10] and Type I extreme
value distribution with variance 4.

We also investigate finite-sample power properties of the three tests under the
alternatives yi = β0 + β1xi + (c/τ )φ(xi/τ ) + εi , where φ denotes the standard
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normal density, τ = 0.25,1 or 2 and c = 2.5 or 5. This is the same specification
of alternatives used by Horowitz and Spokoiny, though they did not consider the
cases τ = 2 and c = 2.5. The parameters τ and c control the shape of the deviation
from the linear null model. For example, it is narrowly peaked for small values
of τ .

The OLS estimator is used to estimate β0 and β1; then the three tests are
carried out. The Gaussian kernel is used for all of the three tests. A bandwidth
needs to be specified to calculate the Härdle–Mammen statistic and SELR. To
make our experiment comparable to Horowitz and Spokoiny’s, and to reduce the
computational burden at the same time, we set bn = 3.5, which is the bandwidth
value used by Horowitz and Spokoiny. The critical values for the Härdle–Mammen
and SELR tests are obtained using the wild bootstrap procedure described in
Härdle and Mammen (1993). The number of bootstrap replications is 99. The
Horowitz–Spokoiny statistic is obtained by taking the maximum of a Studentized
goodness-of-fit statistic over the set of bandwidths {2.5,3,3.5,4,4.5}. Its critical
values are obtained via simulations; see Horowitz and Spokoiny (2001) for details
on the implementation of their test. The number of observations is set to 250
throughout the experiments. The number of Monte Carlo replications is 1000 for
the null, and 250 for each alternative.

8.3. Simulation results. Our simulation results are summarized in Table 1.
The reported figures are simulated rejection probabilities of the three tests at the
5% significance level. The first panel shows simulation results under the null. The
three tests perform well in size. All of the rejection frequencies are within two
simulation standard errors from the nominal size of 0.05.

The middle panel tabulates the results for alternatives with c = 5. The
distributional specification of ε has some impact on rejection rates, though
rankings among the three tests are robust with respect to the distribution of ε.
When the alternative hypothesis consists of a smooth bump (τ = 2), SELR is most
powerful among the three tests. For a narrowly peaked alternative (τ = 0.25), the
Horowitz–Spokoiny (H–S) test performs very well, though the power of the SELR
test is satisfactory and it is more powerful than the Härdle–Mammen (H–M) test.

A similar observation applies to the alternatives with c = 2.5 (the bottom panel).
In this case, the peak of the alternative is quite spread out even for τ = 1. SELR
and the Horowitz–Spokoiny test are equally powerful for this case, and the Härdle–
Mammen test is considerably less powerful. For τ = 0.25, the Horowitz–Spokoiny
test ranks first, SELR second and the Härdle–Mammen test third.

The computational burden of the simulation exercise limits its scope. Neverthe-
less, the finite-sample behavior of the SELR test documented above is encour-
aging. Our test is more powerful than the Härdle–Mammen test for all of the
alternatives considered here and in the Horowitz–Spokoiny paper. As the SELR
and Härdle–Mammen tests belong to the same class of nonparametric specifi-
cation tests, this comparison is informative. The Horowitz–Spokoiny test works
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TABLE 1
Monte Carlo results: nominal size = 0.05; n = 250; bn = 3.5

Probability of rejecting H0

Distribution of ε τ SELR test H–M test H–S test

Null hypothesis is true (1000 reps.)

Normal — 0.057 0.058 0.053
Mixture — 0.060 0.050 0.050
Extreme value — 0.043 0.046 0.048

Null hypothesis is false (250 reps.); c = 5

Normal 2.00 0.716 0.688 0.676
Mixture 2.00 0.760 0.688 0.708
Extreme value 2.00 0.756 0.684 0.704
Normal 1.00 0.964 0.932 0.976
Mixture 1.00 0.968 0.912 0.980
Extreme value 1.00 0.996 0.948 1.000
Normal 0.25 0.948 0.940 0.984
Mixture 0.25 0.948 0.908 0.984
Extreme value 0.25 0.956 0.908 0.992

Null hypothesis is false (250 reps.); c = 2.5

Normal 1.00 0.508 0.420 0.496
Mixture 1.00 0.536 0.404 0.488
Extreme value 1.00 0.548 0.428 0.552
Normal 0.25 0.584 0.468 0.660
Mixture 0.25 0.600 0.492 0.704
Extreme value 0.25 0.604 0.488 0.740

very well, especially for peaked alternatives, though it is less powerful than the
SELR test for smooth alternatives. As noted previously, the SELR test and the
Horowitz–Spokoiny test are not substitutes but rather complements. Recall that
the Horowitz–Spokoiny test is based on the maximum of a version of the Härdle–
Mammen statistic calculated over a set of bandwidths. The good performance of
the SELR test relative to the Härdle–Mammen test indicates the potential useful-
ness of SELR in the context of Horowitz–Spokoiny-type rate-optimal testing.

9. Conclusion. The results obtained in this paper show that the SELR test is
easy to construct and straightforward to implement. It is asymptotically normal
under the null hypothesis, has nontrivial local power under a sequence of local
alternatives and is asymptotically optimal in terms of an average power criterion.
Simulation evidence suggests that our test behaves well in finite samples.
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APPENDIX A

Asymptotic theory under the null. For the remainder of the paper, c denotes
a generic constant, g∗(zj ) = supθ∈� ‖g(zj , θ)‖, I∗ = {1 ≤ i ≤ n :xi ∈ S∗}, ĥ(xi) =∑n

j=1 Kij/(nbs
n), �̂(xi, θ) = ∑n

j=1 Kijg(zj , θ)g′(zj , θ)/(nbs
n), H̃n(xi, θ0) =

E{�̂(xi, θ0)|xi}E{ĥ(xi)|xi}, Ĥ (xi, θ) = V̂ (xi, θ)ĥ2(xi), H(xi, θ) = V (xi, θ) ×
h2(xi) and Atj = ∑n

i=1,i 
=j 
=t IiKij H̃
−1
n (xi, θ0)Kit .

