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THE POSITIVE FALSE DISCOVERY RATE: A BAYESIAN
INTERPRETATION AND THE q-VALUE1

BY JOHN D. STOREY

University of Washington

Multiple hypothesis testing is concerned with controlling the rate of
false positives when testing several hypotheses simultaneously. One multiple
hypothesis testing error measure is the false discovery rate (FDR), which is
loosely defined to be the expected proportion of false positives among all
significant hypotheses. The FDR is especially appropriate for exploratory
analyses in which one is interested in finding several significant results among
many tests. In this work, we introduce a modified version of the FDR called
the “positive false discovery rate” (pFDR). We discuss the advantages and
disadvantages of the pFDR and investigate its statistical properties. When
assuming the test statistics follow a mixture distribution, we show that the
pFDR can be written as a Bayesian posterior probability and can be connected
to classification theory. These properties remain asymptotically true under
fairly general conditions, even under certain forms of dependence. Also,
a new quantity called the “q-value” is introduced and investigated, which
is a natural “Bayesian posterior p-value,” or rather the pFDR analogue
of the p-value.

1. Introduction. When testing a single hypothesis, one is usually concerned
with controlling the false positive rate while maximizing the probability of
detecting an effect when one really exists. In statistical terms, we maximize
the power conditional on the Type I error rate being at or below some level.
The field of multiple hypothesis testing tries to extend this basic paradigm to the
situation where several hypotheses are tested simultaneously. One must define an
appropriate compound error measure according to the rate of false positives one is
willing to encounter. Then a procedure is developed that allows one to control the
error rate at a desired level, while maintaining the power of each test as much as
possible.

The most commonly controlled quantity when testing multiple hypotheses is the
family wise error rate (FWER), which is the probability of yielding one or more
false positives out of all hypotheses tested. The most familiar example of this is
the Bonferroni method. If there are m hypothesis tests, each test is controlled so
that the probability of a false positive is less than or equal to α/m for some chosen
value of α. It then follows that the overall FWER is less than or equal to α. Many
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more methods have been introduced that improve upon the Bonferroni method in
that the FWER is still controlled at level α, but the average power among the tests
is increased. Shaffer (1995) provides a review of many of these methods.

The FWER offers an extremely strict criterion which is not always appropriate.
It is possible for a multiple hypothesis testing situation to exist in which one is
more concerned about the rate of false positives among all rejected hypotheses
rather than the probability of making one or more Type I errors. We have seen a
recent increase in the size of data sets available. It is now often up to the statistician
to find as many interesting features in a data set as possible rather than test a very
specific hypothesis on one item. For example, one is more frequently faced with
the daunting task of estimating or performing hypothesis tests on thousands of
parameters simultaneously. In this kind of situation, one is more interested in the
total number of false positives compared to the total number of significant items,
rather than making one or more Type I errors.

Consider Table 1 giving the various outcomes that occur when m hypothesis
tests are performed according to some significance rule, which can either be fixed
or data-dependent. The FWER can formally be written as Pr(V ≥ 1). In a seminal
paper, Benjamini and Hochberg (1995) introduce a new multiple hypothesis testing
error measure called the false discovery rate (FDR), which they define as

FDR = E
[

V

R ∨ 1

]
= E

[
V

R

∣∣∣R > 0
]

Pr(R > 0).

(1.1)

The only effect of the “R ∨ 1” in the denominator of the first expectation is that
the ratio V/R is set to zero when R = 0. Benjamini and Hochberg (1995) prove
that a particular p-value step-up method strongly controls the FDR when the
true null hypotheses are simple and independent, with an extension to “positive
regression dependence” in Benjamini and Yekutieli (2001). This procedure was
originally introduced by Simes (1986) to weakly control the FWER. When using
this procedure, the realized V and R depend on the random outcome of a p-value-
based algorithm.

The Benjamini and Hochberg (1995) procedure works as follows. Suppose that

TABLE 1
Possible outcomes from m hypothesis tests

Accept null Reject null Total

Null true U V m0
Alternative true T S m1

W R m
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the p-values resulting from the m tests are ordered such that p(1) ≤ p(2) ≤ · · ·
≤ p(m). If we calculate

k̂ = arg max
1≤k≤m

{k :p(k) ≤ α · k/m},

then rejecting the null hypotheses corresponding to p(1), . . . , p(̂k) provides FDR =
m0/m · α ≤ α. If no p-value satisfies this inequality, then no hypothesis test is
called significant. (It is important to keep in mind that for any given set of data
we do not have V/R ≤ α. Rather, the long-run behavior of this procedure is such
that FDR ≤ α.) The FDR offers less stringent control over Type I errors than the
FWER, and is therefore usually more powerful, as is shown in their simulations.

In this paper, we define the positive false discovery rate (pFDR) to be pFDR =
E[V/R|R > 0]. The term “positive” describes the fact that we have conditioned
on at least one positive finding having occurred. See Section 2 for the motivation
and definition. The aim of this paper is to investigate the statistical properties of
the pFDR. The following are the main results of this paper.

1. When assuming that the test statistics come from a random mixture of the null
and alternative distributions, the pFDR can be written as a simple Bayesian
posterior probability (Section 3).

2. The pFDR can be used to define the q-value, which is a natural pFDR (or
Bayesian) analogue to the p-value (Section 4).

3. Under fairly general conditions, even certain forms of dependence, the realized
V/R, the FDR, and the pFDR converge simultaneously over all significance
regions to the Bayesian form of the pFDR (Section 5).

4. The pFDR has a connection to classification theory, and the set of Bayes rules
can be used to minimize (1 −w) · pFDR+w · pFNR, where the pFNR (defined
later) is the natural counterpart to the pFDR (Section 6).

Benjamini and Hochberg (1995) define the FDR and prove by an induction
argument that the Simes procedure [Simes (1986)] strongly controls the FDR.
The goal of this paper is to elucidate false discovery rate quantities, rather than
provide estimation techniques, by investigating the pFDR and making connections
to other ideas in statistics. For example, hypothesis testing is traditionally known
as a frequentist procedure. However, classical classification theory seems to be a
bridge between Bayesian modeling and hypothesis testing. In the context of the
pFDR, this bridge becomes clearer. The pFDR offers the potential to be a tool for
simultaneous decision making useful to both frequentists and Bayesians.

