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MODEL SELECTION IN NONPARAMETRIC REGRESSION

BY MARTEN WEGKAMP

Yale University

Model selection using a penalized data-splitting device is studied in
the context of nonparametric regression. Finite sample bounds under mild
conditions are obtained. The resulting estimates are adaptive for large classes
of functions.

1. Introduction. We study the additive regression problem Y = η(X) + ε,
where η : Rd → R is the unknown regression function, ε is the random error
and X ∈ R

d is the random covariate. The available data consists of independent
observations (Xj ,Yj ). Our aim is to find an estimator η̂ in some class G such that
the mean squared error E(η̂ − η)2(X) is as small as possible. In this paper we
consider the least squares estimator ĝ ∈ G, which satisfies∑

j

(
Yj − ĝ(Xj )

)2 ≤ ∑
j

(
Yj − g(Xj )

)2
for all g ∈ G.

van de Geer and Wegkamp (1996) formulate necessary and sufficient local metric
entropy conditions of G for consistency of this estimate in the L2 norm evaluated
at the observation points Xi . van de Geer (1990, 2000) shows how the local metric
entropy of G influences the rate of convergence of the least squares estimator. All
these papers, however, assume that η belongs to G.

In the following it will be helpful to decompose the mean squared error into two
terms:

E(ĝ − η)2(X) = inf
g∈G

E(g − η)2(X) +
{
E(ĝ − η)2(X) − inf

g∈G
E(g − η)2(X)

}
.

It is clear that the approximation error infg∈G E(g − η)2(X) is decreasing in G.
However, the more complex G, the more difficult the statistical estimation problem
becomes as more and more parameters need to be estimated. That is, the
estimation error E(ĝ − η)2(X) − infg∈G E(g − η)2(X) is an increasing function
of the complexity of G. This dilemma is solved by considering a sequence of
models G1,G2, . . . whose union is equal to G. With the data at hand, we seek
the optimal model from one of these classes, which balances the two conflicting
errors. Hence we are faced with a selection problem.

One possibility, explored by Barron, Birgé and Massart (1999), is to employ
penalized least squares by introducing a penalty of the form CpenDk , where Dk is
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the dimension of the finite-dimensional model Gk , and n is the sample size. The
penalized least squares estimate ĝpen minimizes

min
g∈Gk

1

n

n∑
i=1

(
Yi − g(Xi)

)2 + CpenDk

n

over k ∈ N and it is shown that for some C > 0

E(ĝpen − η)2(X) ≤ C inf
k

(
inf

g∈Gk

E(g − η)2(X) + CpenDk

n

)
.

However, the constant Cpen depends on unknown quantities related to the error
distribution and the regression function. This makes this approach intractable in
practice. Also their moment condition E exp(|ε|/b) ≤ 4 for some b > 0 on the
error distribution is strong.

Penalties which are distribution free upper bounds of the estimation error can
be found in more restrictive regression settings, such as logistic regression as
considered by Hengartner and Wegkamp (1999). Unfortunately, distribution free
upper bounds may be too conservative estimates for the actual estimation error at
hand. In other words, the upper bounds may be loose for a particular problem, and
the model that minimizes the sum of the approximation error and penalty term need
not correspond to that which minimizes the mean squared error, so these methods
may not give the optimal result.

Bartlett, Boucheron and Lugosi (2002) presented a result in the context of
bounded regression (|Yj | ≤ 1) using random penalties of the form

pen(k) = E

(
sup
g∈Gk

256

n

n∑
j=1

σj

(
Yj − g(Xj )

)2
∣∣∣ (X1, Y1), . . . , (Xn,Yn)

)
,

where σj are independent random signs, that is, P{σ = −1} = P{σ = +1} =
1/2. Although this conditional expectation is unknown, it can be approximated
with Monte Carlo simulations. These authors propose the penalized least squares
estimate ĝpen which minimizes

min
g∈Gk

1

n

n∑
i=1

(
Yi − g(Xi)

)2 + pen(k) + 8192 logk

n

over k ∈ N and they prove that

E(ĝpen − η)2(X) ≤ min
k

[
inf

g∈Gk

E(g − η)2(X) + E pen(k) + 8192 logk

n

]
+ 13096

n
.

However, the above penalty pen(k) is at best of order
√

Dk/n, and not the desired
Dk/n for finite dimensional spaces Gk of dimension Dk .
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Barron (1991) does not consider a sequence of approximation spaces Gk, but
rather penalizes each individual function g ∈ G with a penalty λ(g)/n. He obtains
for the estimator ĝpen minimizing

1

n

n∑
i=1

(
Yi − g(Xi)

)2 + λ(g)

n

over g ∈ G and some C > 0 the inequality

E(ĝpen − η)2(X) ≤ C inf
g∈G

[
E(g − η)2(X) + λ(g)

n

]
under the restrictions |Yi | ≤ 1 and

∑
g∈G exp(−λ(g)) < ∞. As will become

apparent later, we generalize this idea to our selection procedure by considering
random functions and allowing for unbounded Yi .

In this paper we take the approach of splitting the data into two parts, using one
part for constructing a least squares estimate ĝk for each model Gk, and the second
part for selecting one of the previously obtained estimates. In a way, one wishes to
see how each estimate ĝk behaves on a new data set, and this is precisely what we
propose to do. We show that this yields the desired trade-off between estimation
and approximation error as we obtain an estimator with mean squared error which
is essentially bounded by infk E(ĝk − η)2(X). This is the content of Theorem 2.1
below, and as a consequence of the work of Barron, Birgé and Massart (1999),
it leads to adaptive estimation if η ∈ G for fairly large classes G such as Besov
spaces. Theorems 3.1 and 3.2 make the connection with Barron, Birgé and Massart
(1999) by bounding the smallest mean squared error by the same upper bound for
the mean squared error of the penalized least squares estimator studied by these
authors.