LEMMA A.1. Let Assumptions 3.1–3.7 hold. Assume that bn = n−α for
0 < α < 1

s
(1 − 4

m
). Then

SELR = T̂ + op

({
logn

n1/2−1/mbs
n

}2)

+ op

(
1

n1−2/m

)
+ Op

({
log n

n1/3bs
n

}3/2)
under H0,

where T̂ = ∑n
i=1 Ii{∑n

j=1 wijg
′(zj , θ̂)}V̂ −1(xi, θ̂ ){∑n

j=1 wij g(zj , θ̂ )}.

PROOF. Our proof follows Owen [(1990), pages 100–102]. However, unlike
Owen, we obtain nonparametric (i.e., slower than n1/2) rates of convergence. Since
λi solves (2.2),

0 =
n∑

j=1

wijg(zj , θ̂)

n + λ′
ig(zj , θ̂ )

= 1

n

n∑
j=1

wijg(zj , θ̂) − 1

n2 V̂ (xi, θ̂)λi + 1

n

n∑
j=1

wij g(zj , θ̂ )(λ′
ig(zj , θ̂)/n)2

1 + (λ′
ig(zj , θ̂)/n)

.

By Lemma C.2(ii), V̂ (xi, θ̂ ) is invertible on S∗ w.p.a.1. Consequently,

Iiλi = nIi V̂
−1(xi, θ̂)

n∑
j=1

wijg(zj , θ̂) + Ii V̂
−1(xi, θ̂)r1,i(A.1)

holds w.p.a.1, where

r1,i =
n∑

j=1

wij g(zj , θ̂)(λ′
ig(zj , θ̂))2

n + λ′
ig(zj , θ̂)

.

Equation (2.2) also shows that

n∑
j=1

wij (λ
′
ig(zj , θ̂ ))2

n + λ′
ig(zj , θ̂ )

=
n∑

j=1

wijλ
′
ig(zj , θ̂).(A.2)



2078 G. TRIPATHI AND Y. KITAMURA

Hence, as n + λ′
ig(zj , θ̂) ≥ 0 (because p̂ij ≥ 0),

‖r1,i‖ ≤ max
1≤j≤n

‖g(zj , θ̂)‖
n∑

j=1

wijλ
′
ig(zj , θ̂)

Lemma C.4= o(n1/m)

∥∥∥∥∥
n∑

j=1

wijg(zj , θ̂)

∥∥∥∥∥‖λi‖,

where the o(n1/m) term does not depend on i, j or θ ∈ �. Now assume
that n is large enough so that θ̂ ∈ N0 and our regularity conditions hold. By
Assumption 3.6,

g(zj , θ̂) = g(zj , θ0) + rem(zj , θ̂ − θ0) w.p.1,
(A.3)

where ‖ rem(zj , θ̂ − θ0)‖ ≤ d(zj )‖θ̂ − θ0‖.
Hence,

Ii

∥∥∥∥∥
n∑

j=1

wij g(zj , θ̂ )

∥∥∥∥∥ ≤ max
i∈I∗

∥∥∥∥∥
n∑

j=1

wijg(zj , θ0)

∥∥∥∥∥ + ‖θ̂ − θ0‖
n∑

j=1

d(zj )wij ,(A.4)

which implies Ii‖r1,i‖ = o(n1/m){maxi∈I∗ ‖∑n
j=1 wijg(zj , θ0)‖ + ‖θ̂ − θ0‖ ×∑n

j=1 d(zj )wij }Ii‖λi‖. Next, let λi = ρiξi , where ρi ≥ 0 and ξi ∈ S
q . Observe

that

0 ≤ n + λ′
ig(zj , θ̂) ≤ n + ρi‖g(zj , θ̂ )‖ Lemma C.4= n + ρio(n1/m).

Under our choice of bn, max1≤i≤n |ξ ′
i V̂ (xi, θ̂)ξi − ξ ′

i V (xi, θ0)ξi| = op(1) by
Lemma C.2(i). Hence, as ξ ′

i V (xi, θ0)ξi is bounded away from 0 on (ξi, xi) ∈
S

q × S∗, by (A.2) and (A.4),

Iiρi

n + ρio(n1/m)
≤ Ii

∑n
j=1 wij ξ

′
i g(zj , θ̂)

ξ ′
i V̂ (xi, θ̂)ξi

= Op(1)Ii

{
max
i∈I∗

∥∥∥∥∥
n∑

j=1

wijg(zj , θ0)

∥∥∥∥∥ + ‖θ̂ − θ0‖
n∑

j=1

d(zj )wij

}
,

where the Op(1) term does not depend on i ∈ I∗. By Lemma C.1,

max
i∈I∗

∥∥∥∥∥
n∑

j=1

wij g(zj , θ0)

∥∥∥∥∥ = Op(cn),

where cn
def=

√
logn/nbs

n. By Lemma C.6, max1≤i≤n

∑n
j=1 d(zj )wij = o(n1/η)

holds w.p.1 as n ↑ ∞. But n1/mcn ↓ 0 and 1/m + 1/η ≤ 1/2 under our
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assumptions. Hence, solving for ρi , we obtain

Iiρi = Op(n)

{
max
i∈I∗

∥∥∥∥∥
n∑

j=1

wijg(zj , θ0)

∥∥∥∥∥ + ‖θ̂ − θ0‖
n∑

j=1

d(zj )wij

}
,(A.5)

where the Op(n) term does not depend on i ∈ I∗. Thus, by Jensen’s inequality,

Ii‖r1,i‖ = op(n1+1/m)

{[
max
i∈I∗

∥∥∥∥∥
n∑

j=1

wij g(zj , θ0)

∥∥∥∥∥
]2

+ ‖θ̂ − θ0‖2
n∑

j=1

d2(zj )wij

}
,

where the op(n1+1/m) term does not depend on i ∈ I∗. Since maxi∈I∗ ‖V̂ −1(xi,

θ̂)‖ = Op(1) by Lemma C.2(ii), (A.1) can be written as

Iiλi = nIi V̂
−1(xi, θ̂)

n∑
j=1

wijg(zj , θ̂) + Iir2,i,(A.6)

where

Ii‖r2,i‖ = op(n1+1/m)

(A.7)

×
{[

max
i∈I∗

‖
∥∥∥∥∥

n∑
j=1

wijg(zj , θ0)

∥∥∥∥∥
]2

+ ‖θ̂ − θ0‖2
n∑

j=1

d2(zj )wij

}
.