2. The positive false discovery rate. Benjamini and Hochberg (1995) define
the FDR according to equation (1.1). The most obvious definition of a false
discovery rate is E[V/R]. However, in most cases there is positive probability
that R = 0, so this definition is not well-defined. Three quantities that remedy the
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R = 0 problem are

E
[
V

R

∣∣∣R > 0
]

· Pr(R > 0),(A)

E
[
V

R

∣∣∣R > 0
]
,(B)

E[V ]
E[R] .(C)

Benjamini and Hochberg (1995) briefly consider all these quantities and discuss
the reasons for their choice of (A). They point out that if all null hypotheses are
true, m0 = m, then E[V/R|R > 0] = 1 and E[V ]/E[R] = 1, so neither quantity can
be controlled in the traditional p-value-based framework [i.e., when m0 = m then
(B) = (C) = 1. Therefore, one can never choose a value α < 1 and guarantee that
regardless of m0, (B) and (C) are less than or equal to α]. Therefore, they choose
to work with definition (A). Definition (C) has the advantage of being simple, but
the other two quantities measure the joint behavior of V and R.

We argue that when m0 = m, one would want the false discovery rate to
be 1, and that one is not interested in cases where no test is significant. Shaffer
(1995) also believes that the inclusion of Pr(R > 0) in the definition of FDR
is unsatisfying. These considerations lead us to propose definition (B) as an
alternative definition, called the positive false discovery rate (pFDR). The modified
definition is intuitively pleasing and is shown to be mathematically tractable. We
call (B) the pFDR because it is conditioned on the fact that at least one positive
finding has occurred.

DEFINITION 1. The positive false discovery rate is defined to be

pFDR = E
[
V

R

∣∣∣R > 0
]
.

There are two clear approaches to false discovery rates that can be taken. The
first is to fix the acceptable rate α beforehand and estimate a significance threshold
to obtain this rate conservatively on average. The second is to fix the significance
threshold and provide a conservative estimate of the rate over that threshold. When
taking the first approach, one is forced to use the FDR since the pFDR cannot be
controlled in this sense. The pFDR can be conservatively estimated in the second
approach, however. By considering false discovery rates for fixed significance
regions, one can gain insight into the operating characteristics of the quantities,
resulting in improved procedures. Using the results of an earlier version of this
paper [Storey (2001)], Storey (2002a) develops conservative point estimates for
both the FDR and pFDR for a fixed significance threshold.

Storey’s (2002a) method shows improvements in power over the Benjamini
and Hochberg (1995) methodology, mainly due to the estimation of m0/m. These
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estimates have also been shown rigorously to be conservative from a variety of
viewpoints [Storey (2002a) and Storey, Taylor and Siegmund (2004)]. Storey,
Taylor and Siegmund (2004) show that the point estimates can easily be translated
into an FDR controlling method, and they conservatively estimate the FDR and
pFDR over all significance regions simultaneously. Clearly, the simultaneous
conservative estimation is the most useful, as it allows the researcher to perform a
truly exploratory analysis. The adjustments of Benjamini and Hochberg (2000),
which are similar in spirit to Storey (2002a), have not been shown to provide
strong control. Genovese and Wasserman (2002b) model pFDR as a stochastic
process over all possible thresholds. From these recent advances, it is clear that the
pFDR is a useful quantity to study, and one can overcome some of Benjamini and
Hochberg (1995) concerns.

REMARK. An example where confusion in the interpretation of FDR and
pFDR is dangerous is the following. One can use the Benjamini and Hochberg
(1995) procedure to yield on average that FDR ≤ 0.1. But if Pr(R > 0) = 0.5, then
we have actually only controlled pFDR ≤ 0.2, a quantity twice as large. One may
suppose this example is hypothetical, but this exact confusion arises in Weller,
Song, Heyen, Lewin and Ron (1998). Zaykin, Young and Westfall (2000) point
out that the results of Weller, Song, Heyen, Lewin and Ron (1998) can be very
misleading if FDR and pFDR are confused.

3. A Bayesian interpretation. In this section we present a Bayesian interpre-
tation of the pFDR. As it turns out, the pFDR can be written as a simple posterior
probability under certain assumptions. Note that throughout this work the pFDR is
calculated over a fixed significance region, rather than a data-dependent threshold.
Suppose we wish to perform m identical tests of a null hypothesis versus an alter-
native hypothesis based on the statistics T1, T2, . . . , Tm. For a given significance
region �, define the positive false discovery rate as we defined it in Section 2:

pFDR(�) = E
[
V (�)

R(�)

∣∣∣R(�) > 0
]
,(3.1)

where V (�) = #{null Ti :Ti ∈ �} and R(�) = #{Ti :Ti ∈ �}. Let Hi = 0 when
the ith null hypothesis is true and Hi = 1 when it is false, i = 1, . . . ,m. Let π0 be
the a priori probability that a hypothesis is true: that is, we assume that the Hi

are i.i.d. Bernoulli random variables with Pr(Hi = 0) = π0 and Pr(Hi = 1) =
1 − π0 =: π1.

Before we present the Bayesian form of the pFDR, consider the pFDR when
m = 1. Under the above assumptions, the probability of a false positive given
that the statistics are significant is Pr(H = 0|T ∈ �). Also, given that T ∈ �,
V (�)/R(�) is 0 or 1 according to whether it is a true positive or false positive,
respectively. Therefore, it is easily seen that pFDR(�) = Pr(H = 0|T ∈ �) when
m = 1. We now show that this result does not change when m > 1.
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THEOREM 1. Suppose m identical hypothesis tests are performed with the
statistics T1, . . . , Tm and significance region �. Assume that (Ti,Hi) are i.i.d.
random variables, Ti |Hi ∼ (1 − Hi) · F0 + Hi · F1 for some null distribution F0
and alternative distribution F1, and Hi ∼ Bernoulli(π1) for i = 1, . . . ,m. Then

pFDR(�) = Pr(H = 0|T ∈ �),(3.2)

where π0 = 1 − π1 is the implicit prior probability used in the above posterior
probability.

It is surprising that the pFDR, a compound error measure, can be written in
such a simple way. Moreover, the posterior probability (3.2) does not depend on m.
[Also note that Pr(Hi = 0|Ti ∈ �) is the same for each i = 1, . . . ,m, which is why
we left out the index in the statement of the theorem.] We can write explicitly

pFDR(�) = Pr(H = 0|T ∈ �)

= π0 · Pr(T ∈ �|H = 0)

π0 · Pr(T ∈ �|H = 0) + π1 · Pr(T ∈ �|H = 1)

= π0 · {Type I error of �}
π0 · {Type I error of �} + π1 · {Power of �} .

This shows that the pFDR increases with increasing Type I errors and decreases
with increasing power. We now prove Theorem 1.

PROOF OF THEOREM 1. First note that

pFDR(�) = E
[
V (�)

R(�)

∣∣∣R(�) > 0
]

=
m∑

k=1

E
[
V (�)

R(�)

∣∣∣R(�) = k

]
Pr

(
R(�) = k|R(�) > 0

)

=
m∑

k=1

E
[
V (�)

k

∣∣∣R(�) = k

]
Pr

(
R(�) = k|R(�) > 0

)
.

