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AUTOREGRESSIVE-AIDED PERIODOGRAM BOOTSTRAP
FOR TIME SERIES1

BY JENS-PETER KREISS AND EFSTATHIOS PAPARODITIS

Technische Universität Braunschweig and University of Cyprus

A bootstrap methodology for the periodogram of a stationary process is
proposed which is based on a combination of a time domain parametric and
a frequency domain nonparametric bootstrap. The parametric fit is used to
generate periodogram ordinates that imitate the essential features of the data
and the weak dependence structure of the periodogram while a nonparametric
(kernel-based) correction is applied in order to catch features not represented
by the parametric fit. The asymptotic theory developed shows validity of the
proposed bootstrap procedure for a large class of periodogram statistics. For
important classes of stochastic processes, validity of the new procedure is
also established for periodogram statistics not captured by existing frequency
domain bootstrap methods based on independent periodogram replicates.

1. Introduction. Consider a strictly stationary univariate process X = (Xt : t∈
Z = {0,±1,±2, . . .}) and assume that Xt has the representation

Xt = σ

∞∑
ν=−∞

ανεt−ν, t ∈ Z,(1.1)

where {αν}, α0 = 1, is an absolutely summable sequence, {εt} is a sequence
of independent, identically distributed random variables with mean 0 and unit
variance and σ is a positive constant. Assume that we have observations
X1,X2, . . . ,Xn of the process X at hand. Statistical inference in the frequency
domain is commonly based on the so-called periodogram In(λ),

In(λ) = 1

2πn

∣∣∣∣∣
n∑

t=1

Xte
−iλt

∣∣∣∣∣
2

, λ ∈ [0, π ],(1.2)

which is known to be an asymptotically unbiased but not consistent estimator
of the spectral density f of the process X. Because of (1.1) and assumptions
(A1) and (A2) below, f has the representation

f (λ) = σ 2

2π

∣∣∣∣∣
∞∑

ν=−∞
ανe

−iνλ

∣∣∣∣∣
2

, λ ∈ [0, π ].(1.3)
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Later we will require in some cases causality and invertibility of {Xt } which
narrows the class (1.1) a little bit. This ensures that the process {Xt } can be
represented as a one-sided infinite-order autoregressive process

Xt =
∞∑

ν=1

aνXt−ν + σ · εt , t ∈ Z,(1.4)

where {aν} is an absolute summable sequence.
Methods of bootstrapping the periodogram In(λ) have attracted considerable

attention in recent years. Compared to time domain bootstrap methods, the appeal
of frequency domain methods lies in the fact that for a huge class of stochastic
processes the observed series X1,X2, . . . ,Xn can be transformed into a set of
N = [n/2] nearly independent statistics, the periodogram ordinates at the so-called
Fourier frequencies λj = 2πj/n, j = 0,1,2, . . . ,N . Since for λj ∈ (0, π) the
mean and the variance of In(λj ) are approximately equal to f (λj ) and f 2(λj ),
respectively, bootstrap methods designed for a nonparametric regression setup with
independent errors can be potentially applied to bootstrap the periodogram.

For Gaussian processes, frequency domain bootstrap methods have been
considered, among others, by Nordgaard (1992) and Theiler, Paul and Rubin
(1994). Using the property that the relation between periodogram and spectral
density can be approximately described by means of a multiplicative regression
model, Hurvich and Zeger (1987) for Gaussian processes and Franke and Härdle
(1992) in a more general context, proposed a nonparametric residual-based
bootstrap method. The method uses an initial (nonparametric) estimate of the
spectral density f and i.i.d. resampling of (appropriately defined) frequency
domain residuals. Franke and Härdle established asymptotic validity of this
method for nonparametric (kernel) estimators of the spectral density while
Dahlhaus and Janas (1996) extended the validity of this bootstrap procedure to
the class of the so-called ratio statistics and to Whittle estimators. An alternative
idea to bootstrap the periodogram has been proposed by Paparoditis and Politis
(1999). Their method uses smoothness properties of the spectral density f and
the periodogram replicates are obtained by locally resampling from adjacent
periodogram ordinates. An overview of the different methods to bootstrap time
series in the frequency domain is given by Paparoditis (2002).

The independence of the bootstrap periodogram ordinates is an essential feature
of the bootstrap procedures mentioned above that restricts the classes of statistics
to which the existing methods can be successfully applied. Loosely speaking,
validity of the above nonparametric bootstrap procedures can be established
only for periodogram statistics for which the weak and asymptotically vanishing
dependence of the periodogram ordinates does not affect their large-sample
distribution. Nonparametric estimators and ratio statistics have this property;
compare Franke and Härdle (1992) and Dahlhaus and Janas (1996). However, there
are other interesting classes of periodogram statistics for which the dependencies



PERIODOGRAM BOOTSTRAP FOR TIME SERIES 1925

of the periodogram ordinates sum up to a nonvanishing contribution. For instance,
Dahlhaus (1985) investigated the following class of integrated periodogram
estimators:

M(In,ϕ) =
∫ π

0
ϕ(λ)In(λ) dλ(1.5)

for some appropriately defined functions ϕ on [0, π ]. The following are some
special cases covered by (1.5).

EXAMPLES. (i) ϕ(λ) = 2 cos(λh), h ∈ N0, leads to the empirical autocovari-
ance γ̂n(h), since∫ π

0
2 cos(λh)In(λ) dλ = 1

n

n−h∑
t=1

XtXt+h =: γ̂n(h),

which is an
√

n-consistent estimate of the true underlying autocovariance γ (h) =
EXtXt+h.

(ii) ϕ(λ) = 1[0,x](λ), x ∈ [0, π ], leads to the integrated periodogram

Fn(x) =
∫ x

0
In(λ) dλ,

which consistently estimates the spectral distribution function F(x) = ∫ x0 f (λ) dλ.

Again from Dahlhaus (1985), it is known that under suitable assumptions the
asymptotic distribution of

√
n
(
M(In,ϕ) − M(f,ϕ)

)= √
n

(∫ π

0
ϕ(λ)In(λ) dλ −

∫ π

0
ϕ(λ)f (λ) dλ

)
(1.6)

is Gaussian with mean 0 and variance given by

2π

∫ π

0
ϕ2(λ)f 2(λ) dλ + κ4

(∫ π

0
ϕ(λ)f (λ) dλ

)2

,(1.7)

where κ4 is the fourth cumulant of εt . Note that instead of (1.5) a discretized
version may also be used. Discretization of the integral is usually done along
the Fourier frequencies λj = 2πj/n, j = 0,1, . . . ,N. This leads to the following
discrete version of (1.6):

2π√
n

N∑
j=0

ϕ(λj )
{
In(λj ) − f (λj )

}
.(1.8)

Under some smoothness assumptions on ϕ, the difference between (1.6) and (1.8)
is asymptotically negligible.

A modification of the nonparametric residual-based frequency domain bootstrap
has been proposed by Janas and Dahlhaus (1994) in order to deal with the
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periodogram estimators (1.5). However, their method is based on a direct
estimation of the fourth-order cumulant of the error process which requires
nonparametric estimation of functionals of the spectral density of {Xt } and of the
squared process {X2

t }.
In this paper, we introduce a new bootstrap procedure for the periodogram

which is based on a combination of a parametric time domain and a nonparametric
frequency domain bootstrap. The essential feature of the new bootstrap proposal
is the following: for periodogram statistics for which the dependence of the
periodogram ordinates does not affect their asymptotic distribution, the bootstrap
procedure proposed “works” under the same set of process assumptions as those
required for the aforementioned fully nonparametric methods. Furthermore, for
stochastic processes possessing representation (1.4), our procedure also leads to
asymptotically valid approximations for more general classes of periodogram
statistics, including those given by (1.5).

It is mentioned above that in case we are interested in ratio statistics, that is,

R(In,ϕ) =
∫ π

0 ϕ(λ)In(λ) dλ∫ π
0 In(λ) dλ

,(1.9)

only, frequency domain bootstrap methods based on independent periodogram
replicates work asymptotically. The reason is that the asymptotic distribution of a
ratio statistic, which is again a normal distribution, does not depend on the fourth-
order cumulant of σε1. In this case, the asymptotic variance for ratio statistics is
equal to

2π

∫ π

0
ψ2f 2 dλ

/(∫
f dλ

)4

,(1.10)

where ψ = ϕ
∫

f −∫ ϕf [cf. Dahlhaus and Janas (1996), page 1939]. Nevertheless,
we think that the autoregressive-aided frequency domain bootstrap presented in
this paper may also outperform the finite-sample behavior of the existing frequency
domain bootstrap methods for ratio statistics because the dependence structure
of the periodogram ordinates is mimicked to a certain extent in our bootstrap
proposal. The frequency domain nonparametric residual-based bootstrap treats
the periodogram ordinates as independent random variables, which they are only
asymptotically. The same is also true for the local bootstrap of the periodogram
proposed by Paparoditis and Politis (1999).