For u > −1, log(1 + u) = u − u2/2 + η̄ holds by a Taylor expansion, and the
remainder term |η̄| ≤ c|u|3 if |u| is bounded away from 1. By (A.5) and Lemmas
C.4 and C.6, max1≤i,j≤n |λ′

ig(zj , θ̂)/n| = op(1). Hence, w.p.a.1, we can write

log
(

1 + λ′
ig(zj , θ̂)

n

)
= λ′

ig(zj , θ̂)

n
− 1

2

(
λ′

ig(zj , θ̂ )

n

)2

+ η̄ij ,(A.8)

where

|η̄ij | ≤ c

∣∣∣∣λ
′
ig(zj , θ̂)

n

∣∣∣∣
3

≤ cn−3‖λi‖3 ‖g(zj , θ̂ )‖3 ≤ cn−3ρ3
i g3∗(zj ).(A.9)

Using (2.4), (A.6) and (A.8), a little algebra shows that, w.p.a.1,

SELR = T̂ − 1

n2

n∑
i=1

Ii r
′
2,iV̂ (xi, θ̂)r2,i + 2

n∑
i=1

n∑
j=1

Iiwij η̄ij .(A.10)

Since maxi∈I∗ ‖V̂ (xi, θ̂)‖ = Op(1) by Lemma C.2(i), ‖∑n
i=1 Iir

′
2,i V̂ (xi, θ̂)r2,i‖ =

Op(1)‖∑n
i=1 Ii‖r2,i‖2. But

∑n
i=1 Ii‖r2,i‖2 = op(n2+2/m){Op(nc4

n)+‖θ̂ −θ0‖4 ×∑n
i=1

∑n
j=1 d4(zj )wij } by (A.7), Lemma C.1 and Jensen’s inequality. Lemma C.5

shows that
∑n

i=1
∑n

j=1 d4(zj )wij = Op(n). Therefore,

1

n2

n∑
i=1

Iir
′
2,i V̂ (xi, θ̂)r2,i = op(n1+2/mc4

n) + op

(
1

n1−2/m

)
.(A.11)
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Next, by (A.5), (A.9), Lemma C.1 and Jensen’s inequality,∣∣∣∣∣
n∑

i=1

n∑
j=1

Iiwij η̄ij

∣∣∣∣∣ = Op(nc3
n)

1

n

n∑
i=1

n∑
j=1

g3∗(zj )wij

+ Op(n‖θ̂ − θ0‖3)
1

n

n∑
i=1

(
n∑

j=1

d3(zj )wij

)(
n∑

j=1

g3∗(zj )wij

)
.

But by the Cauchy–Schwarz and Jensen inequalities,

1

n

n∑
i=1

(
n∑

j=1

d3(zj )wij

)(
n∑

j=1

g3∗(zj )wij

)

≤
{

1

n

n∑
i=1

n∑
j=1

d6(zj )wij

}1/2{
1

n

n∑
i=1

n∑
j=1

g6∗(zj )wij

}1/2

.

Hence, by Lemma C.5, |∑n
i=1

∑n
j=1 Iiwij η̄ij | = Op(nc3

n) + Op(n−1/2) =
Op(nc3

n). The desired result now follows by (A.10) and (A.11). �

LEMMA A.2. Let Assumptions 3.1–3.7 hold. Then T̂1 = Op(1/nb2s
n ) un-

der H0.

PROOF. Since

|T̂1| ≤ max
i∈I∗

‖Ĥ−1(xi, θ̂)‖K2(0)

n2b2s
n

n∑
i=1

g2∗(zi),

the desired result follows from that fact that maxi∈I∗ ‖Ĥ−1(xi, θ̂)‖ = Op(1). �

LEMMA A.3. Let Assumptions 3.1–3.7 hold. Assume that bn = n−α for
0 < α < 1

s
(1 − 4

m
). Then

T̂2 = b−s
n

{
q R(K)vol(S∗)

+ Op

(√
logn

nbs
n

+ b2
n

)
+ op(n−1/2+1/m+1/η)

}
under H0.

PROOF. Assume that n is large enough so that θ̂ ∈ N0 and our regularity
conditions hold. By (A.3), we can write T̂2 = T̂(1)

2 + R2, where

T̂(1)
2 =

n∑
i=1

n∑
j=1, j 
=i

Iiw
2
ij g

′(zj , θ0)V̂
−1(xi, θ̂)g(zj , θ0)
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and R2 denotes the remaining terms. Using Lemmas C.3(ii) and C.7, we can show
that R2 = Op(n−1/2b−s

n ). Next, write T̂(1)
2 = (1)a + (1)b, where

(1)a = n−2b−2s
n

n∑
i=1

n∑
j=1, j 
=i

IiK
2
ij g

′(zj , θ0)H
−1(xi, θ0)g(zj , θ0),

(1)b = 1

n2b2s
n

n∑
i=1

n∑
j=1, j 
=i

IiK
2
ij g

′(zj , θ0)
{
Ĥ−1(xi, θ̂ ) − H−1(xi, θ0)

}
g(zj , θ0).

Let

Op(νn)
def= Op

(√
logn

nbs
n

+ b2
n

)
+ op(n−1/2+1/m+1/η).

Then, by Lemmas C.3(i) and C.7,

(1)b ≤ c max
i∈I∗

‖Ĥ−1(xi, θ̂) − H−1(xi, θ0)‖ 1

n2b2s
n

n∑
i=1

n∑
j=1, j 
=i

Kij g
2∗(zj )

= Op(νn)Op(b−s
n ).