The disadvantage of this method is that not all data is directly used for
estimation. However, by repeating the procedure various times, each time splitting
the data in a different way, we show that we may take the average of the selected
estimates, thereby taking into account all the data. This results in a more balanced
estimate which does not depend on a particular split. Plotting a histogram of the
selected indices can give valuable insight on the variability induced by taking
random partitions of the data.

Another method which uses a data-splitting device is described in Lugosi and
Nobel (1999) in the context of bounded regression (|Yj | ≤ 1). Essentially they use
one half of the data to estimate the VC-dimension of each class Gk. Next, this
estimate is plugged into a penalty term, and penalized least squares is performed
to find an estimate, which balances the approximation error with the penalty term.
Again, as the penalty term only provides a distribution-free upper bound for the
estimation error, the trade-off is not optimal. Also, the computational issue of
finding the VC-complexity is quite laborious.
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Our method is related to adaptive regression by mixing (ARM), proposed by
Yang (2001). The ARM algorithm combines general regression estimators f̂k ,
which are based on one half of the data, and assigns weights to the candidate
estimators via proper assessment of the performance of the likelihood of the
estimates utilizing the other part of the data. Under mild conditions Yang shows
that the quadratic risk of the resulting estimate is essentially bounded above by
the risk of each individual candidate procedure, although a small penalty term
of order 1/n and risk bounds involving estimates of the conditional variance
function σ(x) also appear in the upper bounds. Minimizing over procedures
automatically renders optimal rate of convergence of ARM. Our selection method
is general and applies to various estimates f̂k as well. For Gaussian errors, the
likelihood criterion considered in Yang (2001) is equivalent to the sum of squares
considered in this paper. Our main motivation, as outlined earlier, differs in that we
want to select a least squares estimate ĝk based on a model Gk with the smallest
mean squared error (cf. Section 3). Identifying a good model Gk allows proper
interpretation of certain characteristics of the regression function η. Model mixing
or averaging is not suitable for this task. Another difference is that Yang’s proofs
are based on bounds for the Kullback–Leibler divergences using ideas of Barron
(1987) and Yang and Barron (1999). Also our constants in the upper bounds for
the squared error risk are much smaller and we use a mild moment condition on ε

in lieu of Yang’s more complicated condition A2.
In the context of variable selection in linear regression, Shao (1993) uses a data-

splitting device as well, and he shows that in order to have an asymptotically
correct procedure, which selects only all the relevant variables, one needs that
n/N → 1 and N − n → ∞ as N → ∞, where n is the sample size of the data
set used for validation, and N is the total sample size. He also proves that the
cross-validation case where n = 1 is inconsistent.

Devroye and Lugosi (1996, 1997) and Wegkamp (1999) use the data-splitting
technique successfully to select the optimal bandwidth for kernel density estima-
tors in an L1 and L2 sense, respectively, without any knowledge of the underly-
ing density. Hengartner and Wegkamp (2001) and Hengartner, Matzner-Løber and
Wegkamp (2002) explore bandwidth selection of local linear kernel smoothers in
nonparametric regression using data-splitting.

The advantages of the method proposed here, besides being conceptually
simple, are three-fold. First, it is computationally attractive and there are no
unknown constants involved in the algorithm. Second, the method provides tight
upper bounds for the mean squared error, as we do not balance the approximation
error and a conservative upper bound for the estimation error. In addition, we
provide finite sample bounds with explicit constants. Third, only weak moment
assumptions on the errors are required.

The paper is organized as follows: We introduce a general selection method and
state and prove our main result (Theorem 2.1) in Section 2. We apply the result in
Section 3 for least squares estimates using models Gk which are VC-major classes,
thereby including the important special case of finite-dimensional models.
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2. Main result. Consider the additive regression model

Yi = η(Xi) + εi, i = 1, . . . ,N,

where Xi ∈ R
d are i.i.d. P distributed, εi ∈ R are independent with

Eεi = 0, Eε2
i ≤ σ 2 < ∞ and E|εi |p < τp < ∞ for some p > 2,

and Xi and εi are independent. The regression function η : Rd → R is completely
unknown and to be estimated from the data.

Let us describe the proposed method. First we split the data (Xi, Yi), i =
1, . . . ,N , into two parts. The first sample {(Xi, Yi) : i ∈ Im} contains m ≤ N

data points (Xi, Yi) drawn without replacement from (X1, Y1), . . . , (XN,YN).
We construct regression estimates ĝk based on {(Xi, Yi) : i ∈ Im} using some
regression procedure. For instance, ĝk is a least squares estimate of η using a
model Gk in Section 3. In order to select the optimal estimate ĝ with the smallest
mean squared error among all ĝ1, . . . , ĝK , we introduce some positive numbers λk

associated with each estimate ĝk . The second data set {(Xj ,Yj ) : j ∈ Jn} consists
of the remaining n = N − m observations and is used for validation of the
estimates ĝk . We select the estimate ĝ which minimizes the penalized sum of
squares using the second data set {(Xj ,Yj ) : j ∈ Jn}, that is, ĝ ≡ ĝ

k̂
with

k̂ = arg min
k=1,...,K

1

n

∑
j∈Jn

{Yj − ĝk(Xj )}2 + λk

n
.

We are ready to state our main result, which bounds the mean squared error of
the selected estimate ĝ basically by the smallest mean squared error among the
estimates ĝk plus a remainder term of order 1/n. We denote the L2(P ) semi-norm
by ‖ · ‖.

THEOREM 2.1. Suppose that ‖η− ĝk‖∞ < B for some finite constant B . Then
for all a > 0,

E‖ĝ − η‖2 ≤ (1 + a) inf
k≤K

(
E‖ĝk − η‖2 + λk

n

)
+ C(a,B) + C̃(a,p)

n
.