To describe the basic idea behind our procedure, recall first that under certain
assumptions on the moment structure of the error process and the rate of decrease
of the coefficients {αν} in (1.1) [see assumptions (A1) and (A2) in Section 2], we
have

E
(
In(λj )

)= f (λj ) + O(n−1)(1.11)
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and

Cov
(
In(λj ), In(λk)

)
=


f 2(λj ) + O(n−1), for j = k,

n−1f (λj )f (λk)

(
Eε4

1

σ 4
− 3
)

+ o(n−1), for j �= k;
(1.12)

compare Brillinger (1981) and Janas and Dahlhaus (1994).
Consider next the autoregressive process X̃ = {X̃t : t ∈ Z} defined by

X̃t =
p∑

ν=1

aν(p)X̃t−ν + σ(p)̃εt ,(1.13)

where a(p) = (a1(p), a2(p), . . . , ap(p))′ = �(p)−1γ p , �(p) = (γ (i −
j))i,j=1,2,...,p , γ p = (γ (1), γ (2), . . . , γ (p))′ and ε̃t is an i.i.d. sequence with
mean 0 and unit variance. Let σ 2(p) = γ (0) − a(p)′�−1(p)a(p) and assume
that E( ε̃ 4

t ) < ∞. Note that �(p)−1 exists for every p ∈ N since γ (0) > 0 and
γ (h) → 0 as h → ∞; compare Brockwell and Davis (1991), Proposition 5.1.1.
Furthermore, a(p) is the vector of coefficients of the best autoregressive fit
in L2-distance; that is, the coefficients (a1(p), a2(p), . . . , ap(p))′ are defined
uniquely as the arg min of the norm E(Xt −∑p

ν=1 cνXt−ν)
2.

Let fAR(λ) = σ 2(p)|�AR(e−iλ)|2 be the spectral density of X̃, where �AR(z) =
1/(1 −∑p

ν=1 aν(p)zν) =: 1/Ap(z) and consider random variables Yn(λj ), j =
0,1,2, . . . ,N , defined by

Yn(λj ) = q(λj )Ĩn(λj ),(1.14)

where

q(λ) = f (λ)

fAR(λ)
(1.15)

and Ĩn(λ) = (2πn)−1|∑n
t=1 X̃t exp{−iλt}|2; that is, Ĩn(λ) is the periodogram

based on observations X̃1, X̃2, . . . , X̃n from X̃. Since the periodogram Ĩn(λ)

satisfies (1.11) and (1.12) with f replaced by fAR and E(ε4
1)/σ

4 replaced by
E( ε̃1)

4/σ 4(p), we get using (1.15) that

E
(
Yn(λj )

)= f (λj ) + O(n−1)(1.16)

and

Cov
(
Yn(λj ), Yn(λk)

)

=


f 2(λj ) + O(n−1), for j = k,

n−1f (λj )f (λk)

(
Eε̃ 4

1

σ 4(p)
− 3
)

+ o(n−1), for j �= k.

(1.17)
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Furthermore, and as for the ordinary periodogram ordinates, if f (λ) > 0 for all
λ ∈ [0, π ], then for a set of frequencies 0 < λ1 < λ2 < · · · < λm < π the random
vector (Yn(λ1), Yn(λ2), . . . , Yn(λm))′ is asymptotically distributed as a vector of
independent and exponentially distributed variables, the sth component of which
has mean f (λs) and variance f 2(λs).

Since the random variables Yn(λj ) resample closely the random behavior of
the periodogram ordinates In(λj ), the above results suggest the following: if the
(asymptotic) distribution of a statistic based on In(λj ) is not affected by the
dependence of the periodogram, then this distribution can be well approximated
by the distribution of the corresponding statistic based on the random variables
Yn(λj ). Furthermore, if Eε̃ 4

1 /σ 4(p) is close to Eε4
1/σ

4 such an approximation
will also be valid for periodogram statistics for which the dependence of the
periodogram ordinates affects the asymptotic distribution of interest. We expect
this to be true since in this case, and as (1.17) shows, the covariance of the
random variables Yn(λj ) also mimics correctly the covariance of the corresponding
periodogram ordinates In(λj ). An important case where this is true is the case
where the underlying process X belongs to the infinite-order autoregressive
class (1.4) and the order p of the autoregressive approximation increases (at an
appropriate rate) as the sample size n increases.

An implementation of the above idea for bootstrapping the periodogram is
presented in Section 3. We mention here, however, that the basic idea underlying
the bootstrap procedure proposed in this paper, which combines a parametric
autoregressive approximation of the process X with a nonparametric “correction”
function q to resample the stochastic behavior of the periodogram In(λ), can also
be applied using parametric classes of processes other than the autoregressive
one. For instance, we could also have considered a finite-order moving average
approximation of the process X and defined, in a similar way as in (1.15), an
appropriate correction function q , that is, q(λ) = f (λ)/fMA(λ), where fMA(·)
denotes the spectral density of the approximating moving average model. This
will make a restriction to the process class (1.4) for statistics like those given
in (1.5) superfluous. However, we rely in the following on the autoregressive
approximation because it is a computationally easier and faster technique which is
successful in many situations.

The paper is organized as follows. Section 2 states the technical assumptions
needed. Section 3 describes in detail the proposed bootstrap procedure. Section 4
deals with applications of this procedure in approximating the sampling behavior
of the so-called ratio statistics and of spectral means, while Section 5 deals with
nonparametric estimators in the frequency domain. In Section 6, some practical
issues are discussed and a small simulation example is presented. Proofs of the
main theorems as well as of some technical lemmas are deferred to Section 7.

2. Assumptions. In this section, we precisely state the conditions imposed on
the class of stochastic processes and on the class of periodogram-based statistics
considered.
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We assume that the underlying process X satisfies the following assumption:

(A1) {Xt ; t ∈ Z} is a real-valued stationary process

Xt = σ ·
∞∑

ν=−∞
ανεt−ν , α0 = 1,

where
∑∞

ν=−∞ |ν| |αν | < ∞.

For the error process {εt}, we assume that:

(A2) {εt ; t ∈ Z} constitutes a sequence of independent and identically distributed
random variables with Eεt = 0, Eε2

t = 1 and Eε4
t < ∞. Furthermore,

σ ∈ (0,∞) and κ4 denotes the fourth-order cumulant of εt .

The following condition on the function ϕ appearing in the definition of spectral
means M(In,ϕ) or ratio statistics R(In,ϕ) is common in the literature [cf. also
Dahlhaus (1985)]:

(A3) ϕ : [0, π ] → R is a bounded function of bounded variation. We assume that
ϕ is extended to the real line with ϕ(−λ) = ϕ(λ) and ϕ(λ + 2π) = ϕ(λ).

To obtain nonparametric kernel estimators of the spectral density f or of the
function q , the following basic assumptions (A4)–(A6) are imposed on the
smoothing kernel K and the smoothing bandwidths h and b, respectively. The
strengthening of the smoothness assumptions on f and K stated in (A7) and (A8)
is necessary in order to deal with the bias of bootstrap nonparametric estimators.

(A4) K denotes a nonnegative kernel function with compact support [−π,π ]. The
Fourier transform k of K is assumed to be a symmetric, continuous and
bounded function satisfying k(0) = 2π and

∫∞
−∞ k2(u) du < ∞.

Assumption (A4) implies that we have the following representation: K(x) =
(2π)−1 ∫∞−∞ k(u)e−iux du. Note that k(0) = 2π implies that (2π)−1 ×∫∞
−∞ K(u)du = 1, while the symmetry of k implies the same property for K .

(A5) h → 0 as n → ∞ such that nh → ∞;
(A6) b → 0 as n → ∞ such that nb → ∞;
(A7) the spectral density f of X is three times continuous differentiable on

[−π,π ];
(A8) K is three times continuously differentiable on [−π,π ].
In some applications, we will narrow the class described in (A1) a little bit by
requiring invertibility of the underlying process X. In particular, we will assume
that:

(B1) {Xt ; t ∈ Z} is a real-valued stationary autoregressive process of infinite order

Xt =
∞∑

ν=1

aνXt−ν + σεt ,
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where
∑∞

ν=1 ν|aν | < ∞ and 1 − ∑∞
ν=1 aνz

ν �= 0 for all complex z with
|z| ≤ 1.

Finally, for the class of processes described in (B1) and for some classes of
statistics to be considered later, the order p of the approximating autoregressive
process is allowed to increase with the sample size n and to be random. For
p = p(n), we will only require that

(B2) p ∈ [pmin(n),pmax(n)] where pmax(n) ≥ pmin(n) → ∞ as n → ∞ and
pmax(n)5 log(n)/n stays bounded.

Observe that the above assumption implies that the autoregressive order p may
be chosen data dependent, that is, p could be random and chosen according to an
order selection criterion like AIC or FPE; compare Section 6 for a discussion.

3. The bootstrap procedure. Based on the motivation given in the Introduc-
tion, the bootstrap procedure investigated in this paper can be described by the
following five steps:

STEP 1. Given the observations X1, . . . ,Xn, we fit an autoregressive process
of order p, where p may depend on the particular sample at hand. This leads to
estimated parameters â1(p), . . . , âp(p) and σ̂ (p), which are obtained from the
common Yule–Walker equations; compare Brockwell and Davis (1991). Consider
the estimated residuals

ε̂t = Xt −
p∑

ν=1

âν(p)Xt−ν, t = p + 1, . . . , n,

and denote by F̂ c
n the empirical distribution of the standardized quantities

ε̂p+1, . . . , ε̂n; that is, F̂ c
n has mean 0 and unit variance.