Now define τn = √
logn/nbs

n + b2
n and observe that

(1)a = 1

nbs
n

tr
n∑

i=1

Ii

{
1

nbs
n

n∑
j=1, j 
=i

K2
ij g(zj , θ0)g

′(zj , θ0)

}
H−1(xi, θ0)

= 1

nbs
n

tr
n∑

i=1

Ii

{
R(K)V (xi, θ0)h(xi) + Ra(xi)

}
H−1(xi, θ0),

where supxi∈S∗ ‖Ra(xi)‖ = Op(τn) follows from the uniform consistency of kernel
estimators. Since supxi∈S∗ ‖H−1(xi, θ0)‖ < ∞ by Assumption 3.5(iv),

(1)a = q R(K)

nbs
n

n∑
i=1

Ii

h(xi)
+ Op(τn)

bs
n

= b−s
n

{
q R(K)vol(S∗) + Op(τn)

}
,

where the second equality follows because n−1 ∑n
i=1 Iih

−1(xi) = vol(S∗) +
Op(n−1/2) by the central limit theorem. The desired result follows by combining
the results for (1)a and (1)b. �

LEMMA A.4. Let Assumptions 3.1–3.7 hold. Assume that bn = n−α for
0 < α < 1

s
(1 − 4

m
). Then

T̂3 =
{
Op

(√
log n

nbs
n

)
+ op(n−1/2+1/m+1/η)

}
Op

(√
1

nb3s
n

)

+ Op

(√
1

nb2s
n

)
under H0.
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PROOF. Assume that n is large enough so that θ̂ ∈ N0 and our regularity
conditions hold. Hence, T̂3 = T̂(1)

3 + R3 by (A.3), where

T̂(1)
3 = K(0)

n∑
i=1

n∑
j=1, j 
=i

Ii

g′(zi, θ0)V̂
−1(xi, θ̂)g(zj , θ0)wij∑n

u=1 Kiu

and R3 denotes the remaining terms. Now T̂(1)
3 = (K(0)/n1/2bs

n)
∑q

l=1
∑q

v=1 P̂lv ,
where

P̂lv = 1

n3/2bs
n

n∑
i=1

n∑
j=1, j 
=i

Iig
(l)(zi, θ0)F̂

(lv)(xi)g
(v)(zj , θ0)Kij

and F̂ (lv)(xi) is the (lv)th element of Ĥ−1(xi, θ̂). Let G(lv)(xi) be the (lv)th
element of H̃−1

n (xi, θ0). Write P̂lv = P
(1)
lv + P̂

(2)
lv , where

P
(1)
lv = 1

n3/2bs
n

n∑
i=1

n∑
j=1,j 
=i

Iig
(l)(zi, θ0)G

(lv)(xi)g
(v)(zj , θ0)Kij ,

P̂
(2)
lv = 1√

n

n∑
i=1

Iig
(l)(zi, θ0)

[
F̂ (lv)(xi) − G(lv)(xi)

]
Qn,i

and

Qn,i = 1

nbs
n

n∑
j=1, j 
=i

g(v)(zj , θ0)Kij .

Since Iig
(l)(zi, θ0)G

(lv)(xi)g
(v)(zj , θ0)Kij and Iig

(l)(zi, θ0)G
(lv)(xi)g

(v)(zk, θ0)×
Kik are uncorrelated for i 
= j 
= k, by the Cauchy–Schwarz inequality,

E
{
P

(1)
lv

}2 ≤ 2

n3b2s
n

n∑
i=1

n∑
j=1, j 
=i

E
{
Iig

(l)(zi, θ0)G
(lv)(xi)g

(v)(zj , θ0)Kij

}2
.

Thus, P (1)
lv = Op(

√
1/nbs

n ) since supxi∈S∗ G(lv)(xi) < ∞ for large enough n. Next,
by the Cauchy–Schwarz inequality,

∣∣P̂ (2)
lv

∣∣2 ≤
{

max
i∈I∗

∣∣F̂ (lv)(xi) − G(lv)(xi)
∣∣}2 1

n

n∑
i=1

[
g(l)(zi, θ0)

]2
n∑

i=1

Q2
n,i .

But EQ2
n,i = O(1/nbs

n) because g(v)(zj , θ0)Kij and g(v)(zk, θ0)Kik are uncorre-

lated for i 
= j 
= k. Hence, P̂
(2)
lv = Op(dn)Op(b

−s/2
n ) by Lemma C.3(ii), where

Op(dn)
def= Op(

√
logn/nbs

n ) + op(n−1/2+1/m+1/η). Combining the results for

P
(1)
lv and P̂

(2)
lv , we get T̂(1)

3 = Op(dn)Op(
√

1/nb3s
n ). Finally, R3 = Op(

√
1/nb2s

n )

by Lemma C.5 and the Cauchy–Schwarz and Jensen inequalities. The desired re-
sult follows. �
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LEMMA A.5. Let Assumptions 3.1–3.7 hold. Furthermore, assume that

bn = n−α for 0 < α < min{1
s
(1 − 4

m
), 1

3s
, 1

s
(1 − 2

m
− 2

η
)}. Then b

s/2
n T̂5

d→N(0,

2qK∗∗ vol(S∗)) under H0.

PROOF. Assume that n is large enough so that θ̂ ∈ N0 and our regularity
conditions hold. By Assumption 3.6,

g(z, θ̂) = g(z, θ0) + ∂g(z, θ0)

∂θ
(θ̂ − θ0) + Rem(z, θ̂ − θ0)

holds w.p.1, where ‖Rem(z, θ̂ − θ0)‖ ≤ l(z)‖θ̂ − θ0‖2. Hence, we can write

T̂5 = T̂(1)
5 + 2T̂(2)

5 + R5, where

T̂(1)
5 =

n∑
i=1

n∑
j=1, j 
=i

n∑
t=1, t 
=j 
=i

Iiwij g
′(zj , θ0)V̂

−1(xi, θ̂)g(zt , θ0)wit ,

T̂(2)
5 =

n∑
i=1

n∑
j=1, j 
=i

n∑
t=1, t 
=j 
=i

Iiwij g
′(zj , θ0)V̂

−1(xi, θ̂)
∂g(zt , θ0)

∂θ
(θ̂ − θ0)wit ,

and R5 denotes the remaining terms. Now b
s/2
n T̂(1)

5
d→N(0,2qK∗∗ vol(S∗)) by

Lemma A.6 and b
s/2
n T̂(2)

5 = op(1) by Lemma A.9. Next, since maxi∈I∗ ‖V̂ −1(xi,

θ̂)‖ = Op(1) by Lemma C.2(ii), the Cauchy–Schwarz and Jensen inequalities
reveal that R5 = Op(1). The desired result follows. �

LEMMA A.6. b
s/2
n T̂(1)

5
d→N(0,2qK∗∗ vol(S∗)) under the conditions of

Lemma A.5.