The constant C(a,B) is given by

2(2 + a)

a
B2 log+

(
4

K∑
k=1

exp
{
− a(1 + a)

4(2 + a)B2
λk

})

with log+ x = max(0, logx), x > 0, and the constant C̃(a,p), p > 2, is related to
the error distribution as follows:

C̃(a,p) = 1 + a

2
+ Cp(τp + σp)

1 + a

p − 2

(
4(1 + a)

a

)p/2 K∑
k=1

(1 + λk)
−(p−2)/2,

for some constant Cp ≤ 7.35p/max(1, logp).
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The proof is given at the end of this section.
In order to reduce the variability induced by taking a random partition of the

data, it is recommended to repeat the above procedure various times. This creates
estimates ĝs , s = 1, . . . , S, and the average estimate g̃ = S−1 ∑S

s=1 ĝs takes all the
data into account for the estimation part, and results into a more balanced estimate
in finite samples since g̃ does not depend on a single particular division of the
data. By Jensen’s inequality and since the bound obtained in Theorem 2.1 does not
depend on the particular partitioning of the data,

E‖g̃ − η‖2 = E

∥∥∥∥∥ 1

S

S∑
s=1

ĝs − η

∥∥∥∥∥
2

≤ E
1

S

S∑
s=1

‖ĝs − η‖2

≤ (1 + a) inf
k≤K

(
E‖ĝk − η‖2 + λk

n

)
+ C(a,B) + C̃(a,p)

n
,

that is, we find the same bound for the mean squared error of the average
estimate g̃.

The bound ‖η − ĝk‖∞ ≤ B can be relaxed. The proof of Theorem 2.1 below
shows in fact that for all a > 0 and R > 0,

E‖ĝ − η‖2{R̂ ≤ R} ≤ (1 + a) inf
k≤K

(
E‖ĝk − η‖2 + λk

n

)
+ C(a,R) + C̃(a,p)

n
,

where R̂ is defined as

R̂ 2 = sup
k≤K

∫
(ĝk − η)4 dP∫
(ĝk − η)2 dP

.

The incurred error due to the selection is bounded by the remainder term
{C̃(a,p) + C(a,B)}/n, and depends on the number of moments of εi and the
sequence {λk}. The fact that we approximate

‖ĝk − η‖n ≡ 1

n

∑
j∈Jn

(
Yi − ĝk(Xj )

)2

by ‖ĝk − η‖2 for k = 1, . . . ,K , causes the remainder C(a,B)/n. This bound does
not occur by formulating our result differently.

THEOREM 2.2. For all a > 0,

E‖ĝ − η‖2
n ≤ (1 + a) inf

k>0

(
E‖ĝk − η‖2 + λk

n

)
+ 1 + a

n

+ 1 + a

n
Cp(τp + σp)

2

p − 2

(
1 + a

a

)p/2 K∑
k=1

(1 + λk)
−(p−2)/2.
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We will prove this theorem at the end of this section.
It follows from the proof of Theorem 2.1 below (cf. Lemma 2.5) that the

constant C̃(a,p) can be improved under more restrictive assumptions. More
specifically, if εi are Gaussian N (0, σ 2), then

C̃(a,p) ≤ 4(1 + a)2σ 2

a

2 + log
K∑

k=1

exp
(
− aλk

8(1 + a)σ 2

) .

The remainder C̃(a,p)/n is due to the fact that we observe Yi (= η(Xi) + εi )
instead of η(Xi) directly. Indeed, the proof of Lemma 2.5 shows that C̃(a,p) = 0
if εi = 0, and in general, the larger the number of finite moments p, the smaller
C̃(a,p).

Let us address the important issue of the choice for the λk’s. If we do not
penalize by setting λk = 0 for all k, the number of models K = KN seriously
affects the selection error. The constants C(a,B) and C̃(a,p) equal in this case

C(a,B) = 2(2 + a)

a
B2 log(4eK)

and

C̃(a,p) = 1 + a

2
+ KCp(τp + σp)

1 + a

p − 2

(
4(1 + a)

a

)p/2

.

It is clear that we have to restrict the number of models K in order to control
the bound for the expected selection error {C(a,B) + C̃(a,p)}/n. Again, in
case εi are normal N (0, σ 2) random variables, C̃(a,p) ≤ Caσ

2 log(K), and
considering polynomially (in N ) many models still leads to a remainder term
{C(a,B) + C̃(a,p)}/n of order log(N)/n.

The advantage of taking λk �= 0 lies in the fact that the remainder term
{C(a,p)+C̃(a,B)}/n is of order 1/n under mild moment conditions on the errors
(E|εi |p < ∞ for some p > 2) and we are allowed to consider an infinite number
of models. For instance, setting λk = k, we see that

K∑
k=1

λ
−(p−2)/2
k ≤

∞∑
k=1

k−(p−2)/2 < ∞ if p > 4,

implying that C̃(a,p) is finite regardless of the value K . There is an interesting
connection between the size of λk and the moment conditions on the noise. For
instance, taking λk = k2 ensures that C̃(a,p) < ∞ for p > 2. It should be noted
that the larger λk , the smaller the bound for the remainder term, but on the other
hand we wish to keep λk smaller than E‖ĝk −η‖2 so that the first term in the upper
bound for E‖ĝ − η‖2 in Theorem 2.1 equals

(1 + a) inf
k≤K

(
E‖ĝk − η‖2 + λk

n

)
≤ C inf

k≤K
E‖ĝk − η‖2
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for some C close to 1.

PROOF OF THEOREM 2.1. First observe that

E‖ĝ − η‖2 = E
{
E
[‖ĝ − η‖2 | (Xi, Yi), j ∈ Im

]}
.