Since the statistics are independent, it intuitively follows that V (�)|R(�) = k is a
binomial random variable with probability of success Pr(H = 0|T ∈ �), in which
case the proof easily follows. However, we can be more precise. Because of the
i.i.d. assumption, it follows that

E[V (�)|R(�) = k] = E

[
m∑

i=1

1(Ti ∈ �)1(Hi = 0)

∣∣∣∣ T1, . . . , Tk ∈ �

Tk+1, . . . , Tm /∈ �

]

= E

[
k∑

i=1

1(Hi = 0)

∣∣∣∣ T1, . . . , Tk ∈ �

Tk+1, . . . , Tm /∈ �

]
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=
k∑

i=1

E[1(Hi = 0)|Ti ∈ �]

= k · Pr(H = 0|T ∈ �).

Therefore,

pFDR(�) =
m∑

k=1

k · Pr(H = 0|T ∈ �)

k
Pr

(
R(�) = k|R(�) > 0

)
= Pr(H = 0|T ∈ �). �

Note that when the Hi are not random, this theorem no longer holds, since
there is the deterministic constraint that

∑m
i=1 Hi = m1. However, for large m,

a result analogous to Theorem 1 holds under certain convergence assumptions; this
is formally dealt with in Section 5. Also, this theorem holds for a simple versus
simple test, but composite hypotheses can also be considered as long as one models
the alternative parameter as a random variable. Then F1 is simply the mixture of
the alternative distributions.

Recall that in Section 2 we considered three definitions, the third of which was
E[V ]/E[R]. The following shows that this quantity is equal to the pFDR under
the assumptions of Theorem 1. The proof follows straightforwardly by noting that
E[V (�)] = m · π0 · Pr(T ∈ �|H = 0) and E[R(�)] = m · Pr(T ∈ �).

COROLLARY 1. Under the assumptions of Theorem 1,

E
[
V (�)

R(�)

∣∣∣R(�) > 0
]

= E[V (�)]
E[R(�)] .

Even with the existence of this result, we reiterate that in general pFDR captures
the joint behavior of V and R, whereas E[V ]/E[R] does not.

The pFDR written as P (H = 0|T ∈ �) can be related to the Type I error. One
could call it a “posterior Bayesian Type I error.” See Morton (1955) for a use of this
phrase, as well as a similar development of this concept in the context of genetic
linkage analysis. Whereas the FWER is very much frequentist, we have shown
that the pFDR is quite flexible in its interpretation. This is especially appealing in
that it is a multiple testing error measure that can be used by both Bayesians and
frequentists. We will see in later examples that this is easily accomplished.

The quantity pFDR(�) = Pr(H = 0|T ∈ �) gives a global measure in that
it does not provide specific information about the value of each statistic, only
whether it fell in � or not. In Section 4, we use the pFDR to give each statistic a
measure of its significance in terms of the pFDR, which we call the q-value. This
continues to have a Bayesian interpretation, yet allows one to make simultaneous
inferences. Reporting marginal posterior probabilities Pr(H = 0|T = t), as is the
case in typical Bayesian modeling, also gives a specific measure for each statistic,
but it does not take into account the multiple comparisons.
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4. The q-value. In this section, we introduce the pFDR analogue of the
p-value, which we call the q-value. Because of the connection made in Section 3,
the q-value is useful in both Bayesian and frequentist settings. It gives the scientist
a hypothesis testing error measure for each observed statistic with respect to the
pFDR. Again, assume that (Ti ,Hi) are i.i.d. random variables, Ti |Hi ∼ (1 − Hi) ·
F0 + Hi · F1, and Hi ∼ Bernoulli(1 − π0) for i = 1, . . . ,m. We introduce the
q-value by first showing an example.

EXAMPLE [Testing the mean of a N(θ,1) random variable]. Suppose we
perform m hypothesis tests of θ = 0 versus θ = 2 for m N(θ,1) random variables
T1, . . . , Tm. Specifically, (Ti,Hi) are i.i.d. random variables with Ti |Hi ∼ (1 −
Hi) · N(0,1) + Hi · N(2,1). Given we observe the random variables to be T1 =
t1, . . . , Tm = tm, the p-value of Ti = ti can be calculated as

p-value(ti) = Pr(T ≥ ti |H = 0) = Pr
(
N(0,1) ≥ ti

)
.

In words, p-value(ti) gives the Type I error rate if we reject any statistic as extreme
or more extreme than ti .

By Theorem 1 the pFDR, if we reject any statistic as extreme or more extreme
than ti , among all m hypotheses is

pFDR({T ≥ ti}) = π0 Pr(T ≥ ti |H = 0)

π0 Pr(T ≥ ti |H = 0) + π1 Pr(T ≥ ti |H = 1)

= π0 Pr(N(0,1) ≥ ti )

π0 Pr(N(0,1) ≥ ti ) + π1 Pr(N(2,1) ≥ ti )

= Pr(H = 0|T ≥ ti ).

(4.1)

From the last line, it can be seen that pFDR({T ≥ ti}) = Pr(H = 0|T ≥ ti ) is a
natural Bayesian analogue to p-value(ti) = Pr(T ≥ ti |H = 0). The relationship
between these two quantities can also be understood graphically. Figure 1 shows a
graph of the N(0,1) and N(2,1) distributions with the point Ti = ti marked by a
vertical line. The area under the N(0,1) density to the right of ti is p-value(ti). In
order to calculate pFDR({T ≥ ti}), we use formula (4.1), which involves the areas
to the right of ti under the N(0,1) and the N(2,1) densities, and their respective
weights π0 and π1.

As we show in this section, (4.1) is what we call q-value(ti). In many situations,
it is the pFDR obtained when rejecting a statistic as extreme or more extreme than
ti among all m hypotheses; but the q-value can be defined more generally, as can
the p-value.

Until now, we have only considered a single significance region. Hypothesis
tests are usually derived according to a nested set of significance regions. As
long as F0 and F1 have a common support, we can denote this nested set of
significance regions without loss of generality by {�α}1

α=0, where α is such that
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FIG. 1. A plot of the N(0,1) and N(2,1) densities. The vertical line denotes the observed statistic
Ti = ti . The p-value can be calculated from the area under the N(0,1) density to the right of Ti = ti .
The q-value is calculated using the area under both densities to the right of Ti = ti weighted by
π0 and π1.

Pr(T ∈ �α|H = 0) = α. Note that α′ ≤ α implies that �α′ ⊆ �α , giving the nested
property. Using this notation, the p-value(t) of an observed statistic T = t is
defined to be [Lehmann (1986)]

p-value(t) = inf{�α : t∈�α} Pr(T ∈ �α|H = 0).