PROOF. Write T̂(1)
5 = T̂∗

5 + (T̂(1)
5 − T̂∗

5), where T̂∗
5 = T̃∗

5/(n
2b2s

n ) and

T̃∗
5 =

n∑
i=1

n∑
j=1, j 
=i

n∑
t=1, t 
=j 
=i

IiKij g
′(zj , θ0)H̃

−1
n (xi, θ0)g(zt , θ0)Kit .(A.12)

Since b
s/2
n {T̂(1)

5 − T̂∗
5} = op(1) by Lemma A.7, it suffices to show that b

s/2
n T̂∗

5
d→

N(0,2dK∗∗ vol(S∗)). To do so, we use a CLT for generalized quadratic forms
due to de Jong (1987). First, change the order of summation in (A.12) to write
T̃∗

5 = ∑n
t=1

∑n
j=1, j 
=t g

′(zt , θ0)Atj g(zj , θ0). Next, define

Wtj = g′(zt , θ0)Atj g(zj , θ0) + g′(zj , θ0)Atj g(zt , θ0) = 2g′(zt , θ0)Atj g(zj , θ0).

Using iterated expectations and the independence of observations, it is straight-
forward to verify that E(Wtj |xt , zt ) = E(Wtj |xj , zj ) = 0 for 1 ≤ t, j ≤ n; that
is, Wtj is “clean” in the terminology of de Jong [(1987), page 263]. Hence, in
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de Jong’s notation, T̃∗
5 = ∑n−1

t=1
∑n

j=t+1 Wtj . We now determine s2
n , the variance

of T̃∗
5. Note that

s2
n = var T̃∗

5 =
n−1∑
t=1

n∑
j=t+1

EW 2
tj = 4

n−1∑
t=1

n∑
j=t+1

E
{
g′(zt , θ0)Atj g(zj , θ0)

}2
,

where any cross terms vanish due to the uncorrelatedness of Wtj and Wtk for t 
=
j 
= k. By Lemma A.8, s2

n = 2n(n − 1)(n − 2)(n − 3)qb3s
n K∗∗ vol(S∗){1 + o(1)}.

As in de Jong [(1987), page 266], let

GI =
n−1∑
t=1

n∑
j=t+1

EW 4
tj ,

GII =
n−2∑
t=1

n−1∑
j=t+1

n∑
k=j+1

(EW 2
tjW

2
tk + EW 2

j tW
2
jk + EW 2

ktW
2
kj )

and

GIV =
n−3∑
t=1

n−2∑
j=t+1

n−1∑
k=j+1

n∑
l=k+1

(EWtjWtkWljWlk

+EWtjWtlWkjWkl + EWtkWtlWjkWjl).

Since GI = 16
∑n−1

t=1
∑n

j=t+1 E{g′(zt , θ0)Atj g(zj , θ0)}4,

E
{
g′(zt , θ0)Atj g(zj , θ0)

}4

=
n∑

i=1, i 
=j 
=t

E
{
IiKij g

′(zt , θ0)H̃
−1
n (xi, θ0)g(zj , θ0)Kit

}4

+ 3
n∑

i=1, i 
=j 
=t

n∑
k=1, k 
=i 
=j 
=t

E
{
IiKijg

′(zt , θ0)H̃
−1
n (xi, θ0)g(zj , θ0)Kit

}2

× {
IkKkjg

′(zt , θ0)H̃
−1
n (xk, θ0)g(zj , θ0)Kkt

}2
.

But E{IiKij g
′(zt , θ0)H̃

−1
n (xi, θ0)g(zj , θ0)Kit }4 < ∞ by supxi∈S∗ ‖H̃−1

n (xi,

θ0)‖ < ∞ and the fact that zt is independent of zj for t 
= j . Hence, GI = O(n4)

by the Cauchy–Schwarz inequality. Similarly, GII = O(n5) and GIV = O(n6).
If bn = n−α for 0 < α < 1

3s
, then GI , GII and GIV are o(s4

n). Hence, by

de Jong [(1987), Proposition 3.2], s−1
n T̃∗

5
d→N(0,1). Therefore, b

s/2
n T̂∗

5
d→N(0,

2qK∗∗ vol(S∗)). �

LEMMA A.7. b
s/2
n {T̂(1)

5 − T̂∗
5} = op(1) under the conditions of Lemma A.5.
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PROOF. Observe that

∣∣T̂(1)
5 − T̂∗

5
∣∣ = 1

n2b2s
n

∣∣∣∣∣ tr
n∑

i=1

Ii

{
Ĥ−1(xi, θ̂) − H̃−1

n (xi, θ0)
}

×
{

n∑
j=1, j 
=i

Kij g(zj , θ0)

}{
n∑

t=1, t 
=j 
=i

Kitg
′(zt , θ0)

}∣∣∣∣∣
≤ nmax

i∈I∗
‖Ĥ−1(xi, θ̂ ) − H̃−1

n (xi, θ0)‖

×
{

max
i∈I∗

∥∥∥∥∥ 1

nbs
n

n∑
j=1, j 
=i

Kij g(zj , θ0)

∥∥∥∥∥
}2

.

Hence, by (C.1) and Lemma C.3, b
s/2
n |T̂(1)

5 − T̂∗
5| = op(1) under our choice of bn.

�

LEMMA A.8. E{g′(zt , θ0)Atj g(zj , θ0)}2 = (n − 2)(n − 3)qb3s
n K∗∗ vol(S∗) ×

{1 + o(1)} under the conditions of Lemma A.5.

PROOF. By iterated expectations and the independence of observations, it is
straightforward to show that E{g′(zt , θ0)Atj g(zj , θ0)}2 = tr E{AtjV (xj , θ0)Atj ×
V (xt , θ0)}. Hence, we can write

E
{
g′(zt , θ0)Atj g(zj , θ0)

}2 =
n∑

i=1, i 
=j 
=t

trP1 +
n∑

i=1, i 
=j 
=t

n∑
u=1, u
=i 
=j 
=t

tr P2,

where

P1 = E

{
IiK

2
ijK

2
it [E{�̂(xi, θ0)|xi}]−1

E2{ĥ(xi)|xi}
× V (xj , θ0)[E{�̂(xi, θ0)|xi}]−1V (xt , θ0)

}

and

P2 = E

{
IiIuKijKitKujKut [E{�̂(xi, θ0)|xi}]−1

E{ĥ(xu)|xu}E{ĥ(xi)|xi}
× V (xj , θ0)[E{�̂(xu, θ0)|xu}]−1V (xt , θ0)

}
.