STEP 2. Generate bootstrap observations X+
1 ,X+

2 , . . . ,X+
n , according to the

following autoregressive model of order p:

X+
t =

p∑
ν=1

âν(p)X+
t−ν + σ̂ (p) · ε+

t ,

where (ε+
t ) constitutes a sequence of i.i.d. random variables with cumulative

distribution function F̂ c
n (conditionally on the given observations X1, . . . ,Xn).

The bootstrap process X+ = (X+
t : t ∈ Z) possesses the following spectral

density:

f̂AR(λ) = σ̂ 2(p)

2π

∣∣∣∣∣1 −
p∑

ν=1

âν(p)e−iνλ

∣∣∣∣∣
−2

, λ ∈ [0, π ].
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Note that because we make use of the Yule–Walker parameter estimators in
Step 1 it is always ensured that f̂AR is well defined; that is, the polynomial
1 −∑p

ν=1 âν(p)zν has no complex roots with magnitude less than or equal to 1.
Moreover, the bootstrap autocovariances γ +(h) = E+X+

1 X+
1+h, h = 0,1, . . . , p,

coincide with the empirical autocovariances γ̂n(h) of the underlying observations.
It should be noted that it is convenient, but not necessary, to work with
Yule–Walker parameter estimates. Any

√
n-consistent parameter estimates would

suffice.

STEP 3. Compute the periodogram of the bootstrap observations, that is,

I+
n (λ) = 1

2πn

∣∣∣∣∣
n∑

t=1

X+
t e−iλt

∣∣∣∣∣
2

, λ ∈ [0, π ].

STEP 4. Define the following nonparametric estimator q̂:

q̂(λ) = 1

n

N∑
j=−N

Kh(λ − λj )
In(λj )

f̂AR(λj )
for λ ∈ [0, π),

while, for λ = π , q̂(π) is defined as twice the quantity on the right-hand side of the
above equation taking into account that no Fourier frequencies greater than π exist.
Here, and above, the λj ’s denote the Fourier frequencies, K : [−π,π ] → [0,∞)

denotes a probability density (kernel), Kh(·) = h−1K(·/h) and h > 0 is the so-
called bandwidth; compare (A4) and (A5).

STEP 5. Finally, the bootstrap periodogram I ∗
n is defined as follows:

I ∗
n (λ) = q̂(λ)I+

n (λ), λ ∈ [0, π ].

Some remarks are now in order. Although the theory developed in the next
sections allows for a data-dependent order p to be as flexible as possible [cf.
assumption (B2)], a nonparametric correction in the final step is introduced
in order to catch data features, which can be or are not represented by the
autoregressive fit. This nonparametric correction is done via the function q̂ and
there are several reasons justifying its use. First of all, the nonparametric correction
in Steps 4 and 5 makes the proposed bootstrap procedure applicable to a more
general class of stochastic processes than the purely autoregressive bootstrap.
As will be seen in the next sections, this is in particular true for periodogram
statistics based on realizations of the process (1.1) which cannot be captured
by the purely autoregressive bootstrap, that is, by the corresponding statistics
based on the pseudo-periodogram values I+

n (λ). On the other hand, the parametric
approximation makes the new procedure more general than the nonparametric
residual-based bootstrap or the local periodogram bootstrap procedure. This is



1932 J.-P. KREISS AND E. PAPARODITIS

true since the new procedure leads to asymptotically valid approximations for
a larger class of periodogram statistics than the aforementioned procedures if
the underlying process belongs to the important infinite-order autoregressive
class (1.4). Finally, and as in the spirit of the so-called prewhitening idea in
nonparametric spectral density estimation [cf. Press and Tukey (1956)], we expect
an improved behavior of the spectral density estimator q̂ · f̂AR (implicitly) used
by our bootstrap procedure. If, for example, the true underlying spectral density
has some dominant peaks, then prewhitening leads to a considerable improvement
of the estimator. The reason is that an autoregressive fit is really able to catch
the peaks of the spectral density rather well and the curve In(λ)/f̂AR(λ) is much
smoother than In(λ) and thus much easier to estimate nonparametrically.

To elaborate on the differences between the nonparametric residual-based
bootstrap procedure of the periodogram and the autoregressive-aided periodogram
bootstrap proposed in this paper, recall first that, under the assumptions of the
paper and the definition of q , we have

In(λj ) = 2πq(λj )fAR(λj )In,ε(λj ) + Rn(λj ),(3.1)

where In,ε(λ) denotes the periodogram of the i.i.d. series ε1, ε2, . . . , εn and
the remainder Rn(λj ) satisfies maxλj ∈[0,π ] E(Rn(λj ))

2 = O(n−1); compare
Brockwell and Davis (1991), Theorem 10.3.1. Furthermore, by the fact that
I ∗
n (λ) = q̂(λ)I+

n (λ), a similar expression can be obtained for I ∗
n (λj ); that is, we

have

I ∗
n (λj ) = 2πq̂(λj )f̂AR(λj )In,ε+(λj ) + R∗

n(λj ),(3.2)

where In,ε+(λ) denotes the periodogram of the i.i.d. series ε+
1 , ε+

2 , . . . , ε+
n and

the remainder R∗
n(λj ) satisfies maxλj ∈[0,π ] E∗(R∗

n)2(λj ) = OP (n−1); compare
Lemma 7.3. Note that, like In,ε(λj ), the periodogram ordinates In,ε+(λj ) are
not independent. Finally, recall that the bootstrap periodogram ordinates of
the nonparametric residual-based periodogram bootstrap are given by I �

n(λj ) =
f̂h(λj )U

�
j , where f̂h(λ) = n−1∑N

j=−N Kh(λ − λj )In(λj ) and U�
j is an i.i.d. se-

quence based on the rescaled residuals Ûj = In(λj )/f̂ (λj ). Thus, the nonpara-
metric residual-based periodogram bootstrap differs from the autoregressive-aided
periodogram bootstrap not only by the independence of the generated bootstrap
periodogram ordinates I �

n(λj ) but also by the estimator of the spectral density f
used. In particular, in the autoregressive-aided periodogram bootstrap the kernel
estimator f̂h is replaced by the (implicitly used) autoregressive-aided spectral den-
sity estimator f̃ = q̂ · f̂AR. Note that (7.24) and (7.25) imply that, for every p ∈ N

fixed, the estimator f̃ is uniformly consistent, that is,

sup
λ∈[0,π ]

|f̃ (λ) − f (λ)| → 0

in probability.
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4. Spectral means and ratio statistics. The bootstrap analog of (1.6) now
reads as follows:

√
n
(
M(I ∗

n ,ϕ) − M(f̃ ,ϕ)
)= √

n

(∫ π

0
ϕ(λ)I ∗

n (λ) dλ−
∫ π

0
ϕ(λ)f̃ (λ) dλ

)
,(4.1)

where

f̃ (λ) = q̂(λ)f̂AR(λ).(4.2)

Alternatively, we may, as above, consider the following discretized bootstrap
statistic:

2π√
n

N∑
j=0

ϕ(λj )
(
I ∗
n (λj ) − f̃ (λj )

)
.(4.3)

We can now present the following theorem, which states that our bootstrap
procedure works.

THEOREM 4.1. (i) Assume (B1) and (B2) and (A2)–(A5). Then we have (in
probability)

L
[√

n
(
M(I ∗

n ,ϕ) − M(f̃ ,ϕ)
)∣∣X1, . . . ,Xn

]
⇒ N

(
0,2π

∫ π

0
ϕ2f 2 dλ + κ4

(∫ π

0
ϕf dλ

)2)
.

(ii) Assume (A1)–(A5). Then we have for all fixed p ∈ N that the same assertion
as in (i) holds true with κ4 replaced by κ4(p) = E(Xp −∑p

ν=1 aν(p)Xp−ν)
4/

σ (p)4 − 3.

From Dahlhaus and Janas (1996) and Paparoditis and Politis (1999), it is known
that the residual-based frequency domain bootstrap and the local bootstrap work
for the so-called ratio statistics [cf. (1.9)]. Thus, it is worth studying the behavior
of our autoregressive-aided frequency domain bootstrap for such statistics. From
Theorem 4.1(i), it is clear that under the assumptions of this part of the theorem
our bootstrap proposal works for ratio statistics. More interesting is the question
whether the autoregressive-aided frequency domain bootstrap works for ratio
statistics even if we keep the order p of the autoregressive fit fixed. To this end,
observe that we have as in Dahlhaus and Janas (1996)

√
n
(
R(I ∗

n ,ϕ) − R(f̃ , ϕ)
)= √

n

(∫ π
0 ϕ(λ)I ∗

n (λ) dλ∫ π
0 I ∗

n (λ) dλ
−
∫ π

0 ϕ(λ)f̃ (λ) dλ∫ π
0 f̃ (λ) dλ

)
(4.4)

=
√

n∫
f̃ (λ) dλ

∫
I ∗
n (λ) dλ

∫ π

0
ψ̃(λ)I ∗

n (λ) dλ,
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with ψ̃(λ) = ϕ(λ)
∫

f̃ (λ) dλ − ∫ ϕ(λ)f̃ (λ) dλ. Since
∫

ψ̃(λ)f̃ (λ) dλ = 0 [which
also implies that the limit

∫
ψf dλ is equal to 0 and therefore from Theorem 4.1(i)

that the asymptotic distribution does not depend on fourth-order cumulants], we
immediately obtain the following corollary.