This quantity gives a measure of the strength of the observed statistic with respect
to making a Type I error; it is the minimum Type I error rate that can occur when
rejecting a statistic with value t , given the set of nested significance regions.

We define an analogous quantity in terms of the pFDR that has both frequentist
multiple hypothesis testing and Bayesian interpretations.

DEFINITION 2. For an observed statistic T = t define the q-value of t to be

q-value(t) = inf{�α : t∈�α} pFDR(�α).(4.2)

In words, (4.2) says the q-value is a measure of the strength of an observed
statistic with respect to the pFDR; it is the minimum pFDR that can occur when
rejecting a statistic with value t for the set of nested significance regions. Under
the assumptions of Theorem 1, it is seen that the q-value has an even more
interpretable relationship to the p-value. Consider the following corollary.

COROLLARY 2. Under the assumptions of Theorem 1,

q-value(t) = inf{�α : t∈�α} Pr(H = 0|T ∈ �α).(4.3)

Therefore, according to (4.3), the q-value is a Bayesian version of the p-value—
say a “posterior Bayesian p-value”—the minimum posterior probability H = 0
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over all significance regions containing the statistic. We call (4.3) the q-value
because it is equivalent to the p-value with the events {T ∈ �α} and {H = 0}
reversed.

REMARK. Technically, the q-value is not a “pFDR adjusted p-value.” This
is immediately clear when recalling the definition of an adjusted p-value. Shaffer
(1995) says, “Given any test procedure, the adjusted p-value corresponding to
a test of a single hypothesis Hi can be defined as the level of the entire test
procedure at which Hi would be rejected, given the values of all test statistics
involved.” Therefore, since the pFDR cannot be controlled by a test procedure
(i.e., a sequential p-value method), then it cannot be used to define any adjusted
p-values. But more importantly, notice that the adjusted p-values are defined in
terms of a particular procedure.

Notice that

arg min
{�α : t∈�α}

Pr(H = 0|T ∈ �α)

= arg min
{�α : t∈�α}

π0 Pr(T ∈ �α|H = 0)

π0 Pr(T ∈ �α|H = 0) + π1 Pr(T ∈ �α|H = 1)

= arg min
{�α : t∈�α}

Pr(T ∈ �α|H = 0)

Pr(T ∈ �α|H = 1)
.

Therefore, the significance region that determines the q-value minimizes the ratio
of the Type I error to the power over all significance regions that contain the
statistic. This makes sense because the pFDR is concerned with measuring how
frequently the false positives occur in relation to true positives.

One can understand this observation in terms of a plot of power versus Type I

error for a given set of significance regions. Recall that marginally Ti
i.i.d.∼ π0 ·F0 +

π1 · F1 for i = 1, . . . ,m. We write

G1(α) :=
∫
�α

dF1 = Pr(T ∈ �α|H = 1),(4.4)

G0(α) :=
∫
�α

dF0 = Pr(T ∈ �α|H = 0) = α.

It is easily shown that G0 and G1 are the c.d.f.’s of the null and alternative
p-values, respectively. Suppose that G1 is continuous and differentiable. Then
it can be shown through simple calculus that α/G1(α) is minimized at α =
G1(α)/G′

1(α). Therefore we can minimize α/G1(α) graphically by drawing all
lines from the origin that are tangent to a concave portion of the function. The
line with the largest slope is tangent to the point on the curve where α/G1(α) is
minimized.
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FIG. 2. A plot of power versus Type I error rate for two hypothetical sets of significance regions.
The solid line is power as a function of Type I error, G1(α); the dotted line is the identity function;
the dashed line is the line from the origin tangent to G1(α).

See Figure 2 for a picture of this maximization. The left panel has a strictly
concave G1(α). In this case, the ratio of power to Type I errors decreases as
α → 0. In other words, as the significance regions get smaller, the ratio of power to
Type I errors gets larger. Therefore, for a concave G1, we can conclude that the �α

that contains t and minimizes pFDR(�α) also minimizes Pr(T ∈ �α|H = 0). This
follows since we would take the significance region with the smallest α, where
t ∈ �α , in order to minimize α/G1(α).

Therefore, when the c.d.f. of the alternative p-values G1 is concave, the same
significance region is used to define the q-value and the p-value. More generally,
we only need that G1(α)/α is a decreasing function of α if we do not assume
that G1 is differentiable. (Note that if G1 is concave then this holds.) We state this
formally in the following proposition.

PROPOSITION 1. The q-value of a statistic is based on the same significance
region as the p-value, as long as G1(α)/α is decreasing in α, that is,

arg min
{�α : t∈�α}

Pr(H = 0|T ∈ �α) = arg min
{�α : t∈�α}

Pr(T ∈ �α|H = 0).

The right panel of Figure 2 shows an example where G1 is not concave, nor
is G1(α)/α decreasing in α. The significance region minimizing the ratio of the
Type I error to the power is the one that corresponds to the point that the shown
line from the origin intersects. No similar connection can be made with the p-value
under this kind of G1.

EXAMPLE (Likelihood ratio based rejection regions). We have assumed that
(Ti,Hi) are i.i.d. random variables where Ti |Hi ∼ (1−Hi) ·F0 +Hi · F1. Suppose
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that f0 and f1 are the densities corresponding to F0 and F1, respectively. Also,
suppose that we consider significance regions of the form{

t :
f0(t)

f1(t)
≤ λ

}
.

Then it follows that the power to Type I error curve is concave, and therefore
Proposition 1 holds. Moreover, the result of Theorem 2 that we present below also
holds.

It is natural to consider whether defining the q-value in terms of the original
statistics is equivalent to defining the q-value in terms of the statistics’ p-values.
We denote the pFDR based on the original statistics as pFDRT (�α), and the
analogous pFDR based on the p-values by pFDRP ({p ≤ α}). Is pFDRT (�α) =
pFDRP ({p ≤ α}), and when is it the case that q-value(ti) = pFDRP ({p ≤
p-value(ti)})? We answer these questions in the following theorem.

THEOREM 2. For m identical hypothesis tests, pFDRT (�α) = pFDRP ({p :
p ≤ α}), which implies that the q-value can be calculated from either the original
statistics or their p-values. Also, when the statistics are independent and follow a
mixture distribution then

q-value(t) = pFDRP
({p :p ≤ p-value(t)})

if and only if G1(α)/α is decreasing in α.