It is straightforward, albeit tedious, to show that

tr P1 = qb2s
n R2(K)E

{
I1

h2(x1)

}
[1 + O(b2

n)]



2086 G. TRIPATHI AND Y. KITAMURA

and

trP2 = qb3s
n K∗∗ vol(S∗){1 + O(bn)}.

The desired result follows. �

LEMMA A.9. T̂(2)
5 = Op(1) under the conditions of Lemma A.5.

PROOF. Let

T̃(2)
5 =

n∑
i=1

n∑
j=1,j 
=i

n∑
t=1, t 
=j 
=i

Iiwij g
′(zj , θ0)V̂

−1(xi, θ̂)
∂g(zt , θ0)

∂θ
wit .

Then T̂(2)
5 = T̃(2)

5 (θ̂ − θ0). Since ‖θ̂ − θ0‖ = Op(n−1/2), we show that ‖T̃(2)
5 ‖ =

Op(n1/2). So let ζ ∈ S
p be arbitrary and look at T̃(2)

5 ζ . Write T̃(2)
5 ζ = (a) + (b),

where

(a) = 1

n2b2s
n

n∑
i=1

n∑
j=1, j 
=i

n∑
t=1, t 
=j 
=i

IiKij g
′(zj , θ0)H̃

−1
n (xi, θ0)

∂g(zt , θ0)

∂θ
ζKit

and

(b) = 1

n2b2s
n

n∑
i=1

n∑
j=1, j 
=i

n∑
t=1, t 
=j 
=i

IiKij g
′(zj , θ0)

{
Ĥ−1(xi, θ̂) − H̃−1

n (xi, θ0)
}

× ∂g(zt , θ0)

∂θ
ζKit .

Since E{g(zj , θ0)|xj } = 0, some tedious but straightforward algebra shows that
E{(a)}2 = O(n), that is, (a) = Op(n1/2). Next, as in the proof of Lemma A.7, we

can show that (b) = op(n1/2). Therefore, ‖T̃(2)
n,5‖ = Op(n1/2). The desired result

follows. �

APPENDIX B

Asymptotic theory under local alternatives.

LEMMA B.1. Let Assumptions 3.1, 3.2, 3.6, 3.7, 6.1 and 6.2 hold. Assume
that bn = n−α for 0 < α < 1

s
(1 − 4

m
). Then

SELR = T̂ + op

({
log n

n1/2−1/mbs
n

}2)

+ op

(
1

n1−2/m

)
+ Op

({
logn

n1/3bs
n

}3/2)
under H1n,

where T̂ = ∑n
i=1 Ii{∑n

j=1 wijg
′(zj , θ̂)}V̂ −1(xi, θ̂){∑n

j=1 wijg(zj , θ̂)}.
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PROOF. Since Lemmas B.1–B.3 of Newey (1994) remain valid when θ0 is
replaced by θn,0 [because g(z1, θn,0), . . . , g(zn, θn,0) are i.i.d. for each n], the
proofs of Lemmas C.2 and C.3 go through without any change. Hence, we can
follow the proof of Lemma A.1 leading up to (A.6) and (A.7) to show that
Iiλi = nIi V̂

−1(xi, θ̂)
∑n

j=1 wijg(zj , θ̂) + Iir2,i w.p.a.1, where

Ii‖r2,i‖

= op(n1+1/m)

{[
max
i∈I∗

∥∥∥∥∥
n∑

j=1

wijg(zj , θn,0)

∥∥∥∥∥
]2

+ ‖θ̂ − θn,0‖2
n∑

j=1

d2(zj )wij

}

and the op(n1+1/m) term does not depend on i ∈ I∗. Using the continuity
of δ(x) and h(x) and the compactness of S∗, it is straightforward to show
that maxi∈I∗ ‖∑n

j=1 wijg(zj , θn,0)‖ = Op(
√

logn/nbs
n ). Now proceed as in

Lemma A.1 to obtain the desired result. �

LEMMA B.2. Let Assumptions 3.1, 3.2, 3.6, 3.7, 6.1 and 6.2 hold. Then

T̂1
H1n= Op(1/nb2s

n ).

PROOF. Same as the proof of Lemma A.2. �

LEMMA B.3. Let Assumptions 3.1, 3.2, 3.6, 3.7, 6.1 and 6.2 hold. Assume
that bn = n−α for 0 < α < 1

s
(1 − 4

m
). Then

T̂2
H1n= b−s

n

{
q R(K)vol(S∗) + Op

(√
log n

nbs
n

+ b2
n

)
+ op(n−1/2+1/m+1/η)

}
.

PROOF. Assume that n is large enough so that θ̂ and θn,0 lie in N0 and our
regularity conditions hold. By Assumption 3.6,

g(zj , θ̂) = g(zj , θn,0) + rem(zj , θ̂ − θn,0) w.p.1,
(B.1)

where ‖ rem(zj , θ̂ − θn,0)‖ ≤ d(zj )‖θ̂ − θn,0‖.
As in Lemma C.3, we can show that if bn = n−α for 0 < α < 1

s
(1 − 4

m
), then

sup
xi∈S∗

‖Ĥ−1(xi, θ̂) − H−1(xi, θn,0)‖
(B.2)

= Op

(√
log n

nbs
n

+ b2
n

)
+ op(n−1/2+1/m+1/η).

Therefore, using (B.1) and the way we dealt with R2 in the proof of Lemma A.3,

T̂2 =
n∑

i=1

n∑
j=1, j 
=i

Iiw
2
ij g

′(zj , θn,0)V̂
−1(xi, θ̂)g(zj , θn,0)

(B.3)

+ Op(n−1/2b−s
n ).
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As in Lemma C.2, we can show that if bn = n−α for 0 < α < 1
s
(1 − 4

m
), then

sup
xi∈S∗

‖V̂ −1(xi, θ̂) − V −1(xi, θn,0)‖ = Op

(√
log n

nbs
n

+ b2
n

)
+ op(n−1/2+1/m+1/η).