COROLLARY 4.1. (i) Assume (B1) and (B2) and (A2)–(A5). Then we have
(in probability)

L
[√

n
(
R(I ∗

n ,ϕ) − R(f̃ , ϕ)
)∣∣X1, . . . ,Xn

]
⇒ N

(
0,2π

∫ π

0
ψ2(λ)f 2(λ) dλ

/(∫
f dλ

)4)
,

where ψ(λ) = ϕ(λ)
∫

f (u) du − ∫ ϕ(u)f (u) du.
(ii) Assume (A1)–(A5). Then we have for all fixed p ∈ N that the same assertion

as in (i) holds true.
Thus, in both cases the limiting normal distribution in the bootstrap world

coincides with the limiting distribution of ratio statistics [cf. (1.10)].

It is worth mentioning that the results of Theorem 4.1 and Corollary 4.1, which
state the asymptotic distributions of spectral means and ratio statistics in the
bootstrap world, do not need assumption (A2) [saying that the innovations (εt )

are i.i.d. random variables] in its full strength. Actually, it is possible to prove
similar central limit theorems under much weaker assumptions on the innovations.
For instance, it suffices to assume that the innovations (εt ) form a fourth-order
stationary and ergodic sequence. The reason we do not work under such an
assumption in this paper is that the variance of the asymptotic distribution of
spectral means given by formula (1.7) is valid for linear processes with an i.i.d.
error structure only and that we are interested in mimicking this distribution in the
bootstrap world.

5. Nonparametric estimators. An interesting class of consistent spectral
density estimators is given by

f̂ (λ) = 1

n

N∑
j=−N

Kb(λ − λj )In(λj ),(5.1)

where K(·) is a kernel satisfying (A4), Kb(·) = b−1K(·/b) and b = b(n) is
a smoothing bandwidth satisfying (A6). In the following, we are interested in
estimating the distribution of the statistic

√
nb
(
f̂ (λ) − f (λ)

)
.(5.2)

For this, the bootstrap statistic
√

nb
(
f̂ ∗(λ) − f̃ (λ)

)
(5.3)
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is used, where

f̂ ∗(λ) = 1

n

N∑
j=−N

Kb(λ − λj )I
∗
n (λj ).(5.4)

The following theorem shows that if the underlying process satisfies (1.1) then the
proposed bootstrap procedure works. For this and in order to metrize the distance
between distributions, we use in the following theorem Mallows’ d2 metric on
the space {P :P probability measure on (R,B),

∫ |x|2 dP < ∞}. This metric is
defined according to d2(P1,P2) = inf{E|Y1−Y2|2}1/2, where the infimum is taken
over all real-valued random variables (Y1, Y2) which have marginal distributions
P1 and P2, respectively; compare Bickel and Freedman (1981) for more details.

THEOREM 5.1. Suppose that assumptions (A1), (A2) and (A4)–(A8) are
satisfied. Then, for all fixed p ∈ N, the following are true:

(i) If nb5 → 0, then

d2
{
L
(√

nb
(
f̂ (λ) − f (λ)

))
,L
(√

nb
(
f̂ ∗(λ) − f̃ (λ)

)∣∣X1,X2, . . . ,Xn

)}→ 0

in probability.
(ii) If b ∼ n−1/5 and nh3 → ∞, then the same result as in (i) holds true.

To elaborate on the assumption nh3 → ∞ needed in the second part of the
above theorem, note that if nb5 → 1 then the bias E(f̂ (λ)) − f (λ) of the
nonparametric estimator (5.1) is asymptotically not negligible. It rather converges
to (1/4π)f ′′(λ)

∫
u2K(u)du as n → ∞; compare Priestley (1981). To provide a

valid approximation of the distribution of
√

nb(f̂ (λ) − f (λ)) in this case, too,
the bootstrap has to be able to estimate the bias term correctly. The condition
nh3 → ∞ implies that h tends to 0 more slowly than b; that is, q̂(λ) should be
somewhat smoother than the optimal (with respect to minimizing the mean square
error) kernel estimator of q . Therefore, the above assumption can be interpreted as
an oversmoothing assumption, which is common in applications of the bootstrap
to approximate the bias in nonparametric estimation; compare Romano (1988),
Franke and Härdle (1992) and Paparoditis and Politis (1999).

6. Practical aspects and numerical examples.

6.1. Some remarks on choosing the bootstrap parameters. Before proceeding
with the investigation of the finite-sample performance of our bootstrap procedure,
some remarks on the choice of the parameters p and h are in order. Here we restrict
our discussion to some rather heuristic ideas on how to choose these parameters,
which may be helpful as guidelines in applications. Clearly, more theoretical work
is required in order to make definite recommendations.
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Our considerations in the rest of the paper are based on the following
observation. For θ > 0 denote by Exp(θ) the exponential distribution with
parameter θ and recall that, for 0 < λ < π and f (λ) > 0,

d2
(
L
(
In(λ)
)
,Exp
(
f (λ)
))→ 0.

Furthermore, by standard arguments it can be shown that

d2
(
L
(
I ∗
n (λ)|X1,X2, . . . ,Xn

)
,Exp
(
f̃ (λ)
))→ 0

in probability. By the triangule inequality, we then observe that the quality of the
approximation of the distribution of In(λ) by the conditional distribution of I ∗

n (λ)

depends heavily on how close the estimator f̃ (λ) used in our bootstrap procedure
is to the unknown spectral density f (λ). A choice of p and h can, therefore, be
achieved by minimizing a measure of the stochastic distance of f̃ (λ) from f (λ).

Consider first the problem of choosing the autoregressive order p. If the
underlying process obeys the infinite-order autoregressive representation [cf.
assumption (B1)] with the error process satisfying (A2), then condition (B2)
imposed on the behavior of p covers quite general situations allowing, for instance,
p to be chosen data dependent. One way to choose p is according to the AIC
criterion, which minimizes the function AIC(p) = arg minp{σ̂ 2(p)(1 + 2p/n)}
over a range of values p = 1,2, . . . , pmax(n), where, for example, pmax(n) =
10 log10(n), which is the default value in S-PLUS. It is known that under certain
regularity conditions such a choice of p leads to an asymptotically optimal
autoregressive spectral estimator f̂AR with respect to minimizing the relative
squared error

∫ π
−π((f̂AR(λ)−f (λ))/f (λ))2 dλ; compare Shibata (1981). Choosing

p according to this criterion is covered by our assumption (B2).
The above discussion on the choice of p is, however, no more valid if the

underlying process does not obey an infinite-order autoregressive structure. In
this case, an appropriate autoregressive fit can rely on the idea of prewhitening.
Understanding such a prewhitening as a graphical device, the autoregressive order
p can be selected as the smallest p over the range 1,2, . . . , pmax(n) for which the
smoothed rescaled periodogram In(λj )/f̂AR(λj ), j = 1,2, . . . ,N , is closest to a
constant.

The second parameter to be selected is the smoothing parameter h used
to estimate the unknown function q . Given an autoregressive order p and
a corresponding autoregressive spectrum fAR, the choice of the smoothing
bandwidth h can be based on the following considerations. Recall that the cross-
validation criterion for choosing the bandwidth h in the spectral density estimation
proposed by Beltrão and Bloomfield (1987) [cf. also Robinson (1991)] is based
on a discretized version of Whittle’s approximation of minus twice the Gaussian
likelihood given by

N∑
j=1

{
log f (λj ) + In(λj )

f (λj )

}
.(6.1)
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Following Beltrão and Bloomfield (1987), we introduce the leave-one-out estimate
of q(λ):

q̂−j (λj ) = 1

n

∑
j∈Nj

Kh(λj − λs)
In(λj )

f̂AR(λj )
,(6.2)

where Nj = {s :−N ≤ s ≤ N and j − s �= ±j modN}. That is, q̂−j is the kernel
estimator of q when the j th periodogram ordinate is deleted. Now, substituting
q(λj )fAR(λj ) for f (λj ), q̂−j (λj ) for q(λj ) and f̂AR(λj ) for fAR(λj ) in (6.1)
leads, after ignoring the factor logfAR(λj ), to the function

CV(h) =
N∑

j=1

{
log q̂−j (λj ) + In(λj )/f̂AR(λj )

q̂−j (λj )

}
.(6.3)

The function (6.3) can now be used to assess the merits of different values of h

in estimating the function q for p ∈ N and f̂AR given. According to such a cross-
validation-type criterion, h can be selected as the minimizer of (6.3).