Since ĝk only depends on the training data {(Xi, Yi), i ∈ Im}, the class of
functions F = {ĝ1, ĝ2, . . .} is nonrandom, conditionally given {(Xi, Yi), i ∈ Im}.
The independence between the data sets {(Xi, Yi), i ∈ Im} and {(Xj ,Yj ), j ∈ Jn}
ensures that this conditioning does not change the independence structure among
the variables (Xj ,Yj ), j ∈ Jn. Using the minimizing property of ĝ, we show in
Lemma 2.3 below that conditionally given the training data, for every k and a ≥ 0,
the inequality

‖ĝ − η‖2 ≤ (1 + a)

{
1

n

∑
j∈Jn

(
Yj − ĝk(Xj )

)2 − 1

n

∑
j∈Jn

(
Yj − η(Xj )

)2
}

+ sup
k

[
2(1 + a)

n

∑
j∈Jn

εj (ĝk − η)(Xj )

− a

2n

∑
j∈Jn

(ĝk − η)2(Xj ) − (1 + a)λk

2n

]

+ sup
k

[∫
Rd

(ĝk − η)2(x) dP (x)

− (2 + a)

2n

∑
j∈Jn

(ĝk − η)2(Xj ) − (1 + a)λk

2n

]

holds. Next we observe that the expectation over the assessment data {(Xj ,Yj ),

j ∈ Jn} of the first term on the right-hand side of the preceding inequality equals
(1 + a)

∫
Rd (ĝk − η)2(x) dP (x). Lemma 2.5 and Lemma 2.7 establish bounds

for the expected values (taken with respect to the assessment data) of both
remainder terms, independent of the training data {(Xi, Yi), i ∈ In}. Finally, taking
expectations with respect to {(Xi, Yi), i ∈ In} yields Theorem 2.1. �

Our proofs are novel in the way we derive Lemma 2.3 and handle the remainder
terms. In particular, the use of desymmetrized empirical processes

∫
Rd (ĝk −

η)2(x) d(P (x) − (1 + a)Pn(x)), rather than symmetrized empirical processes∫
Rd (ĝk − η)2(x) d(Pn(x) − P (x)), where Pn is the empirical measure putting

mass 1/n at each Xj , j ∈ Jn, results in more elegant proofs with sharp, explicit
constants as no peeling devices are required as used by, for instance, van de Geer
(1990) and Hengartner and Wegkamp (1999). See van de Geer [(2000), pages 70
and 149] for a clear description of the peeling device.
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To simplify the notation a bit, we present the results in the following framework.
Without loss of generality, we assume that the index set Jn = {1,2, . . . , n}. We
observe (Xi, Yi) where the Yi are related to Xi by

Yi = η(Xi) + εi, i = 1, . . . , n,

with Xi independent random variables with common distribution P and εi are
independent, mean zero random variables with a finite pth moment for some
p > 2. In addition εi and Xi are independent. Let F be a countable class of
functions and λ(f ) > 0 be positive numbers. Define the sum of squares by

Sn(f ) = 1

n

n∑
i=1

(
Yi − f (Xi)

)2
,

and our estimate f̂ of η minimizes Sn(f ) + n−1λ(f ) over f ∈ F , that is,

Sn(f̂ ) + λ(f̂ )

n
≤ Sn(f ) + λ(f )

n
for all f ∈ F .

The idea of introducing λ(f ) first appeared in Barron (1991) in the context of
bounded regression where |Yi | ≤ 1. In fact, the results in this section generalize
Barron’s (1991) result to unbounded regression.

Before stating our results we need some more notation. Let Pn be the empirical
measure putting mass 1/n at each observation Xi , and the empirical L2(Pn) norm
and inner product are defined by

‖f ‖2
n = 1

n

n∑
i=1

f 2(Xi) and 〈f,g〉n = 1

n

n∑
i=1

f (Xi)g(Xi),

respectively. Also, with some abuse of notation we write 〈ε, f 〉n = (1/n)
∑n

i=1 εi ×
f (Xi).

LEMMA 2.3. For all a > 0 and f̄ ∈ F ,

‖f̂ − η‖2 ≤ (1 + a)

{
Sn(f̄ ) − Sn(η) + λ(f̄ )

n

}

+ sup
f ∈F

[
2(1 + a)〈ε, f − η〉n + ‖f − η‖2

− (1 + a)‖f − η‖2
n − (1 + a)

λ(f )

n

]
.

PROOF. Define (ignoring the dependence on n in the notation)

S(f ) = 1

n

n∑
i=1

Eε2
i + ‖f − η‖2,
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and observe that

ESn(f ) = S(f ) for any fixed f ∈ F .

Also, notice that

Sn(f ) = 1

n

n∑
i=1

ε2
i + 2

1

n

n∑
i=1

εi(η − f )(Xi) + ‖f − η‖2
n.

Hence for all f̄ ∈ F and a ≥ 0,

‖f̂ − η‖2 = S(f̂ ) − S(η)

= (1 + a)

[
Sn(f̂ ) − Sn(η) + λ(f̂ )

n

]

+
[(

S − (1 + a)Sn

)
(f̂ ) − (

S − (1 + a)Sn

)
(η) − (1 + a)

λ(f̂ )

n

]

≤ (1 + a)

[
Sn(f̄ ) − Sn(η) + λ(f̄ )

n

]

+
[(

S − (1 + a)Sn

)
(f̂ ) − (

S − (1 + a)Sn

)
(η) − (1 + a)

λ(f̂ )

n

]
(by the definition of f̂ )

≤ (1 + a)

[
Sn(f̄ ) − Sn(η) + λ(f̄ )

n

]

+ sup
f ∈F

[(
S − (1 + a)Sn

)
(f ) − (

S − (1 + a)Sn

)
(η) − (1 + a)

λ(f )

n

]
,

which after some algebra leads to the desired result. �

COROLLARY 2.4. Define hn(f ) = (f − η)/‖f − η‖n if ‖f − η‖n > 0 and
hn(f ) = 0 if ‖f − η‖n = 0. For all a > 0, we have

E‖f̂ − η‖2 ≤ (1 + a) inf
f ∈F

[
‖f − η‖2 + λ(f )

n

]

+ E sup
f∈F

(
2(1 + a)2

a
〈ε,hn(f )〉2

n − (1 + a)λ(f )

2n

)

+ E sup
f∈F

(
‖f − η‖2 − 2 + a

2
‖f − η‖2

n − (1 + a)λ(f )

2n

)
.