The desired result follows by (B.3) and the way we handled T̂(1)
2 in the proof of

Lemma A.3. �

LEMMA B.4. Let Assumptions 3.1, 3.2, 3.6, 3.7, 6.1 and 6.2 hold. Assume
that bn = n−α for 0 < α < 1

s
(1 − 4

m
). Then

T̂3
H1n=

{
Op

(√
logn

nbs
n

)
+ op(n−1/2+1/m+1/η)

}
Op

(√
1

nb3s
n

)
+ Op

(√
1

nb
5s/2
n

)
.

PROOF. Using (B.1), the proof is very similar to that of Lemma A.4. �

LEMMA B.5. Let Assumptions 3.1, 3.2, 3.6, 3.7, 6.1 and 6.2 hold. Further-
more, assume that bn = n−α for 0 < α < min{1

s
(1 − 4

m
), 1

3s
, 1

s
(1 − 2

m
− 2

η
)}.

Then b
s/2
n T̂5

d→ N(µ,2qK∗∗ vol(S∗)) under H1n, where µ = E[I{x1 ∈ S∗}δ′(x1) ×
V −1(x1, θ0)δ(x1)].

PROOF. Assume that n is large enough so that θ̂ and θn,0 lie in N0 and our
regularity conditions hold. By Assumption 3.6,

g(z, θ̂) = g(z, θn,0) + ∂g(z, θn,0)

∂θ
(θ̂ − θn,0) + Rem(z, θ̂ − θn,0)

holds w.p.1, where ‖Rem(z, θ̂ − θn,0)‖ ≤ l(z)‖θ̂ − θn,0‖2. Hence, as we han-

dled R5 in the proof of Lemma A.5, we can show that b
s/2
n T̂5 = b

s/2
n (C) +

2b
s/2
n (D) + op(1), where

(C) =
n∑

i=1

n∑
j=1, j 
=i

n∑
t=1, t 
=j 
=i

Iiwij g
′(zj , θn,0)V̂

−1(xi, θ̂ )g(zt , θn,0)wit ,

(D) =
n∑

i=1

n∑
j=1, j 
=i

n∑
t=1, t 
=j 
=i

Iiwij g
′(zj , θn,0)V̂

−1(xi, θ̂ )
∂g(zt , θn,0)

∂θ
(θ̂ − θn,0)wit .

Let εn = n−1/2b
−s/4
n , fn(z, θ) = g(z, θ) − εnδ(x). Since E{fn(z, θn,0)|x} = 0

and ‖θ̂ − θn,0‖ = Op(n−1/2) under H1n, we can use Lemma C.5 to show that

(D) = Op(b
−s/4
n ). Therefore, b

s/2
n T̂5 = b

s/2
n (C) + op(1). Now write (C) = (C1)+
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(C2) + RC, where

(C1) = 1

n2b2s
n

n∑
i=1

n∑
j=1, j 
=i

n∑
t=1, t 
=j 
=i

IiKij f
′
n(zj , θn,0)Ĥ

−1(xi, θ̂ )fn(zt , θn,0)Kit ,

(C2) = ε2
n

n2b2s
n

n∑
i=1

n∑
j=1, j 
=i

n∑
t=1, t 
=j 
=i

IiKij δ
′(xj )Ĥ

−1(xi, θ̂ )δ(xt )Kit ,

and RC denotes the remaining terms. As in Lemma A.5, b
s/2
n (C1)

d→N(0,2q ×
K∗∗ vol(S∗)). Next, the continuity of δ(x) and h(x) on S implies that supxi∈S∗ ‖(1/

nbs
n)

∑n
t=1 δ(xt )Kit − δ(xi)h(xi)‖ = op(1). Hence, b

s/2
n (C2) = n−1 ∑n

i=1 Ii ×
δ′(xi)Ĥ

−1(xi, θ̂)δ(xi)h
2(xi) + op(1). By (B.2) and dominated convergence,

n−1 ∑n
i=1 Iiδ

′(xi)H
−1(xi, θn,0)δ(xi)h

2(xi) = µ + op(1). Therefore, b
s/2
n (C2) =

µ + op(1). Finally, as we handled T̃(2)
n,5 in the proof of Lemma A.9, RC =

Op(b
−s/4
n ). Combining these results, we obtain b

s/2
n (C)

d→N(µ,2qK∗∗ vol(S∗)).
The desired result follows. �

APPENDIX C

Some useful results.

LEMMA C.1. Let Assumptions 3.1–3.3, 3.5 and 3.7 hold. If logn/

n1−2/mbs
n ↓ 0, then

sup
xi∈S∗

∥∥∥∥∥
n∑

j=1

wijg(zj , θ0)

∥∥∥∥∥ = Op

(√
logn

nbs
n

)
under H0.

PROOF. By Newey [(1994), Lemma B.1],

sup
xi∈S∗

|ĥ(xi) − Eĥ(xi)| = Op

(√
logn

nbs
n

)
and

(C.1)

sup
xi∈S∗

∥∥∥∥∥ 1

nbs
n

n∑
j=1

g(zj , θ0)Kij

∥∥∥∥∥ H0= Op

(√
logn

nbs
n

)
.

The desired result follows since Eĥ(xi) is bounded away from 0 on S∗ for large
enough n. �

LEMMA C.2. Let Assumptions 3.1–3.7 hold. If logn/n1−4/mbs
n ↓ 0,
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then

sup
xi∈S∗

‖V̂ (xi, θ̂) − V (xi, θ0)‖
(i)

= Op

(√
log n

nbs
n

+ b2
n

)
+ op(n−1/2+1/m+1/η),

sup
xi∈S∗

‖V̂ −1(xi, θ̂) − V −1(xi, θ0)‖
(ii)

= Op

(√
log n

nbs
n

+ b2
n

)
+ op(n−1/2+1/m+1/η).