6.2. Numerical examples. In this section, we compare the performance of the
proposed autoregressive-aided periodogram bootstrap to that of the autoregressive
bootstrap and that of the nonparametric residual-based periodogram bootstrap by
means of simulations. Furthermore, we also include in our comparisons the block
bootstrap method. In order to make such a comparison, we choose in the following
a statistic for which all methods lead to asymptotically correct approximations.
In particular, we study and compare the performance of the four aforementioned
bootstrap methods in estimating the standard deviation σ1 of the first-order sample
autocorrelation ρ̂n(1) = γ̂n(1)/γ̂n(0), where γ̂n(h) = n−1∑n−h

t=1 (Xt − X)(Xt+h −
X ) is the sample autocovariance at lag h and X = n−1∑n

t=1 Xt .
Realizations of length n = 50 and n = 400 from the model

Xt = εt + θεt−1,

with θ = 0.95 and εt ∼ N(0,1) have been considered. To estimate the exact
standard deviation of ρ̂n(1), 10,000 replications have been used while the bootstrap
approximations are based on B = 300 bootstrap replications. In particular, the
performance of the autoregressive-based and autoregressive-aided method has
been studied for three different choices of the autoregressive order p and a
choice of p based on the AIC criterion. Similarly, the nonparametric residual-
based frequency domain bootstrap has been applied using three different choices
of the smoothing parameter h and a choice of h based on the cross-validation
criterion obtained by minimizing (6.3) after replacing the rescaled periodogram
Ĩn(λ) appearing in (6.2) and (6.3) by the ordinary periodogram In(λ). Recall that
in the nonparametric residual-based periodogram bootstrap, h is the bandwidth
used to obtain f̂h which is a kernel estimator of f . The cross-validation criterion
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has also been applied to choose the smoothing bandwidth h used to estimate the
nonparametric correction function q(·) of the autoregressive-aided periodogram
bootstrap. In all cases, the Bartlett–Priestley kernel K has been used. Finally, the
block bootstrap procedure has been applied for four different choices of the block
size parameter l.

The results are summarized in Table 1, where the mean value, the standard
deviation and the mean square error of the four bootstrap approximations are
reported as sample moments over 200 simulations. A more detailed picture of the
behavior of the bootstrap estimators is given in Figure 1 where some boxplots of
the distributions of the different bootstrap approximations for the cases n = 50 and
n = 400 are presented.

As the entries in Table 1 show, the results of the autoregressive-aided
periodogram bootstrap compare favorably with those of the other three methods.
In particular and compared to the nonparametric residual-based periodogram
bootstrap, we observe an overall decrease in the mean square error of the
new periodogram bootstrap estimator. The table also shows a decrease in the
variability of the mean square error of the autoregressive-aided periodogram
bootstrap compared to that of the purely autoregressive bootstrap over the different
choices of the bootstrap parameters, that is, the autoregressive order p. As this
table confirms, this decrease is mainly due to a reduction in the bias of the
bootstrap estimator which is caused by the nonparametric correction applied. The

FIG. 1. Boxplots of the bootstrap distributions with target indicated by the horizontal dashed
line. Left panel: n = 50, ARB3, autoregressive bootstrap with p = 3; NPB0.3, nonparametric
residual-based periodogram bootstrap with h = 0.3; ARAP3, autoregressive-aided periodogram
bootstrap with p = 3; BB5, block bootstrap with l = 5. Right panel: n = 400, ARB5, autore-
gressive bootstrap with p = 5; NPB0.1, nonparametric residual-based periodogram bootstrap with
h = 0.1; ARAP5, autoregressive-aided periodogram bootstrap with p = 5; BB11, block bootstrap
with l = 11.
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results based on the new bootstrap procedure also seem to be less sensitive to
the choice of the corresponding bootstrap parameters, which is probably due to
the frequency domain nonparametric correction via the function q̂ . The effect
of this nonparametric correction is clearly seen in comparing the results of the
autoregressive-aided periodogram bootstrap to those of the purely autoregressive
bootstrap for the case p = 1 and n = 50 or p = 2 and n = 400. Finally, the block
bootstrap estimator suffers from a larger mean square error compared to the other
three bootstrap-based estimators.

7. Proofs and technical lemmas. Let us collect some properties of the
process X+; compare Section 3, Step 2. The process X+ possesses for all p ∈ N

the following moving average representation:

X+
t = σ̂ (p)

∞∑
ν=0

α̂ν(p)ε+
t−ν, t ∈ Z.

The coefficients [α̂ν(p) :ν ∈ N0] can be computed from [α̂0(p) = 1]:(
1 −

p∑
ν=1

âν(p)zν

)−1

= 1 +
∞∑

ν=1

α̂ν(p)zν for all |z| ≤ 1.(7.1)

Recall that the Yule–Walker estimators [âν(p) :ν = 1, . . . , p] always ensure
invertibility of the fitted autoregressive model. Using Theorem 2.1 Hannan and
Kavalieris (1986), we obtain under assumption (A1) and (A2) from Cauchy’s
inequality for holomorphic functions

|α̂ν(p) − αν(p)| ≤ p

(1 + 1/p)ν
OP

(√
log(n)

n

)
,(7.2)

uniformly in ν ∈ N and p ≤ pmax(n). Here [αν(p) :ν ∈ N] is exactly defined as
[α̂ν(p) :ν ∈ N]; compare (7.1), with âν(p) replaced by aν(p), ν = 1, . . . , p. For
details, we refer to Kreiss (1999), Section 8.

Baxter (1962), Theorem 2.2, and a standard Banach algebra argument lead
under assumption (B1) for all large p to

∞∑
ν=0

|αν(p) − αν | ≤ OP

( ∞∑
ν=p

|aν |
)

= oP (1).(7.3)

Equations (7.2) and (7.3) imply for the autocovariances

γ +(k) = E+X+
t X+

t+k =
∞∑

ν=0

α̂ν+k(p)α̂ν(p)σ̂ 2(p), k ∈ N0,(7.4)

of the process (X+
t ) that

n∑
k=0

|γ +(k)| = OP (1),(7.5)
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which, in turn, leads to

1

n

n∑
k=0

k|γ +(k)| = oP (1)(7.6)

by Kronecker’s lemma; compare Bauer (1974), Lemma 61.1.
In the case that we keep the autoregressive order p fixed, then the bound in (7.2)

is OP (n−1/2) and (7.4)–(7.6) are valid as stated.

LEMMA 7.1. (i) Assume (B1), (B2), (A2), (A4) and (A5). Then we have, for
all λ ∈ [0, π ],

q̂(λ) → 1 in probability.

Moreover, ∫ π

0
|q̂(λ) − 1|dλ → 0 in probability.

(ii) Assume (A1), (A2), (A4) and (A5). Then we have, for all fixed p ∈ N and
all λ ∈ [0, π ],

q̂(λ) → q(λ) := f (λ)

fAR(λ)
in probability

and ∫ π

0
|q̂(λ) − q(λ)|dλ → 0 in probability.

PROOF. Since the arguments are rather similar to those given for the
consistency of the smoothed periodogram, we only give a sketch for the more
complicated part (i) and indicate the modifications necessary for part (ii).

From Hannan and Kavalieris [(1986), Theorem 2.1] and Baxter [(1962), Theo-
rem 2.2], we obtain [uniformly in p ≤ pmax(n)] sup0≤λ≤π |f̂ −1

AR (λ) − f −1(λ)| =
oP (1). To see this, recall the representations f̂ −1

AR (λ) = σ̂ 2(p)|1 −∑p
ν=1 âν(p) ×

exp{−iνλ}|2/2π and f −1(λ) = σ 2|1 −∑∞
ν=1 aν exp{−iνλ}|2/2π .

Since f ′ is bounded because of
∑

ν ν|aν | < ∞ and f −1 is bounded because of
the invertibility assumption of the underlying autoregressive model [cf. (B1)], we
obtain

q̂(λ) = 1

nfAR(λ)

N∑
j=−N

Kh(λ − λj )In(λj ) + oP (1) ,

where the remainder term is uniform in λ. Finally, since our assumptions
imply smoothness of the spectral density f , we have, for all λ ∈ [0, π ],
n−1∑N

j=−N Kh(λ − λj )In(λj ) →n→∞ f (λ) in probability.
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To see the second assertion of (i), it suffices to show that
∫ π

0 n−1|∑N
j=−N Kh ×

(λ − λj )(In(λj ) − EIn(λj ))|dλ converges to 0 in probability, because EIn(λ)

converges under our assumptions uniformly to f (λ); compare Brockwell and
Davis (1991), Proposition 10.3.1. The expectation of the square of this last
expression is bounded through∫ π

0

1

n2

N∑
j=−N

K2
h(λ − λj )Var In(λj ) dλ

+
∫ π

0

1

n2

N∑
j,k=−N,k �=j

Kh(λ − λj )Kh(λ − λk)Cov
(
In(λj ), In(λk)

)
dλ

= 1

n2h2
O(nh) + 1

n2h2
O(nh2) = o(1); compare (1.2).

For a proof of (ii), replace f by fAR. �

LEMMA 7.2. (i) Assume (B1), (B2) and (A2). Then we have
∑∞

k=0

√
k ×

|α̂k(p)| < ∞.
(ii) Assume (A1) and (A2) and let p ∈ N be fixed. Let ã = (ã1(p), ã2(p), . . . ,

ãp(p))′ be an
√

n-consistent estimator of a(p) which satisfies 1 −∑p
ν=1 ãν(p) ×

zν �= 0 for |z| ≤ 1. Then
∑∞

k=1 kδ|α̃k(p)| = OP (1) for any δ ∈ (0,∞).