PROOF. Because the set of significance regions is nested, it is trivial to
show that p-value(t) ≤ α if and only if t ∈ �α . This implies pFDRT (�α) =
pFDRP ({p :p ≤ α}). For the second statement, first suppose that G1(α)/α is
decreasing in α. For any T = t , let �α′ = arg min{�α : t∈�α} pFDRT (�α), so
that q-value(t) = pFDRT (�α′) = pFDRP ({p :p ≤ α′}). It is also the case that
�α′ = arg min{�α : t∈�α} Pr(T ∈ �α|H = 0), that is, p-value(t) = α′. Now suppose
that q-value(t) = pFDR({p :p ≤ p-value(t)}) for each t . By the definition of
the q-value, this implies that q-value(t) is an increasing function of p-value(t).
Therefore G1(α)/α is a decreasing function of α. �

Suppose that we perform m different hypothesis tests, so that each one has
its own nested set of significance regions, possibly on different spaces. One can
transform these tests into the same space by calculating their p-values. By the
results presented in the latter half of this section, it follows that the p-value based
q-values are a natural way to transform these tests onto the same space with respect
to the pFDR. Methods have also been developed for estimating q-values [Storey
(2002a)], and Storey, Taylor and Siegmund (2004) show that these estimates are
simultaneously conservatively consistent.



THE POSITIVE FALSE DISCOVERY RATE 2025

5. Dependence and asymptotic properties. In this section, we consider
the pFDR when the test statistics are dependent, along with some asymptotic
properties that have direct applications to certain cases of dependence. Here we
assume we are performing m hypothesis tests based on statistics T1, . . . , Tm and
using the same significance region for each. We first present the following simple
result.

THEOREM 3. Under any distributional assumptions about T1, . . . , Tm and
H1, . . . ,Hm, it follows that

pFDR(�) =
m∑

k=1

∑
i1,...,ik

1

k

k∑
j=1

Pr
(
Hij = 0,

Ti1, . . . , Tik ∈ �

Tik+1 , . . . , Tim /∈ �

∣∣∣R(�) > 0
)

,

where the middle sum is taken over all distinct subsets of size k of {1,2, . . . ,m}.
PROOF.

pFDR(�) =
m∑

k=1

∑
i1,...,ik

E
(

V (�)

R(�)

∣∣∣∣ Ti1 , . . . , Tik ∈ �

Tik+1, . . . , Tim /∈ �

)

× Pr
(

Ti1, . . . , Tik ∈ �

Tik+1 , . . . , Tim /∈ �

∣∣∣R(�) > 0
)

=
m∑

k=1

∑
i1,...,ik

E

∑k
j=1(1 − Hij )

k

∣∣∣∣ Ti1, . . . , Tik ∈ �

Tik+1 , . . . , Tim /∈ �


× Pr

(
Ti1, . . . , Tik ∈ �

Tik+1 , . . . , Tim /∈ �

∣∣∣R(�) > 0
)

=
m∑

k=1

∑
i1,...,ik

1

k

k∑
j=1

Pr
(
Hij = 0

∣∣∣ Ti1, . . . , Tik ∈ �

Tik+1 , . . . , Tim /∈ �

)

× Pr
(

Ti1, . . . , Tik ∈ �

Tik+1 , . . . , Tim /∈ �

∣∣∣R(�) > 0
)

. �

The representation of pFDR(�) in Theorem 3 appears intractable at first glance,
but under a fully parametric model it is feasible to calculate this quantity or a
numerical approximation to it. When the tests are exchangeable but dependent in
some arbitrary way, we may simplify this result.

COROLLARY 3. Suppose that (H1, T1), . . . , (Hm,Tm) are exchangeable ran-
dom variables. Then

pFDR(�α) =
m∑

k=1

Pr
(
H1 = 0

∣∣∣ T1, . . . , Tk ∈ �α

Tk+1, . . . , Tm /∈ �α

)
· Pr(R = k|R > 0).
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From these results it can be seen that Theorem 1 does not hold under general
dependence. Therefore, we now determine when Theorem 1 holds approximately,
or rather asymptotically. Recall that we can represent the nested set of significance
regions by {�α}α>0, where α is the Type I error of �α . In our notation,

Vm(�α)∑m
i=1(1 − Hi)

=
∑m

i=1(1 − Hi) · 1(Ti ∈ �α)∑m
i=1(1 − Hi)

,

Sm(�α)∑m
i=1 Hi

=
∑m

i=1 Hi · 1(Ti ∈ �α)∑m
i=1 Hi

represent the empirical distribution functions of the null and alternative p-values,
respectively, as a function of α. If these quantities converge in the pointwise
sense, then pFDR(�α), FDR(�α) and V (�α)/R(�α) all converge to a posterior
probability, simultaneously for all �α . This is explicitly stated in the following
theorem.

THEOREM 4. Suppose that with probability 1 we have
m∑

i=1

(1 − Hi)/m → π0

and

Vm(�α)∑m
i=1(1 − Hi)

→ G0(α),
Sm(�α)∑m

i=1 Hi

→ G1(α),

for each α > 0 for some continuous functions G0 and G1, as m → ∞. Then for
any δ > 0 where π0 · G0(δ) + (1 − π0) · G1(δ) > 0,

(i) lim
m→∞ sup

α≥δ

∣∣∣∣ Vm(�α)

Rm(�α) ∨ 1
− Pr∞(H = 0|X ∈ �α)

∣∣∣∣ a.s.= 0,

(ii) lim
m→∞ sup

α≥δ

∣∣FDRm(�α) − Pr∞(H = 0|X ∈ �α)
∣∣ = 0,

(iii) lim
m→∞ sup

α≥δ

∣∣pFDRm(�α) − Pr∞(H = 0|X ∈ �α)
∣∣ = 0,

where we define

Pr∞(H = 0|X ∈ �α) = π0 · G0(α)

π0 · G0(α) + (1 − π0) · G1(α)
.

The functions G0 and G1 are the asymptotic Type I error and power of the
p-values as a function of α. In general, Theorem 4 says that if the statistics are
“weakly dependent” then the realized proportion of false discoveries, the FDR, and
the pFDR converge simultaneously over all significance regions to the Bayesian
posterior probability defined above. It allows many of the properties shown for
the q-value under independence to hold approximately under weak dependence.
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Most importantly, Theorem 4 says that if one is able to calculate or estimate G0,
G1 and π0, then for large m these provide good approximations for the realized
proportion of false discoveries, the FDR, and the pFDR for all significance regions
simultaneously.

Two useful cases where the theorem may hold are when the statistics T1, T2, . . .

are such that there exists a k where |i − j | ≥ k implies Ti and Tj are independent
(i.e., the dependence is in finite blocks), or when the statistics are a stationary
ergodic sequence. There are other forms of dependence where this result holds, for
example, for certain Markov chains and certain mixing distributions.

PROOF OF THEOREM 4. Let

Qm(α) = Vm(�α)

[Vm(�α) + Sm(�α)] ∨ 1
.