PROOF. First observe that since f̄ is fixed,

E[Sn(f̄ ) − Sn(η)] = ‖f̄ − η‖2.
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Use the fact that f̄ was chosen arbitrarily to take the infimum over f ∈ F . Second,
by the subadditivity of the supremum we find that

sup
f ∈F

[
2(1 + a)〈ε, f − η〉n + ‖f − η‖2 − (1 + a)‖f − η‖2

n − (1 + a)
λ(f )

n

]

≤ sup
f ∈F

[
2(1 + a)〈ε, f − η〉n − a

2
‖f − η‖2

n − 1 + a

2

λ(f )

n

]

+ sup
f ∈F

[
‖f − η‖2 − 2 + a

2
‖f − η‖2

n − 1 + a

2

λ(f )

n

]
.

Since the algebraic inequality 2|xy| ≤ x2/c + cy2 holds for all x, y ∈ R and c > 0,
we find that

2(1 + a)〈ε, f − η〉n − a

2
‖f − η‖2

n

≤ (1 + a)

(
2‖f − η‖n

∣∣∣∣〈ε, f − η

‖f − η‖n

〉
n

∣∣∣∣ − a/2

1 + a
‖f − η‖2

n

)

≤ 2(1 + a)2

a

〈
ε,

f − η

‖f − η‖n

〉2

n

,

and the proof is complete. �

We will now bound the remainder term

E sup
f ∈F

(
2(1 + a)2

a
〈ε,hn(f )〉2

n − (1 + a)λ(f )

2n

)
.

We will invoke Rosenthal’s inequality, which asserts that for independent random
variables Z1, . . . ,Zn with mean zero, the inequality

E

∣∣∣∣∣
n∑

k=1

Zk

∣∣∣∣∣
p

≤ Cp max

(
n∑

k=1

E|Zk|p,

(
n∑

k=1

EZ2
k

)p/2)

holds for p ≥ 2. Recently, Ibragimov and Sharakhmetov (1998) investigated the
exact constant Cp and proved the upper bound Cp ≤ 7.35p/max(1, logp).

LEMMA 2.5. Suppose that τp < ∞ for some p > 2, and define for a > 0,

p > 2,

C̃(a,p) = 1 + a

2
+ Cp(τp + σp)

1 + a

p − 2

(
4(1 + a)

a

)p/2 K∑
k=1

(1 + λk)
−(p−2)/2,
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where Cp > 0 is the constant appearing in Rosenthal’s inequality. Then for all
a > 0, we have

E sup
f ∈F

[
2(1 + a)2

a
〈ε,hn(f )〉2

n − (1 + a)λ(f )

2n

]
≤ C̃(a,p)

n
.

Moreover, if the error distribution is Gaussian, then

E sup
f∈F

[
2(1 + a)2

a
〈ε,hn(f )〉2

n − (1 + a)λ(f )

2n

]

≤ 4(1 + a)2σ 2

na

[
2 + log

∑
f ∈F

exp
(
− aλ(f )

8(1 + a)σ 2

)]
.

PROOF. First, we observe as in Baraud [(2000), page 484] that for some
Cp > 0 by the Markov and Rosenthal inequalities, respectively,

P{|〈ε,hn(f )〉n| ≥ t}
≤ t−p

E|〈ε,hn(f )〉n|p

≤ CpE
τp

∑n
i=1 |hn(f )(Xi)|p + (σ 2 ∑n

i=1 hn(f )2(Xi))
p/2

np tp

≤ CpE
τp(

∑n
i=1 |hn(f )(Xi)|2)p/2 + (σ 2 ∑n

i=1 hn(f )2(Xi))
p/2

np tp

= Cp

τpnp/2 + (σ 2n)p/2

np tp

= Cp(τp + σp)n−p/2t−p.

Consequently,

P

{
2(1 + a)2

a
〈ε,hn(f )〉2

n − 1 + a

2

λ(f )

n
≥ t

n

}

≤ Cp(τp + σp)

(
a

2(1 + a)2

{
1 + a

2
λ(f ) + t

})−p/2

.

Integrating out leads to the desired result:

E sup
f∈F

(
2(1 + a)2

a
〈ε,hn(f )〉2

n − 1 + a

2

λ(f )

n

)

≤ 1 + a

2n
+ ∑

f ∈F

∫ ∞
(1+a)/2n

P

{
a

2(1 + a)2 〈ε,hn(f )〉2
n − 1 + a

2

λ(f )

n
≥ t

}
dt

≤ 1 + a

2n
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+ 1

n

∑
f ∈F

∫ ∞
(1+a)/2

Cp(τp + σp)

(
a

2(1 + a)2

{
1 + a

2
λ(f ) + t

})−p/2

dt

= 1 + a

2n

+ Cp(τp + σp)

n

2

p − 2

(
a

2(1 + a)2

)−p/2 ∑
f ∈F

(
1 + a

2

(
λ(f ) + 1

))−p/2+1

= 1 + a

2n
+ Cp(τp + σp)

n

1 + a

p − 2

(
4(1 + a)

a

)p/2 ∑
f ∈F

(
λ(f ) + 1

)−(p−2)/2
,

and the first claim is proved. The second assertion follows from a similar argument
using the tail bounds for Gaussian random variables instead of the Markov and
Rosenthal inequalities. We omit the details. �

The following proposition is used in the bound for the remainder term

E sup
f∈F

(
‖f − η‖2 − 2 + a

2
‖f − η‖2

n − (1 + a)λ(f )

2n

)
.

This is essentially Lemma 2.1 in Einmahl and Mason (1996), which was pointed
out to the author by David Mason, who also indicated that the conditions stated in
their Lemma 2.1 are too strong.

PROPOSITION 2.6 [Einmahl and Mason (1996)]. Let Z1,Z2, . . . ,Zn be
independent, nonnegative random variables with EZi = µi and EZ2

i ≤ σ 2. Then

P

{
1

n

n∑
i=1

(µi − Zi) ≥ δ

}
≤ exp

(
− nδ2

2σ 2

)
.