PROOF. Assume n is large enough so that θ̂ ∈ N0 and our regularity
conditions hold. By Assumption 3.6, g(z, θ̂) = g(z, θ0) + rem(z, θ̂ − θ0) w.p.1,
where ‖ rem(z, θ̂ − θ0)‖ ≤ d(z)‖θ̂ − θ0‖. Hence, ‖V̂ (xi, θ̂) − V̂ (xi, θ0)‖ ≤
2A(xi) + B(xi), where A(xi) = ∑n

j=1 ‖g(zj , θ0)‖‖ rem(zj , θ̂ − θ0)‖wij and

B(xi) = ∑n
j=1 ‖ rem(zj , θ̂ − θ0)‖2wij . By Lemmas C.4 and C.6,

sup
xi∈S∗

A(xi) ≤ ‖θ̂ − θ0‖ max
1≤j≤n

‖g(zj , θ0)‖ sup
xi∈S∗

n∑
j=1

d(zj )wij = op(n−1/2+1/m+1/η).

Similarly, supxi∈S∗ B(xi) = op(n−1+2/η). Hence, as η ≥ 2,

sup
xi∈S∗

‖V̂ (xi, θ̂) − V̂ (xi, θ0)‖ = op(n−1/2+1/m+1/η).(C.2)

Let τn
def=

√
log n/nbs

n + b2
n. By Newey [(1994), Lemma B.3], supxi∈S∗ |ĥ(xi) −

h(xi)| = Op(τn) and supxi∈S∗ ‖1/nbs
n

∑n
j=1 Kijg(zj , θ0)g

′(zj , θ0) − V (xi, θ0) ×
h(xi)‖ = Op(τn). Hence, as h is bounded away from 0 on S∗, supxi∈S∗ ‖V̂ (xi, θ0)−
V (xi, θ0)‖ = Op(τn). Therefore, (i) follows by (C.2); (ii) follows from (i) since
inf(ξ,xi)∈Sq×S∗ ξ ′V (xi, θ0)ξ > 0. �

LEMMA C.3. Let Assumptions 3.1–3.7 hold. If logn/n1−4/mbs
n ↓ 0, then

sup
xi∈S∗

‖Ĥ−1(xi, θ̂) − H−1(xi, θ0)‖
(i)

= Op

(√
log n

nbs
n

+ b2
n

)
+ op(n−1/2+1/m+1/η),

sup
xi∈S∗

‖Ĥ−1(xi, θ̂) − H̃−1
n (xi, θ0)‖

(ii)
= Op

(√
log n

nbs
n

)
+ op(n−1/2+1/m+1/η).
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PROOF. Similar to the proof of Lemma C.2. �

LEMMA C.4. Let z1, . . . , zn be identically distributed. If E{supθ∈� ‖g(z,

θ)‖m} < ∞, then we have Pr{max1≤j≤n supθ∈� ‖g(zj , θ)‖ = o(n1/m)} = 1 as
n ↑ ∞.

PROOF. Our proof is based on the idea in Owen [(1990), Lemma 3]. Let ε > 0.
Since

∑∞
n=1 Pr{[supθ∈� ‖g(zn, θ)‖]m/εm ≥ n} < ∞, by the Borel–Cantelli lemma

{[supθ∈� ‖g(zn, θ)‖]m/εm ≥ n} happens infinitely often w.p.0. Equivalently,

the event {supθ∈� ‖g(zn, θ)‖/ε < n1/m} happens for all but finitely many n

w.p.1. Since n1/m eventually exceeds the largest element in the finite collection
of supθ∈� ‖g(zk, θ)‖/ε’s that exceed k1/m, Pr{max1≤j≤n supθ∈� ‖g(zj , θ)‖ <

n1/mε} = 1 for large enough n. The desired result follows since ε can be chosen
arbitrarily small. �

LEMMA C.5. Let {xi, zi}ni=1 be a random sample, let f (z) be a real-
valued function such that E|f (z1)| < ∞ and let Assumption 3.7 hold. Then
E{∑n

j=1 |f (zj )|wij } ≤ cE|f (z1)|, where the constant c depends only upon the
kernel.

PROOF. See Devroye and Wagner [(1980), Lemma 2]. �

LEMMA C.6. Let f (z) be a real-valued function such that E|f (z)|a < ∞
and let Assumption 3.7 hold. Then Pr{supxi∈Rs |∑n

j=1 f (zj )wij | = o(n1/a)} = 1
as n ↑ ∞.

PROOF. Observe that |∑n
j=1 f (zj )wij | ≤ max1≤j≤n |f (zj )|. Now use

Lemma C.4. �

LEMMA C.7. Let {xi, zi}ni=1 be a random sample such that the p.d.f. of x1

is bounded, let f (z) be a real-valued function such that Ef 2(z1) < ∞ and let
Assumption 3.7 hold. Then

E

{
1

nbs
n

n∑
j=1

|f (zj )|Kij

}

≤ c

{
Ef 2(z1) + 1

n2b2s
n

+ 1

nbs
n

+ 1
}
,

where c depends only upon K and h.
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PROOF. Since (1/nbs
n)

∑n
j=1 |f (zj )|Kij = ∑n

j=1 |f (zj )|wij ĥ(xi), by
Jensen’s inequality

1

nbs
n

n∑
j=1

|f (zj )|Kij ≤ 1

2

{[
n∑

j=1

|f (zj )|wij

]2

+ ĥ2(xi)

}

≤ 1

2

{
n∑

j=1

f 2(zj )wij + ĥ2(xi)

}
.

It is easy to show that

Eĥ2(xi) ≤ c

{
1

n2b2s
n

+ 1

nbs
n

+ 1
}
.

The desired result follows by Lemma C.5. �

LEMMA C.8. Let f (z) be a real-valued function such that E|f (z)|a < ∞ and
let Assumptions 3.5 and 3.7 hold. If logn/nbs

n ↓ 0, then

sup
xi∈S∗

∣∣∣∣∣ 1

nbs
n

n∑
j=1

f (zj )Kij

∣∣∣∣∣ = op(n1/a).

PROOF. Since

sup
xi∈S∗

1

nbs
n

n∑
j=1

|f (zj )|Kij ≤ max
1≤j≤n

|f (zj )| sup
xi∈S∗

ĥ(xi),

the desired result follows by Lemma C.4 and the fact that supxi∈S∗ ĥ(xi) = Op(1).
�
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