By an easy modification of the Glivenko–Cantelli theorem [see, e.g., Billingsley
(1968)], it follows that

lim
m→∞ sup

α≥δ

∣∣∣∣Vm(�α)

m
− π0 · G0(α)

∣∣∣∣ a.s.= 0,

lim
m→∞ sup

α≥δ

∣∣∣∣ [Vm(�α) + Sm(�α)] ∨ 1

m
− [π0 · G0(α) + π1 · G1(α)]

∣∣∣∣ a.s.= 0.

Since π0 ·G0(δ)+(1−π0) ·G1(δ) > 0 and these are both nondecreasing functions,
it is easy to show that

lim
m→∞ sup

α≥δ

∣∣∣∣ m

[Vm(�α) + Sm(�α)] ∨ 1
− 1

π0 · G0(α) + π1 · G1(α)

∣∣∣∣ a.s.= 0.

Finally, noticing that∣∣∣∣ Vm(�α) − mπ0 · G0(α)

[Vm(�α) + Sm(�α)] ∨ 1

∣∣∣∣
+

∣∣∣∣ mπ0 · G0(α)

[Vm(�α) + Sm(�α)] ∨ 1
− π0 · G0(α)

π0 · G0(α) + π1 · G1(α)

∣∣∣∣
≥ ∣∣Qm(α) − Pr∞(H = 0|X ∈ �α)

∣∣
completes the proof of the first convergence.

Now |Qm(α)−Pr∞(H = 0|X ∈ �α)| ≤ 2 almost surely, so that it easily follows
that

0 = E
[

lim
m→∞ sup

α≥δ

∣∣Qm(α) − Pr∞(H = 0|X ∈ �α)
∣∣]

= lim
m→∞ E

[
sup
α≥δ

∣∣Qm(α) − Pr∞(H = 0|X ∈ �α)
∣∣]

≥ lim
m→∞ sup

α≥δ

∣∣E[Qm(α)] − Pr∞(H = 0|X ∈ �α)
∣∣ ≥ 0,
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where E[Qm(α)] = FDRm(�α). Finally,

lim
m→∞ sup

α≥δ

|pFDRm(�α) − FDRm(�α)| ≤ lim
m→∞

∣∣∣∣ 1

Pr(Rm(δ) > 0)
− 1

∣∣∣∣ = 0. �

The following is a numerical example involving statistics that are dependent in
finite blocks. A specific application where this type of dependence plausibly exists
is discussed in Section 7. There, hypotheses are tested on thousands of genes’
expression levels from several biological samples. Since genes tend to work in
pathways of finite size, it is likely that the dependence between the genes exists in
relatively small, disjoint groups. Thus, convergence of the quantities in Theorem 4
likely occurs in that application. For more on this, see Storey (2002b).

EXAMPLE (Locally dependent statistics). As a numerical example to illustrate
the result of Theorem 4, consider the following situation. Suppose Ti |Hi = 0 ∼
N(0,1) and Ti |Hi = 1 ∼ N(2,1). We have Cov(Ti+j , Ti+k) = ρ where 0 ≤ ρ ≤ 1
for j 
= k, j , k = 0,1, . . . ,9 and i = 1,11,21, . . . , and zero covariance otherwise.
In other words the statistics have correlation ρ in groups of 10. Suppose we

take �α = [�−1(1 − α),∞) where � is the c.d.f. of a N(0,1), and Hi
i.i.d.∼

Bernoulli(1 − π0), with π0 = 0.8. Then by Theorem 4, we have, for example,
that

lim
m→∞ sup

α>0

∣∣pFDRm(�α) − Pr∞(H = 0|T ∈ �α)
∣∣ = 0,

where Pr∞(H = 0|T ∈ �α) = π0 · α/[π0 · α + (1 − π0) · Pr(N(2,1) ≥ �−1(1 −
α))]. Table 2 shows Pr∞(H = 0|T ∈ �α) compared to the pFDRm(�α) at

TABLE 2
Simulation results: pFDRm(�α) converging to Pr∞(H = 0|T ∈ �α)

α = 0.005, Pr∞(H = 0|T ∈ �α) = 0.137

m ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 1

100 0.142 (0.004) 0.126 (0.004) 0.120 (0.004) 0.102 (0.004) 0.094 (0.004) 0.041 (0.003)
500 0.136 (0.003) 0.136 (0.003) 0.133 (0.003) 0.127 (0.003) 0.117 (0.003) 0.091 (0.003)
1000 0.138 (0.003) 0.136 (0.003) 0.134 (0.003) 0.132 (0.003) 0.128 (0.003) 0.113 (0.003)
3000 0.138 (0.003) 0.137 (0.003) 0.137 (0.003) 0.137 (0.003) 0.134 (0.003) 0.129 (0.003)
5000 0.138 (0.003) 0.138 (0.003) 0.137 (0.003) 0.137 (0.003) 0.135 (0.003) 0.132 (0.003)

α = 0.001,Pr∞(H = 0|T ∈ �α) = 0.061

100 0.061 (0.003) 0.063 (0.004) 0.053 (0.003) 0.047 (0.003) 0.036 (0.003) 0.010 (0.002)
500 0.061 (0.002) 0.063 (0.002) 0.060 (0.002) 0.052 (0.002) 0.047 (0.002) 0.028 (0.002)
1000 0.063 (0.002) 0.062 (0.002) 0.060 (0.002) 0.060 (0.002) 0.055 (0.002) 0.038 (0.002)
3000 0.061 (0.001) 0.063 (0.001) 0.061 (0.001) 0.061 (0.001) 0.058 (0.001) 0.051 (0.002)
5000 0.061 (0.001) 0.063 (0.001) 0.062 (0.001) 0.062 (0.001) 0.060 (0.001) 0.054 (0.002)
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several m for α = 0.005 and α = 0.001. It can be seen that there is quite good
agreement between the limiting case and the finite cases, especially for large m.
Most of the differences at m = 5000 are within the Monte Carlo standard error,
which is listed parenthetically.

6. A connection to classification theory. When assuming the statistics
follow a mixture distribution, as we have assumed throughout this work, it is
possible to view multiple hypothesis testing as a classification problem. For each
test, we observe Ti and we have to decide whether to classify Hi as 0 or Hi as 1
based on Ti . There are four possible outcomes for each test with two of them being
misclassifications. Consider Table 3 listing these outcomes, with the penalties for
each type of misclassification parameterized by λ.