PROOF. Since for all t > 0,

E exp(−tZi) ≤ 1 − tµi + 1

2
t2

EZ2
i ≤ exp

(
−tµi + t2σ 2

2

)
,

we have using the independence of Zi

P

{
1

n

n∑
i=1

(µi − Zi) ≥ δ

}
≤ exp(−tnδ)E exp

(
t

n∑
i=1

(µi − Zi)

)

≤ exp
(
−tnδ + nt2σ 2

2

)
.

Choosing t = δ/σ 2 yields the result. �
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LEMMA 2.7. Define

R = sup
f ∈F

P |f − η|4
P |f − η|2

and set

� = ∑
f ∈F

exp
(
− a(1 + a)

4(2 + a)R
λ(f )

)
.

For all a > 0, we have

E sup
f∈F

(
‖f − η‖2 − 2 + a

2
‖f − η‖2

n − (1 + a)λ(f )

2n

)
≤ 2(2 + a)

na
R log(4e�).

PROOF. Set g = (f − η)2. With some slight abuse of notation we write
λ(g) = λ(g(f )) = λ(f ). Also we use the short-hand notation Pg for the integral∫
Rd g(x) dP (x).

First we want to relate Pg − (1 + a)Png to (P − Pn)g/
√

Pg. For this matter,
let δ > 0, C > 0 and suppose that

Pg − Png ≤ √
δ + C

√
Pg.

Then for all β > 0,

Pg ≤ (1 + β)Png + (δ + C)
1 + β

β
.

To appreciate why, simply consider the cases
√

Pg ≤ 1+β
β

√
δ + C implying

Pg ≤ Png + (δ + C)
1+β
β

and its complement
√

Pg >
1+β
β

√
δ + C implying

Pg ≤ Png + β
1+β

Pg, separately. This argument can be found in Anthony and

Bartlett (1999). Therefore,

P

{
sup
g

(
Pg − 2 + a

2
Png − (1 + a)λ(g)

2n

)
≥ δ

}

≤ ∑
g

P

{
Pg − 2 + a

2
Png − (1 + a)λ(g)

2n
≥ δ

}

= ∑
g

P

{
Pg −

(
1 + a

2

)
Png ≥ 1 + a/2

a/2

[
a/2

1 + a/2

1 + a

2n
λ(g) + a/2

1 + a/2
δ

]}

≤ ∑
g

P

{
Pg − Png√

Pg
≥

√
a/2

1 + a/2

(
1 + a

2n
λ(g) + δ

)}
(by the contrapositive of the reasoning above taking β = a/2)
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≤ ∑
g

exp
(
−n

2

Pg

Pg2

a

2 + a

{
1 + a

2n
λ(g) + δ

})
[by Proposition 2.6 below or Lemma 2.1 in Einmahl and Mason (1996)]

≤ ∑
g

exp
(
− a(1 + a)

4(2 + a)R
λ(g)

)
exp

(
− n

2R

a

2 + a
δ

)
.

Finally, invoke that for any random variable T with P{T ≥ t} ≤ A exp(−Bt), for
some A,B > 0 and all t > 0, it follows that

ET ≤ ET + =
∫ ∞

0
P{T + ≥ t}dt =

∫ ∞
0

P{T ≥ t}dt ≤ 1 + log+(A)

B
.(2.1)

The proof of both assertions now follows easily. �

PROOF OF THEOREM 2.2. Repeating the same reasoning as in the proof of
Lemma 2.3, conditionally given the covariates Xi , we find for all f ∈ F ,

E‖f̂ − η‖2
n ≤ (1 + a)

(
E‖f − η‖2

n + λ(f )

n

)

+ E max
f ∈F

(
(1 + a)2

a

〈
ε,

f − η

‖f − η‖n

〉2

n

− 1 + a

n
λ(f )

)
.

Now argue as in Lemma 2.5 to obtain

P

{
(1 + a)2

a

〈
ε,

f − η

‖f − η‖n

〉2

n

− 1 + a

n
λ(f ) ≥ t

n

}

≤ Cp(τp + σp)

(
a

(1 + a)2

(
t + (1 + a)λ(f )

))−p/2

so that

E max
f ∈F

(
(1 + a)2

a

〈
ε,

f − η

‖f − η‖n

〉2

n

− 1 + a

n
λ(f )

)

≤ 1 + a

n
+ ∑

f ∈F

∫ ∞
(1+a)/n

P

{
(1 + a)2

a
〈ε,hn(f )〉2

n − 1 + a

n
λ(f ) ≥ t

}

≤ 1 + a

n
+ ∑

f ∈F

Cp

n
(τp + σp)

(
a

(1 + a)2

)−p/2

× −1

1 − p/2
(1 + a)1−p/2(1 + λ(f )

)1−p/2

= 1 + a

n
+ Cp

n
(τp + σp)

(
1 + a

a

)p/2 2

p − 2
(1 + a)

∑
f∈F

(
1 + λ(f )

)−(p−2)/2
,

and the result follows. �
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3. Applications. In this section we show how Theorem 2.1 can be applied
to adaptive least squares estimation. However, we emphasize that the result of
Theorem 2.1 is more general. For instance, we refer to Hengartner, Matzner-Løber
and Wegkamp (2002) for a small simulation study in the case where the ĝk are local
linear regression smoothers and k is the so-called bandwidth. Another interesting
possibility is to select among various different types of estimators and find the one
which performs best for the given situation (in terms of smallest mean squared
error). Also the method readily extends to least absolute deviation regression. In
this case, one avoids imposing moment conditions on the error distribution, instead
existence of a density of εj with some regularity assumptions is needed.