PROOF. From (7.2), we have that

∞∑
k=0

√
k|α̂k(p) − αk(p)| ≤

∞∑
k=0

√
k(1 + 1/p)−kOP

(√
p2 log(n)/n

)
≤ OP

(√
p5 log(n)/n

)= OP (1),

uniformly in p ≤ pmax(n). Thus, it suffices to consider
∑∞

k=0

√
k|αk(p) − αk| and∑∞

k=0

√
k|αk|. The fact that

∑∞
k=0

√
k|αk| < ∞ follows from (B1) and Hannan

and Kavalieris (1986). In order to see that the first series is convergent, we obtain
exactly along the lines of the proof of Lemma 8.2 in Kreiss (1999) that, for all
p large enough,

∑∞
k=0

√
k|αk(p) − αk| ≤ C

∑∞
k=0

√
k|ak(p) − ak|. From Baxter

(1962), we finally obtain that, again for all p large enough,
∑∞

k=0

√
k|ak(p)−ak| ≤

C′∑∞
k=p

√
k|ak| = oP (1), since

∑∞
k=0

√
k|ak| < ∞. This implies (i).

To see (ii), recall that 1 − ∑p
k=1 ak(p)zk �= 0 for z ≤ 1. More exactly, for

each fixed p, ε > 0 exists such that the power series (1 −∑p
k=1 ak(p)zk)−1 =

1 +∑∞
k=1 αk(p)zk converges for |z| < 1 + ε. This implies αk(p)(1 + ε/2)k → 0

as k → ∞; that is, there exist positive constants C > 0 and ρ ∈ (0,1) such
that |αk(p)| ≤ Cρk for k = 1,2, . . . . Now,

∑∞
k=1 kδ|α̃k(p)| ≤∑∞

k=1 kδ|αk(p)| +
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k=1 kδ|α̃k(p) − αk(p)|. Use Lemma 2.2 of Kreiss and Franke (1992) to bound

the difference |α̃k(p) − αk(p)| and get that, for some η > 0,
∞∑

k=1

kδ|αk(p)| +
∞∑

k=1

kδ|α̃k(p) − αk(p)|

≤ O(1) +
∞∑

k=1

kδ(1 + η)−kOP (n−1/2) = OP (1).

Note that the last equality follows using the fact that the OP (n−1/2) term is
uniformly in k. �

PROOF OF THEOREM 4.1. We prove part (i) only. First of all, we show that
we can restrict consideration to

√
n

∫ π

0
ϕ(λ)
(
I+
n (λ) − E+I+

n (λ)
)
q̂(λ) dλ.(7.7)

To see this, observe that I ∗
n (λ) = I+

n (λ)q̂(λ) and that, for all λ ∈ [0, π ], I+
n (λ) =

(γ̂ +
n (0) + 2

∑n−1
k=1 γ̂ +

n (k) cos(λk))/(2π), where γ̂ +
n (k) = 1

n

∑n−k
t=1 X+

t X+
t+k, k =

0,1,2, . . . , n − 1.
We have E+γ̂ +

n (k) = (1 − k
n
)E+X+

1 X+
1+k = (1 − k

n
)γ +(k), k = 0,1, . . . , n− 1,

f̂AR(λ) = (γ +(0) + 2
∑∞

k=1 γ +(k) cos(λk))/(2π). Thus, in order to see that
the difference between expressions (4.1) and (7.7) is oP (1) it suffices to show
(7.8) and (7.9):

√
n

∞∑
k=n

γ +(k)

∫ π

0
ϕ(λ)q̂(λ) cos(λk) dλ = oP (1),(7.8)

n−1∑
k=1

k√
n
γ +(k)

∫ π

0
ϕ(λ)q̂(λ) cos(λk) dλ = oP (1).(7.9)

The boundedness of
∑n

k=1

√
k|γ +(k)| in probability, Lemma 7.1 and the absolute

summability of the Fourier coefficients of ϕ imply (7.8) and (7.9).
Now, (7.7) can be rewritten as

Zn := 1

2π

(√
n
(
γ̂ +
n (k) − E+γ̂ +

n (k)
)

:k = 0,1, . . . , n − 1
)

×
(∫ π

0
ϕ(λ)q̂(λ) dλ,2

∫ π

0
ϕ(λ)q̂(λ) cos(λk) dλ :k = 1, . . . , n − 1

)′

+ oP (1).

(7.10)

From Kreiss (1999), Theorem 3.1, for each fixed M ∈ N, we have that

L
(√

n
(
γ̂ +
n (k) − E+γ +

n (k)
)

:k = 0, . . . ,M
∣∣ X1, . . . ,Xn

)⇒ N (0,VM),(7.11)
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where

VM =
[
(Eε4

1 − 3)γ (i)γ (j)

+
∞∑

k=−∞

(
γ (k)γ (k − i + j) + γ (k + j)γ (k − i)

)]M
i,j=0

.

Because of Lemma 7.1, we can replace q̂(·) in (7.10) by its limit 1. Denote by Z′
n

the quantity which is defined as Zn, see (7.10), with this replacement. For M ∈ N,
decompose Z′

n into the following two quantities:

Z′
n,M := 1

2π

(√
n
(
γ̂ +
n (k) − E+γ̂ +

n (k)
)

:k = 0,1, . . . ,M
)

(7.12)
×
(∫ π

0
ϕ(λ) dλ,2

∫ π

0
ϕ(λ) cos(λk) dλ :k = 1, . . . ,M

)′

and

Z′
n − Z′

n,M := 1

π

(√
n
(
γ̂ +
n (k) − E+γ̂ +

n (k)
)

:k = M + 1, . . . , n − 1
)

(7.13)
×
(∫ π

0
ϕ(λ) cos(λk) dλ :k = M + 1, . . . , n − 1

)′
.

To obtain the asymptotic normality stated in the theorem, we have to show [cf.
Brockwell and Davis (1991), Proposition 6.3.9]

Z′
n,M ⇒ N (0, τ 2

M) for all M ∈ N,(7.14)

τ 2
M → τ 2 as M → ∞(7.15)

and

lim
M→∞ lim sup

n→∞
P +{|Z′

n − Z′
n,M | > ε

}= 0 for all ε > 0.(7.16)

The result (7.14) is a direct consequence of (7.11). And (7.16) can be seen
as follows: E+|Z′

n − Z′
n,M | ≤∑n−1

k=M+1(nVar+(γ̂ +
n (k)))1/2| ∫ π0 ϕ(λ) cos(λk) dλ|.

Since nVar+(γ̂ +
n (k)) is bounded (in probability) uniformly in k, we obtain

lim supn→∞ E+|Z′
n − Z′

n,M | = oP (1), as M → ∞, because of the absolute
summability of the Fourier coefficients of ϕ.

It remains to show (7.15). In a first step, it is easy to see that

lim
M→∞ τ 2

M = 1

4π2
κ4

( ∞∑
r=0

ϕ̂rγ (r)

)2

+ 1

4π2

∞∑
k=−∞

∞∑
r,s=0

ϕ̂r ϕ̂s

{
γ (k)γ (k − r + s) + γ (k + s)γ (k − r)

}
,
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where κ4 = Eε4
1 − 3, ϕ̂0 = ∫ π0 ϕ(λ) dλ and ϕ̂r = 2

∫ π
0 ϕ(λ) cos(rλ) dλ, r ≥ 1. This

concludes the proof of Theorem 4.1, since∫ π

0
ϕ(λ)f (λ) dλ =

∫ π

0
ϕ(λ)

1

2π

{
γ (0) + 2

∞∑
r=1

γ (r) cos(λr)

}
dλ

= 1

2π

∞∑
r=0

ϕ̂rγ (r)

and

2π

∫ π

0
ϕ2(λ)f 2(λ) dλ

= 1

π2

∞∑
r,s=0

ϕ̂r ϕ̂s

∫ π

0
cos(rλ) cos(sλ)

{
γ (0) + 2

∞∑
k=1

γ (k) cos(kλ)

}
f (λ) dλ

= 1

4π2

∞∑
r,s=0

∞∑
k=−∞

ϕ̂r ϕ̂s

{
γ (k)γ (k − r + s) + γ (k)γ (k + r + s)

}

= 1

4π2

∞∑
r,s=0

∞∑
k=−∞

ϕ̂r ϕ̂s

{
γ (k)γ (k − r + s) + γ (k + s)γ (k − r)

}
,

where, for the last equality, we have used the following addition formula of
trigonometric functions: cosa cosb cosc = 1

4 (cos(a + b − c) + cos(b + c − a) +
cos(c + a − b) + cos(a + b + c)). �

LEMMA 7.3. Assume (A1) and (A2). Then the periodogram I+
n (λj ) defined

in Step 3 of the bootstrap algorithm satisfies

I+
n (λj ) = σ̂ 2(p)

∣∣∣∣∣1 +
p∑

ν=1

α̂ν(p)e−iλj ν

∣∣∣∣∣
2

In,ε+(λj ) + R+
n (λj ),(7.17)

where maxλj∈[0,π ] E+(R+
n (λj ))

2 = OP (n−1).

PROOF. Let λ = λj . Following the derivation of Brockwell and Davis [(1991),
page 346], we get for the discrete Fourier transform J+

n (λ) of {X+
t } that

J+
n (λ) = σ(p)

(
1 +

∞∑
ν=1

α̂ν(p)e−iλj ν

)
Jε+(λ) + σ(p)Y+

n (λ),(7.18)

where

Jε+(λ) = n−1/2
n∑

t=1

ε+
t e−iλt ,

Y+
n (λ) = n−1/2

∞∑
ν=0

α̂ν(p)e−λνU+
n,ν(λ)
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and

U+
n,ν(λ) =

n−ν∑
t=1−ν

ε+
t e−λt −

n∑
t=1

ε+
t e−λt .