We use several of the basic facts about classification theory found in Cherkassky
and Mulier (1998), for example. A significance region � can be thought of as a
classification rule in the following way: if Ti ∈ � then we classify Hi as 1, and
if Ti /∈ �, then we classify Hi as 0. The “Bayes error” of a classification rule (in
terms of the significance region representation) is

BE(�) = (1 − λ)Pr(Ti ∈ �,Hi = 0) + λPr(Ti /∈ �,Hi = 1).(6.1)

That is, BE(�) is the expected loss under Table 3.
Genovese and Wasserman (2002a) notice that one can define a dual quantity

to the FDR, which they call the false nondiscovery rate (FNR). [See also Sarkar
(2002).] The FNR is defined to be the expected proportion of false negatives among
all hypotheses that are not rejected, with the ratio being set to zero if all hypotheses
are rejected:

FNR = E
[

T

W

∣∣∣W > 0
]

Pr(W > 0),(6.2)

where W is the total number of nonsignificant hypotheses, and T (not to be
confused with the statistics Ti ) is the number of nonsignificant alternative statistics
(false negatives). We make the following modified definition of the FNR, in the
spirit of the pFDR.

DEFINITION 3. The positive false nondiscovery rate is defined to be:

pFNR = E
[

T

W

∣∣∣W > 0
]
.

Using an analogous argument to Theorem 1, we can show the following result.

TABLE 3
Outcomes of “classifying” Hi with misclassification penalties

Classify Hi as 0 Classify Hi as 1

Hi = 0 0 1 − λ

Hi = 1 λ 0
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THEOREM 5. Under the assumptions of Theorem 1, it follows that

pFNR(�) = Pr(H = 1|T /∈ �),

where π1 = 1 − π0 is the implicit prior probability in the above posterior
probability.

Now the Bayes error can be written as a weighted sum of pFDR(�) and
pFNR(�).

COROLLARY 4. Under the assumptions of Theorem 1,

BE(�) = (1 − λ)Pr(T ∈ �) · pFDR(�) + λPr(T /∈ �) · pFNR(�).(6.3)

In the step-wise p-value framework, one decides beforehand at what level to
control the FDR and then applies one’s procedure to control it at that level. Using
the classification theory connection, we suggest two ways to use the pFDR in fixing
a significance region beforehand. One can choose the significance region based on
the relative cost of a false positive to a false negative and then minimize the Bayes
error; or one can decide the relative importance of the pFDR to the pFNR and then
minimize their weighted average.

In Section 7, we consider a problem in which one is concerned with deciding
which of several thousand genes show a statistically significant change in gene
expression between two types of cells (e.g., normal versus diseased cells). Here it
is feasible that the scientist can decide on the relative cost of a false positive gene
to a false negative gene. In that case, one can derive the Bayes rule to minimize
the Bayes error. By Corollary 4, one can interpret the Bayes error in terms of
the multiple hypothesis testing quantities pFDR and pFNR. In fact, the manner in
which the Bayes error weights the pFDR and pFNR makes a lot of sense. Another
approach is to minimize the weighted average of the pFDR and pFNR,

(1 − w) · pFDR(�) + w · pFNR(�).

In words, one can decide how important the rate of false discoveries is to the rate
of false nondiscoveries. We now show how to minimize this weighted average.

Recall that we assume (Ti,Hi) are i.i.d. random variables, Ti |Hi ∼ (1 − Hi) ·
F0 + Hi · F1, and Hi ∼ Bernoulli(1 − π0) for i = 1, . . . ,m. Also assume that
F0 and F1 are continuous distributions with common support, with respective
densities f0 and f1. Define the set of significance regions {Bλ} for 0 ≤ λ ≤ 1
by

Bλ =
{
t :

π0f0(t)

π0f0(t) + π1f1(t)
≤ λ

}
.

The set {Bλ} defines the Bayes rule for the cost matrix given by Table 3. That
is, for each λ, Bλ minimizes BE(Bλ) (6.1). Note that by Corollary 4, Bλ also
minimizes (6.3) for each λ.
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As it turns out, the nested set of significance regions {Bλ} can also be used
to minimize (1 − w) · pFDR(�) + w · pFNR(�). We state this formally in the
following theorem.

THEOREM 6. Let λ(w) = arg minλ[(1 − w) · pFDR(Bλ) + w · pFNR(Bλ)].
Then (1 −w) · pFDR(Bλ(w))+w · pFNR(Bλ(w)) minimizes (1 −w) · pFDR(�)+
w · pFNR(�) among all measurable �.

PROOF. Recall that by the Neyman–Pearson lemma, the {Bλ} form a set
of uniformly most powerful significance regions. Without loss of generality, we
can assume that, for each α ∈ [0,1], there exists a Bλ such that Pr(T ∈ Bλ|
H = 0) = α. Otherwise, {Bλ} can be extended in the natural way to accomplish
this and still remain uniformly most powerful [Lehmann (1986)].

Consider any measurable �. Then there exists a Bλ such that Pr(T ∈ �|H =
0) = Pr(T ∈ Bλ|H = 0). Since the {Bλ} are uniformly most powerful, it follows
that Pr(T ∈ �|H = 1) ≤ Pr(T ∈ Bλ|H = 1). Therefore,

pFDR(�) = π0 · Pr(T ∈ �|H = 0)

π0 · Pr(T ∈ �|H = 0) + π1 · Pr(T ∈ �|H = 1)

≥ π0 · Pr(T ∈ Bλ|H = 0)

π0 · Pr(T ∈ Bλ|H = 0) + π1 · Pr(T ∈ Bλ|H = 1)
= pFDR(Bλ),

pFNR(�) = π1 · Pr(T /∈ �|H = 1)

π1 · Pr(T /∈ �|H = 1) + π0 · Pr(T /∈ �|H = 0)

≥ π1 · Pr(T /∈ Bλ|H = 1)

π1 · Pr(T /∈ Bλ|H = 1) + π0 · Pr(T /∈ Bλ|H = 0)
= pFNR(Bλ).

Hence for any w, (1 − w) · pFDR(Bλ) + w · pFNR(Bλ) ≤ (1 − w) · pFDR(�) +
w · pFNR(�), and the overall minimizing Bλ(w) can be found among the {Bλ} as
stated in the theorem. �

EXAMPLE (Normal distributions). Suppose (Ti,Hi) are i.i.d. random vari-
ables, Ti |Hi ∼ (1 − Hi) · N(0,1) + Hi · N(2,1), and Hi ∼ Bernoulli(0.2). Also
suppose we want to minimize

1
3 pFDR(�) + 2

3 pFNR(�)

over all measurable �. Therefore, we have made the rate of nondiscoveries that are
false two times as important as the rate that discoveries are false. By Theorem 6,
we only have to consider significance regions of the form

Bλ =
{
t :

0.8φ0,1(t)

0.8φ0,1(t) + 0.2φ2,1(t)
≤ λ

}
,

where φµ,σ 2 is the density of a N(µ,σ 2). By calculating λ(2/3) = arg minλ[1/3×
pFDR(Bλ) + 2/3 pFNR(Bλ)], we get λ(2/3) = 0.193, which implies B0.193 =
{T ≥ 2.41}. Therefore inf� 1/3 pFDR(�)+ 2/3 pFNR(�) = 0.123 and this occurs



2032 J. D. STOREY

FIG. 3. A plot of 1/3 · pFDR(Bλ) + 2/3 · pFNR(Bλ) as a function of λ.

at � = B0.193 = {T ≥ 2.41}. Figure 3 shows 1/3 pFDR(Bλ) + 2/3 pFNR(Bλ) as
a function of λ.