It is known that linear spaces (e.g., splines) have good approximation properties
for large classes of functions, for instance Hölderian functions (of order α > 1/2).
Certain non-linear spaces, such as non-regular histograms and neural networks
provide even more flexible approximation. We refer to the work by Barron, Birgé
and Massart (1999) for a detailed discussion.

Here we assume the collection of models Gk at hand consists of uniformly
bounded VC-major classes with VC-dimension Vk . We consider least squares
estimators ĝk , which satisfy

1

m

∑
i∈Im

(
Yi − ĝk(Xi)

)2 ≤ 1

m

∑
i∈Im

(
Yi − g(Xi)

)2 + 1

m
for all g ∈ Gk.

The least squares estimators are not necessarily unique, which poses a problem for
a given sample size n. However, the results of Theorem 3.1 and 3.2 are valid for
any function ĝk with the above property. We note in passing that ĝk is completely
determined at the design points Xi, i ∈ Im, and Lemma 3.3 below shows that for
all a > 0,

E sup
g∈Gk

(∫
Rd

g2(x) dP (x) − 1 + a

m

∑
i∈Im

g2(Xi)

)
→ 0,

provided Vk logm/m → 0. Hence the least squares estimator will be unique with
probability tending to one for all models Gk with Vk log m/m → 0. Observe
that those cases provide the more interesting upper bounds for E‖ĝ − η‖2 in
Theorems 3.1 and 3.2.

THEOREM 3.1. Let {Gk} be a sequence of VC-major classes with increasing
VC-dimensions {Vk} and supg∈∪kGk

‖g − η‖∞ ≤ B < ∞. Assume further that

εi
D= N (0, σ 2). Then the method described in Section 2 with m = n and λk = Vk

yields an estimator ĝ satisfying for some constants κ1 > 1, κ2, κ3, κ4 > 0,

E‖ĝ − η‖2 ≤ inf
k

[
κ1 inf

f ∈Gk

‖f − η‖2 + κ2
B4Vk log(n)

n

]

+ κ3

n
log

∑
k

exp
(
− κ4

B2 ∨ σ 2
Vk

)
.
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Although Theorem 3.1 can be derived from Theorem 2.1 above in combination
with Theorem 7 in Barron, Birgé and Massart [(1999), page 357] under the weaker
moment assumption E exp(|ε|/b) ≤ 4 for some b > 0, we decided to include its
proof which is markedly distinct and simpler. Notice that the logn term also
appears in Theorem 7 of Barron, Birgé and Massart (1999).

Specialized to finite dimensional models, we can considerably weaken our
assumption on the error distribution (at the cost of a multiplicative logn term).
Suppose that we have a collection of closed, convex subsets of finite dimensional
spaces Gk with dimension Dk , where k is bounded by Dk . For instance, nested
models with Dk = k satisfy this requirement. A more specific example is the case
where Gk is the linear space of piecewise polynomials of degree less than r on the
dyadic grid on [0,1]. That is, Gk is the linear space consisting of functions

g(x) =
2k∑

j=1

πj(x)1((j−1)2−k,j2−k](x), 0 ≤ x ≤ 1,

where πj are polynomials of degree less than some fixed integer r ≥ 1. Notice
that here Dk = r2k and Dk ≥ k is satisfied. This setting using finite-dimensional
spaces is probably the most interesting one in practice, and has received much
attention; see, for instance, the papers by Baraud (2000) and Barron, Birgé and
Massart (1999).

THEOREM 3.2. Let {Gk}k be a finite sequence of closed convex finite
dimensional subspaces with dimensions Dk ≥ k and with supf ∈⋃

k Gk
‖f − η‖2∞ <

B < ∞. Assume further that τp < ∞ for some p > 4 and let σ 2 ≥ Eε2
i . For each

sample size n, consider only those Gk with Dk ≤ n. Then the method described
in Section 2 with m = n and λk = k yields an estimator ĝ satisfying, for some
numerical constants κ1, κ2 > 1 and some C(B,σ 2,p) > 0,

E‖ĝ − η‖2 ≤ inf
k

[
κ1 inf

f ∈Gk

‖f − η‖2 + κ2
B4Dk

n
log

(
2n

Dk

)]
+ C(B,σ 2,p)

n
.

Observe that the log n term is not present in Barron, Birgé and Massart [(1999)
Theorem 4, page 331], but they require that the moment generating function of ε

exists.

PROOF OF THEOREM 3.1. First, observe that the constants C(a,B) and
C̃(a,p) defined in Theorem 2.1 are finite since {Vk} is an increasing sequence
and εi has a Gaussian distribution. (Alternatively, we can drop the monotonicity
assumption on {Vk} and require that the number of models K ≤ Nβ for some
β > 0.) In order to apply Theorem 2.1, we need to compute E‖ĝk −η‖2 for each k.

Let Pn be the empirical measure putting mass 1/n at each Xi, i ∈ In. Let
‖ · ‖n be the empirical L2(Pn) norm, that is, ‖f ‖2

n = 1
n

∑
i∈In

f 2(Xi), and we
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write 〈ε, f 〉n = 1
n

∑
i∈In

εif (Xi). First we link E‖ĝk − η‖2 with E‖ĝk − η‖2
n. It is

essentially due to Vapnik (1998).

LEMMA 3.3. Assume that

R(k, q) = min

(
sup
f ∈Gk

(P |f − η|2q)1/q

(P |f − η|2)1/2

(
1

2

(
q − 1

q − 2

)q−1)1/q

, sup
f ∈Gk

‖f − η‖2∞

)
is finite for some q > 2. Let Vk be the VC dimension of the VC-major class Gk .
Then for all a > 0,

E
{‖ĝk − η‖2 − (1 + a)‖ĝk − η‖2

n

}
≤ 4(1 + a)R2(k, q)

na

{
log(4e) + Vk

{
1 + log+

(
2n

Vk

)}}
.

PROOF. Observe that

E
{‖ĝk − η‖2 − (1 + a)‖ĝk − η‖2

n

} ≤ E sup
g∈Gk

(
P − (1 + a)Pn

)
(g − η)2.