Since I+
n (λ) = (2π)−1|J+

n (λ)|2, we have obtained expression (7.17) and the
remainder R+

n (λ) is given by

R+
n (λ) = σ̂ 2(p)

(
1 +

∞∑
ν=1

α̂ν(p)e−iλj ν

)
Jε+(λ)Y+

n (−λ)

(7.19)

+ σ̂ 2(p)

(
1 +

∞∑
ν=1

α̂ν(p)eiλj ν

)
Jε+(−λ)Y+

n (λ) + σ̂ 2(p)|Y+
n (λ)|2.

Since, for p fixed, â(p) is an
√

n-consistent estimator of a(p) and E+(ε+
1 )2 = 1,

we get, using Lemma 7.2 and the bound E+|U+
n,ν |4 ≤ 2|ν|E∗(ε+

1 )4 + 12|ν|2, that

E+|Y+
n (λ)|4 ≤ n−2

( ∞∑
ν=0

|α̂ν(p)|(2|ν|E∗(ε+
1 )4 + 12|ν|2)1/4

)4

(7.20)

= OP (n−2).

Using expression (7.19), the assertion that maxλj ∈[0,π ] E+(R+
n (λj ))

2 = OP (n−1)

follows then by the Cauchy–Schwarz inequality and taking into account
Lemma 7.2, the fact that E+|Jε+(λ)|2 = (2π)−1 and the bound (7.20). �

To prove Theorem 5.1, we use the decomposition√
nb
(
f̂ ∗(λ) − f̃ (λ)

)
=
√

b

n

N∑
j=−N

Kb(λ − λj )q̂(λj )
(
I+
n (λj ) − E+(I+

n (λj )
))

(7.21)

+ √
nb

(
1

n

N∑
j=−N

Kb(λ − λj )q̂(λj )E
+(I+

n (λj )
)− q̂(λ)f̂AR(λ)

)

= L+
n (λ) + B+

n (λ)

and an obvious notation for L+
n (λ) and B+

n (λ). The following two lemmas can
then be established.

LEMMA 7.4. Assume (A1), (A2) and (A4)–(A6) and let p ∈ N be fixed and
λ ∈ [0, π ]. If n → ∞, then

d2

(
L
(√

nb
(
f̂ (λ) − E

(
f̂ (λ)
))

,L
(
L+

n (λ) | X1,X2, . . . ,Xn

)))→ 0

in probability.
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PROOF. Since convergence in the d2 metric is equivalent to weak convergence
and convergence of the first two moments [cf. Bickel and Freedman (1981),
Lemma 8.3], it suffices to show that

E+(L+
n (λ)
)2 → τ 2(λ) := (1 + δ0,π )f 2(λ)

1

2π

∫
K2(x) dx(7.22)

and

L
(
L+

n (λ) | X1,X2, . . . ,Xn

)⇒ N
(
0, τ 2(λ)

)
(7.23)

in probability, where δ0,π = 1 if λ = 0 or π and δ0,π = 0 otherwise. Recall
that nb Var(f̂ (λ)) → τ 2(λ) and

√
nb(f̂ (λ) − Ef̂ (λ)) ⇒ N(0, τ 2(λ)); compare

Anderson (1971) for a different but asymptotically equivalent estimator.
Consider first (7.22). We have

E+(L+
n (λ)
)2 = 4π2 b

n

N∑
j=−N

K2
b (λ − λj )q̂

2(λj )f̂
2

AR(λj )E
+(In,ε+(λj ) − 1

)2
+ OP (b)

= b

2π

∫
K2

b (λ − x)q̂2(x)f̂ 2
AR(x) dx + OP (b)

→ q2(λ)f 2
AR(λ)

1

2π

∫
K2(x) dx

in probability, by the continuity of the functions q and fAR and the uniform
convergences

sup
λ∈[0,π ]

|f̂AR(λ) − fAR(λ)| → 0(7.24)

and

sup
λ∈[0,π ]

|q̂(λ) − q(λ)| → 0(7.25)

in probability. Equation (7.24) follows using a standard Taylor series argument, the
continuity of the derivative and the fact that, for p fixed, â(p) is an

√
n-consistent

estimator of a(p). Equation (7.25) follows because by the arguments used in the
proof of Lemma 7.1 we have q̂(λ) = n−1∑N

j=−N Kh(λ − λj )In(λj )/fAR(λj ) +
OP (n−1/2), where the OP (n−1/2) term is uniform in λ ∈ [0, π ]. The uniform
consistency of the first term on the right-hand side of the last equation as an
estimator of q follows then by standard arguments; compare, for instance, the proof
of Theorem A1 of Franke and Härdle (1992).

We next show (7.23). For this, note first that, by Lemma 7.3,√
b

n

N∑
j=−N

Kb(λ − λj )q̂(λj )R
+
n (λj ) = OP

(√
b
)
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and, therefore,

L+
n (λ) =

√
b

n

N∑
j=−N

Kb(λ − λj )f̃ (λj )
(
In,ε+(λj ) − 1

)+ oP (1).(7.26)

Now, instead of the first term on the right-hand side of the above equality, we
consider the asymptotically equivalent statistic

√
nb

1

2π

∫ π

−π
Kb(λ − x)f̃ (x)

(
Iε+(x) − 1

)
dx,(7.27)

which appears by approximating the Riemann sum in (7.26) by the corresponding
integral; compare Brillinger (1981), Theorem 5.9.1. We then have

√
nb

1

2π

∫ π

−π
Kb(λ − x)f̃ (x)

(
Iε+(x) − 1

)
dx

= √
nb

1

2π

∫ π

−π
K(u)f̃ (λ − ub)

(
Iε+(λ − ub) − 1

)
du

= f̃ (λ)
√

nb
1

2π

∫ π

−π
K(u)
(
Iε+(λ − ub) − 1

)
du + D+

n (λ),

where

D+
n (λ) = √

nb
1

2π

∫ π

−π
K(u)
(
f̃ (λ − ub) − f̃ (λ)

)(
Iε+(λ − ub) − 1

)
du.

Straightforward calculations yield that E+(D+
n (λ)) = 0 and E+(D+

n (λ))2 =
OP (|f̃ (λ − ub) − f̃ (λ)|2) = OP (b2), where the last assertion follows by the
uniform convergence of f̃ and the Lipschitz continuity of f . Thus, it suffices to
consider the distribution of the asymptotically equivalent statistic

f̃ (λ)
√

nb
1

2π

∫ π

−π
K(u)
(
Iε+(λ − ub) − 1

)
du = f̃ (λ)L+

1,n(λ),(7.28)

with an obvious notation for L+
1,n(λ). After substituting in L+

1,n(λ) the expression

Iε+(λ) = (2π)−1∑n−1
s=−n+1 γ̂ε+(s) cos(sλ), where γ̂ε+(s) = n−1∑n−s

t=1 ε+
t ε+

t+s , we
get

L+
1,n(λ) = 1

π

√
nb

n−1∑
s=1

(
1

2π

∫ π

−π
K(u) cos

(
s(λ − ub)

)
du

)
γ̂ε+(s)

+ √
nb
(
γ̂ε+(0) − 1

) 1

2π

∫ π

−π
K(u)du

= 1

π

√
nb

n−1∑
s=1

(
1

2π

∫ π

−π
K(u) cos(sub) du

)
cos(sλ)γ̂ε+(s) + OP

(√
b
)

= 1

2π2

√
nb

n−1∑
s=1

k(sb) cos(sλ)γ̂ε+(s) + oP (1),
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where the last equality follows by (A4). Ignoring the factor (2π2)−1, using the
definition mn = [1/b] and substituting for γ̂ε+(s), the first term on the right-hand
side of the last equality above becomes√

n

mn

n−1∑
s=1

k

(
s

mn

)
cos(sλ)γ̂ε+(s)

= 1√
nmn

mn(1+C)∑
s=1

n−s∑
t=1

k

(
s

mn

)
cos(sλ)ε+

t ε+
t+s

+ 1√
nmn

n−1∑
s=mn(1+C)+1

n−s∑
t=1

k

(
s

mn

)
cos(sλ)ε+

t ε+
t+s

= L̃+
n + R̃+

n ,

with an obvious notation for L̃+
n and R̃+

n . Here C > 0 is a constant to be specified
later. Using the independence of the ε+

t ’s and E+(ε+
t )2 = 1, we get for any δ > 0

that

E+(R̃+
n )2

= 1

nmn

n−1∑
s1,s2=mn(1+C)+1

n−s∑
t1,t2=1

2∏
i=1

k

(
si

mn

)
cos(siλ)E+(ε+

t1
ε+
t1+s1

ε+
t2

ε+
t2+s2

)

= 1

nmn

n−1∑
s=mn(1+C)+1

n−s∑
t=1

k2
(

s

mn

)
cos2(sλ)

≤ 1

mn

n−mn(1+C)−1∑
j=1

k2
(

mn(1 + C) + j

mn

)

→
∫ ∞

1+C
k2(x) dx < δ

for C sufficiently large and because of (A4). Consider next the term L̃+
n and verify

by straightforward calculations that we can replace L̃+
n by

L
+
n =

n−1∑
s=1

W+
t,n,

where

W+
t,n = 1√

nmn

mn(1+C)∑
s=1

k

(
s

mn

)
cos(sλ)ε+

t ε+
t+s .
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To see why, note that for C sufficiently large,

E+
(

1√
nmn

n−1∑
s=mn(1+C)+1

k

(
s

mn

)
cos(sλ)

n−1∑
t=n−s+1

ε+
t ε+

t+s

)2

≤ 1

mn

n−1∑
s=mn(1+C)+1

k2
(

s

mn

)

→
∫ ∞

1+C
k2(x) dx < δ.