Since it will tend to be the case that π0 � π1, one may also wish to find � to
minimize

(1 − w) · pFDR(�)

π0
+ w · pFNR(�)

π1
.

The minimizing set can also be found among the {Bλ} using some λ′(w) defined
similarly to the above.

7. An application to DNA microarrays in a Bayesian framework. Here we
consider the application of some of these ideas to an empirical Bayesian approach
to detecting differentially expressed genes in DNA microarray experiments. In
doing so, we discuss the advantages and disadvantages of reporting the q-value
as a measure of significance for each gene as opposed to reporting the classical
posterior probability.

A DNA microarray allows the simultaneous measurement of the expression
levels of thousands of genes from a single biological sample [Brown and Botstein
(1999)]. Efron, Tibshirani, Storey and Tusher (2001) consider a data set in which
four microarrays are obtained from “untreated” human cells, and four from
irradiated human cells. Therefore, for each of over 6,000 genes, there are eight
independent measurements. A modified two-sample t-statistic is calculated for
each gene. It is assumed that Ti |Hi ∼ (1 −Hi) ·F0 +Hi ·F1, as has been assumed
in this work. Moreover, null versions of the statistics are calculated. Using these
null versions along with the observed statistics, a nonparametric estimate of

Pr(Hi = 0|Ti = ti ) = π0 · f0(ti)

π0 · f0(ti) + π1 · f1(ti)
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is calculated, which we denote by P̂r(Hi = 0|Ti = ti ). The sets {Bλ} can then be
estimated by B̂λ = {t : P̂r(H = 0|T = t) ≤ λ}.

Efron, Tibshirani, Storey and Tusher (2001) suggest thresholding genes for
differential gene expression by the significance region B̂0.10, which is equivalent to
calling gene i differentially expressed if P̂r(Hi = 0|Ti = ti ) ≤ 0.10. The threshold
is determined by P̂r(Hi = 0|Ti = ti ), which is only a marginal statistic and does
not take into account the multiple comparisons. Therefore, the 0.10 used in the
threshold does not have a straightforward interpretation in terms of the error rate
of the overall list of genes. Using an earlier version of this work [Storey (2001)],
they note that by integrating over B̂0.10 with the density f̂ (·|T ∈ B̂0.10), they have
estimated pFDR(B̂0.10) = Pr(H = 0|T ∈ B̂0.10). This is a clear illustration of how
the results in this paper can be used in a Bayesian setting. There is a further issue,
however, which is how to assign a measure of significance to each gene. Efron,
Tibshirani, Storey and Tusher (2001) suggest reporting P̂r(Hi = 0|Ti = ti ) as a
measure of significance for each gene and then reporting pFDR(B̂λ) according
to which threshold λ is used. They argue P̂r(Hi = 0|Ti = ti ) should be reported
because it gives local information about the significance of the gene.

In this paper, we have defined the q-value as a pFDR measure of significance
for each statistic. For this particular problem,

q-value(ti) = Pr
(
Hi = 0|Ti ∈ BPr(Hi=0|Ti=ti )

)
and it can be estimated by P̂r(Hi = 0|Ti ∈ B̂P̂r(Hi=0|Ti=ti )

). Whereas Pr(Hi =
0|Ti = ti ) provides a measure of significance local to ti , q-value(ti) provides a
measure of significance in the same sense that the p-value does: It takes into
account the fact that if we call gene i significant, then we are also forced to call all
genes with greater evidence of differential expression significant. Moreover, the
q-value simultaneously takes into account the multiple comparisons because it is
defined in terms of the pFDR.

It is clear that both Pr(Hi = 0|Ti = ti ) and q-value(ti) are valuable measures to
consider. Ideally, we would have both at our disposal. We make the case here,
though, that if only one measure of significance is to be used, then it should
be q-value(ti). This follows by the fact that in a multiple comparisons situation
such as this, one always has to worry about controlling the number of false
positives in some way. The interpretation of how this is being accomplished
in q-value(ti) is clear, whereas it is not in Pr(Hi = 0|Ti = ti ). A nonparametric
method for estimating the q-values has been proposed in Storey (2002a), and it has
been shown in Storey, Taylor and Siegmund (2004) that they are simultaneously
conservatively consistent under fairly mild assumptions, even under certain forms
of dependence. Much stronger assumptions have to be made to show that
the P̂r(Hi = 0|Ti = ti ) estimated in Efron, Tibshirani, Storey and Tusher (2001) are
consistent and robust against dependence. Moreover, one can utilize the q-values
in either a frequentist or Bayesian framework.
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8. Discussion. False discovery rates are useful for multiple hypothesis testing
in certain settings. They are especially useful when one is testing many hypotheses
and wishes to have a low frequency of false positives among all the rejected
hypotheses. We studied the pFDR, an alternative to the FDR, showing several
interesting statistical properties. It has a simple Bayesian interpretation when
the tests are independent and follow a mixture distribution. This Bayesian
interpretation yields insight into the pFDR quantity. Moreover, it gives a multiple
testing measure that can be used by Bayesians or frequentists. We showed how
Efron, Tibshirani, Storey and Tusher (2001) used the results from this work to
connect their empirical Bayesian method to false discovery rates.

The q-value is a natural counterpart to the p-value, especially under the mix-
ture model. Since the q-value is concerned with the probability of a null hypothesis
given the statistic is significant, it is a multiple hypothesis testing quantity, whereas
the p-value is a single hypothesis testing quantity. It is hoped that the estimated
q-value will be reported with each statistic when one does multiple hypothesis
testing using the pFDR. The q-value was also shown to have several interesting
properties, including a special relationship to the p-value under certain assump-
tions.

The pFDR was shown to have a very simple form under the i.i.d. assumption.
Therefore, this quantity is quite tractable in practice. Even when dependence
exists, the pFDR comes quite close to the form under independence when the
number of tests gets large, as long as the dependence is weak enough to satisfy the
conditions of Theorem 4. We calculated one such example with normal random
variables. The pFDR and pFNR can be interpreted in the context of classification
theory. The Bayes rule can be used to minimize the Bayes error (which is a
weighted sum of the pFDR and the pFNR) or it can be used to minimize the
weighted average of the pFDR and pFNR.
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