Next, observe that

P

{
sup
g∈Gk

(
P − (1 + a)Pn

)
(g − η)2 ≥ δ

}

≤ P

{
sup
g∈Gk

(P − Pn)(g − η)2√
P (g − η)2

≥
√

a

1 + a
δ

}
(by the same argument as in the proof of Lemma 2.7)

≤ 4S(2n, k) exp
(
− a

1 + a

nδ

4R2(k, q)

)
[by Vapnik (1998), Theorem 4.2, page 139, and Theorem 5.2, page 194],

where S(2n, k) is the 2n-shattering coefficient of the class

{x : g(x) > β, g ∈ Gk, β > 0}.
This number is related to the VC-dimension Vk by the inequality:

log(S(n, k)) ≤ Vk

{
1 + log+

(
n

Vk

)}
;

see Vapnik (1998), page 192. Again invoke inequality (2.1) to conclude the proof.
�

Now we focus on the analysis of E‖ĝk − η‖2
n.
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LEMMA 3.4. For all a > 0,

E‖ĝk − η‖2
n ≤ (1 + a)

(
inf

g∈Gk

‖g − η‖2 + 1

n

)
+ E sup

g∈Gk

(
2(1 + a) < ε,g − η >n −a‖g − η‖2

n

)
.

PROOF. The proof is the same as that of Lemma 2.3, but one conditions on
the covariates Xi, i ∈ In. �

It remains to bound the remainder term

E sup
g∈Gk

(
2(1 + a) < ε,g − η >n −a‖g − η‖2

n

)
on the right-hand side of the preceding display. We employ an approximation
argument which avoids the usual chaining argument [cf., e.g., van de Geer (1990)].
Let G∗

k be an 1/n covering net of Gk with respect to the L2(Pn) semidistance.
Hence for each g ∈ Gk, there is a g∗ ∈ G∗

k such that ‖g −g∗‖n ≤ 1/n. Observe that
since

E
∣∣2(1 + a)〈ε, g − η〉n − a‖g − η‖2

n − 2(1 + a)〈ε, g∗ − η〉n − a‖g∗ − η‖2
n

∣∣
≤ 2(1 + a)E‖ε‖n‖g − g∗‖n + aE‖g − g∗‖n{‖g − η‖n + ‖g∗ − η‖n}
≤ 2(1 + a)σ

n
+ 2a

n

{
sup
g

‖g‖ + ‖η‖
}
,

we have

E sup
g∈Gk

2(1 + a)〈ε, g − η〉n − a‖g − η‖2
n

≤ E max
g∈G∗

k

(
2(1 + a)〈ε, g − η〉n − a‖g − η‖2

n

)
+ 2(1 + a)σ

n
+ 2a

n

{
sup
g

‖g‖ + ‖η‖
}
.

Since Gk is assumed to be a VC-major class, the cardinality |Gk| ≤ nVk for
some Vk > 0. This, combined with the normality assumption of the errors εi ,
yields the expectation on the right in the preceding display that is of order
CVk log(n)/n for some C > 0 by a standard calculation. This concludes the proof
of Theorem 3.1. �

PROOF OF THEOREM 3.2. Since λk = k,

C(a,B) = 2(2 + a)B2

a

{
1 + log+

(
4
/{

exp
(

a(1 + a)

4(2 + a)B2

)
− 1

})}
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and

C̃(a,p) = 1 + a

2
+ Cp(τp + σp)

1 + a

p − 2

(
4(1 + a)

a

)p/2 ∞∑
k=1

(1 + k)(2−p)/2,

so that both C(a,B) and C̃(a,p) are finite for p > 4.

LEMMA 3.5. We have, for all Dk ≤ n,

E‖ĝk − η‖2
n ≤ inf

g∈Gk

‖g − η‖2 + σ 2Dk

n
.

PROOF. Since Gk is a closed, convex subset of a finite dimensional space, the
projection of the vector (Y1, . . . , Yn) onto Gk exists. The result follows from the
usual bias and variance decomposition

E‖ĝk − η‖2
n = E inf

g∈Gk

‖g − η‖2
n + 1

n2

∑
i∈In

Eε2
i Dk,

and the fact that the expected value of an infimum is less than the infimum of the
expected values. �

Combining Theorem 2.1, Lemma 3.3 and Lemma 3.5 yields Theorem 3.2. �

Using the (combined) data-splitting device, we recover the results obtained by
Baraud (2000), Barron, Birgé and Massart (1999) and Hengartner and Wegkamp
(1999). Our assumptions on the error distribution and regression function are
weaker, and the implementation does not involve unknown penalties, though
a careful choice of the λk is needed. Again we stress that the bounds for
E‖g̃ − η‖2 in Theorems 3.1 and 3.2 are upper bounds of the mean squared errors.
Barron, Birgé and Massart (1999) consider certain finite dimensional models
Gk with dimension Dk and they show that for large enough penalties of the
form Cb,BDk/N , the squared error risk of the penalized least squares estimator
balances the approximation error and the penalty term of each model Gk, which
generally differs from the mean squared error E‖ĝk − η‖2, where ĝk is the
least squares estimate of model Gk. The constant Cb,B depends on B = ‖η‖∞
and b > 0 implicitly defined by E exp(|ε|/b) ≤ 4, which are unknown. Taking
(or “guessing”) Cb,B too large may result in choosing a model which does not
achieve the smallest mean squared error among all considered models for a fixed
sample size at hand. The upper bounds may be loose for a particular problem, and
the model that minimizes the upper bound

inf
k

{
inf

f ∈Gk

‖f − η‖2 + Cb,BDk

N

}
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need not correspond to that which minimizes the mean squared error, so the
penalized least squares estimator may not give the optimal result. In contrast,
Theorem 2.1 shows that the risk of the estimator based on the data-splitting method
is bounded by a small multiple (larger than 1) of the smallest mean squared error
E‖ĝk − η‖2 among the considered models.
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