Note that E+(W+
t,n) = 0 and that mn(1 + C)/n → 0 as n → ∞. By Theorem 4

of Rosenblatt [(1985), page 63], to establish asymptotic normality of
∑n−1

t=1 W+
t,n it

suffices to show that

E+
∣∣∣∣∣
n−1∑
t=1

W+
t,n

∣∣∣∣∣
4

= O(1)(7.29)

as n → ∞. For this we have

E+
∣∣∣∣∣
n−1∑
t=1

W+
t,n

∣∣∣∣∣
4

(7.30) = 1

n2m2
n

∑
t1,t2,t3,t4

∑
s1,s2,s3,s4

4∏
i=1

k

(
si

mn

)
cos(siλ)

× E+(ε+
t1

ε+
t1+s1

ε+
t2

ε+
t2+s2

ε+
t3

ε+
t3+s3

ε+
t4

ε+
t4+s4

)
.

Evaluation of the above expectation shows that (7.29) is valid. Note that in
evaluating (7.30) the cases with the largest contributions are those consisting of
pairs of the ε+

t ’s. Such pairs occur, for instance, if ti = tj and si = sj for i �= j and
i, j ∈ {1,2,3,4}. In this case and because E+(ε+

t )2 = 1, we get the sum

(
E+(ε+

t )2)4 1

n2m2
n

n−1∑
t1=1

n−1∑
t2=1

mn(1+C)∑
s1=1

mn(1+C)∑
s2=1

k2
(

s1

mn

)
k2
(

s2

mn

)
cos2(s1λ) cos2(s2λ)

≤ 1

m2
n

n∑
s1=1

n∑
s2=1

k2
(

s1

mn

)
k2
(

s2

mn

)

→
(∫ ∞

0
k2(x) dx

)2

= O(1). �
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LEMMA 7.5. Assume (A1), (A2) and (A4)–(A8) and let p ∈ N be fixed. If
b ∼ n−1/5 and nh3 → ∞ as n → ∞, then

B+
n (λ) → 1

4π
f ′′(λ)

∫
u2K(u)du

in probability.

PROOF. Using Lemma 7.3 and the fact that |n−1∑n
j=1 Kb(λ − λj ) − 1| =

O(n−1b−1), we get

B+
n (λ) =

√
b

n

N∑
j=−N

Kb(λ − λj )
(
q̂(λj )f̂AR(λj ) − q̂(λ)f̂AR(λ)

)
+ OP (n−1/2b−1/2) + OP

(√
b
)

= f̂AR(λ)

√
b

n

N∑
j=−N

Kb(λ − λj )
(
q̂(λj ) − q̂(λ)

)

+
√

b

n

N∑
j=−N

Kb(λ − λj )
(
q̂(λj ) − q̂(λ)

)(
f̂AR(λj ) − f̂AR(λ)

)
(7.31)

+ q̂(λ)

√
b

n

N∑
j=−N

Kb(λ − λj )
(
f̂AR(λj ) − f̂AR(λ)

)
+ OP (n−1/2b−1/2) + OP

(√
b
)

= B+
1,n(λ) + B+

2,n(λ) + B+
3,n(λ) + OP (n−1/2b−1/2) + OP

(√
b
)
,

with an obvious notation for B+
i,n(λ), i = 1,2,3. To establish the desired

convergence, it suffices to show that

B+
1,n(λ) → 1

4π
fAR(λ)q ′′(λ)

∫ π

−π
u2K(u)du,(7.32)

B+
2,n(λ) → 1

2π
f ′

AR(λ)q ′(λ)

∫ π

−π
u2K(u)du(7.33)

and

B+
3,n(λ) → 1

4π
f ′′

AR(λ)q(λ)

∫ π

−π
u2K(u)du(7.34)

in probability since f ′′(λ) = fAR(λ)q ′′(λ) + 2f ′
AR(λ)q ′(λ) + f ′′

AR(λ)q(λ). We
proceed by showing that (7.32)–(7.34) are true.
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To prove (7.32), note that a Taylor series expansion yields

√
b

n

N∑
j=−N

Kb(λ − λj )
(
q̂(λj ) − q̂(λ)

)

= n−3/2b1/2
N∑

j=−N

N∑
s=−N

Kb(λ − λj )

× [Kh(λj − λs) − Kh(λ − λs)
] In(λs)

f̂AR(λs)

= 1

n3/2b1/2h

N∑
j=−N

N∑
s=−N

K

(
λ − λj

b

)
λj − λ

h
(7.35)

× K ′
(

λ − λs

h

)
In(λs)

f̂AR(λs)

+ 1

2n3/2b1/2h

N∑
j=−N

N∑
s=−N

K

(
λ − λj

b

)(
λj − λ

h

)2

× K ′′
(

λ − λs

h

)
In(λs)

f̂AR(λs)

+ OP (n1/2b7/2).

Now,

1

n3/2b1/2h

N∑
j=−N

N∑
s=−N

K

(
λ − λj

b

)
λj − λ

h
K ′
(

λ − λs

h

)
In(λs)

fAR(λs)

=
√

n

2π
√

b

∫ π

−π
(x − λ)K

(
λ − x

b

)
dx

(7.36)

× 1

nh2

N∑
s=−N

K ′
(

λ − λs

h

)
In(λs)

fAR(λs)
+ oP (1)

= oP (1),

using
∫

uK(u)du = 0 and the fact that the second multiplicative term on the right-
hand side of the equality before the last one is OP (1) because it converges to q ′(λ).
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Similarly,

1

2n3/2b1/2h

N∑
j=−N

N∑
s=−N

K

(
λ − λj

b

)(
λj − λ

h

)2

× K ′′
(

λ − λs

h

)
In(λs)

fAR(λs)

= 1

2

1√
nb

N∑
j=−N

(λj − λ)2K

(
λ − λj

b

)
(7.37)

× 1

nh3

N∑
s=−N

K ′′
(

λ − λs

h

)
In(λs)

fAR(λs)

→ 1

4π

∫ π

π
u2K(u)duq ′′(λ)

in probability. Note that the last assertion follows using b ∼ n−1/5 and because for
nh3 → ∞ we have n−1h−3∑N

s=−N K ′′((λ − λs)/h)In(λs)/fAR(λs) → q ′′(λ) in
probability.

Now, by (7.35)–(7.37) and because f̂AR(λ) = fAR(λ) + OP (n−1/2) uniformly
in λ, we obtain (7.32).

Since (7.33) and (7.34) follow using similar arguments, we stress only the
essentials.

For B+
2,n(λ) we have using the differentiability of f̂AR(λ) with respect to λ and

similar arguments as in obtaining (7.35) that

B+
2,n(λ) = f̂ ′

AR(λ)n−1/2b1/2
N∑

j=−N

Kb(λ − λj )(λj − λ)
(
q̂(λj ) − q(λ)

)
+ oP (1)

= f̂ ′
AR(λ)

1√
nb

N∑
j=−N

K

(
λ − λj

b

)
(λj − λ)2

× 1

nh2

N∑
s=−N

K ′
(

λ − λs

h

)
In(λs)

f̂AR(λs)
+ oP (1)

→ f ′
AR(λ)q ′(λ)

1

2π

∫ π

−π
u2K(u)du

in probability. To show (7.34), we use a Taylor series expansion of f̂AR(λj ) around
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f̂AR(λ) and obtain

B+
3,n(λ) = q̂(λ)f̂ ′

AR(λ)n−1/2b1/2
N∑

j=−N

Kb(λ − λj )(λj − λ)

+ 1

2
q̂(λ)f̂ ′′

AR(λ)n−1/2b1/2
N∑

j=−N

Kb(λ − λj )(λj − λ)2 + oP (1)

→ q(λ)f ′′
AR(λ)

1

4π

∫ π

−π
u2K(u)du. �

PROOF OF THEOREM 5.1. Consider part (ii) of the theorem. By Lemma 8.8
of Bickel and Freedman (1981), we can split the squared Mallows’ metric into a
variance part V 2

n (λ) and a squared bias part b2
n(λ), where

V 2
n (λ) = d2

2

(
L
(√

nb
(
f̂ (λ) − Ef̂ (λ)

))
,

L
(√

nb
(
f̂ ∗(λ) − E∗f̂ ∗(λ)

) ∣∣ X1,X2, . . . ,Xn

))
and

b2
n(λ) = nb

∣∣(Ef̂ (λ) − f (λ)
)− (E∗f̂ ∗(λ)

)− f̃ (λ)
∣∣2.

By Lemmas 7.4 and 7.5, we then have that V 2
n (λ) → 0 and b2

n(λ) → 0 in
probability. Part (i) of the theorem follows by the same arguments but by ignoring
the bias term. �
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