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EFFICIENT ESTIMATION FOR THE PROPORTIONAL
HAZARDS MODEL WITH INTERVAL CENSORING1

BY JIAN HUANG

University of Iowa

Ž .The maximum likelihood estimator MLE for the proportional haz-
ards model with ‘‘case 1’’ interval censored data is studied. It is shown
that the MLE for the regression parameter is asymptotically normal with
'n convergence rate and achieves the information bound, even though the
MLE for the baseline cumulative hazard function only converges at n1r3

rate. Estimation of the asymptotic variance matrix for the MLE of the
regression parameter is also considered. To prove our main results, we
also establish a general theorem showing that the MLE of the finite-
dimensional parameter in a class of semiparametric models is asymptoti-
cally efficient even though the MLE of the infinite-dimensional parameter

'converges at a rate slower than n . The results are illustrated by apply-
ing them to a data set from a tumorigenicity study.

1. Introduction. In many survival analysis problems, we are interested
in the relationship between a failure time T and a vector of covariates Z.
However, it is common that observations on T are subject to censoring.
Besides the familiar right censoring, many other types of censored data also
arise in practice. One of them is ‘‘case 1’’ interval censored data, in which it is
only known whether the failure event has occurred before or after a censoring

Ž . q � 4 dtime Y. Thus the observable variable is X s Y, d , Z g R = 0, 1 = R ,
where d s 1 indicating whether T has occurred or not. ‘‘Case 1’’ interval�T F Y 4
censored data is also called current status data. Groeneboom and Wellner
Ž .1992 studied properties of the nonparametric maximum likelihood estima-
tors of a distribution function with current status data and more general
‘‘case 2’’ interval censored data.

Ž .In this paper we consider Cox’s 1972 proportional hazards model with
current status data. The proportional hazards model is probably the most
widely used regression model in survival analysis. In terms of cumula-
tive hazard functions or survival functions, the proportional hazards model
specifies:

Ž .exp u 9zX< <L t z s exp u z L t or F t z s F t .Ž . Ž . Ž . Ž . Ž .

Ž . Ž . Ž .Here L t or F t s 1 y F t is the baseline cumulative hazard function or
survival function of T, and L or F is assumed to be continuous.
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Current status data arises naturally in many applications. For example, it
arises in animal tumorigenicity experiments; see, for example, Hoel and

Ž . Ž . Ž .Walburg 1972 , Finkelstein and Wolfe 1985 and Finkelstein 1986 . The
goal of such studies is to analyze the effect of a suspected carcinogen on the
time T to observe a tumor. However, T cannot be observed exactly. Rather,
animals die or are sacrificed at certain times, and are examined for the
presence or absence of a tumor. If the tumor is irreversible and nonlethal, the
observed times of death or sacrifice yield interval censored observations.
Current status data also arises in demographic studies; see for example,

Ž . Ž .Diamond, McDonald and Shah 1986 and Diamond and McDonald 1991 .
Closely related censoring schemes are of interest in studies of human immu-

Ž . Ž .nodeficiency virus HIV and acquired immunodeficiency syndrome AIDS ;
Ž . Ž .see Shiboski and Jewell 1992 and Jewell, Malani and Vittinghoff 1994 . For

a survey of regression models with interval censored data, see Huang and
Ž .Wellner 1993 .

Notice the difference between interval censoring and the usual right
censoring. In a right censorship model, the observed data is
Ž Ž . . � 4min T, Y , 1 , Z . There is probability P T F Y of observing the sur-�T F Y 4
vival time exactly. But with current status data, we are not able to observe
the exact value of the survival time at all, just 1 . It is therefore expected�T F Y 4
that statistical inference with interval censored data is more difficult.

There has been a tremendous amount of research on the proportional
hazards model under right censoring in the last two decades; see, for exam-

Ž .ple, Andersen and Gill 1982 and the recent books by Fleming and
Ž . Ž .Harrington 1991 and Andersen, Borgan, Gill and Keiding 1993 . However,

we are not aware of any systematic treatment of the proportional hazards
model under interval censoring when the baseline hazard function is com-

Ž .pletely unspecified. The treatment of Finkelstein 1986 assumes that the
baseline survival function F is discrete and has finitely many known mass
points, which reduces the problem to a finite-dimensional parametric estima-
tion problem.

In the following discussion, we first define the maximum likelihood estima-
tor of the regression parameter and the baseline cumulative hazard function
in the proportional hazards model with ‘‘case 1’’ interval censored data.

Ž .According to Groeneboom and Wellner 1992 , the convergence rate of the
Ž .nonparametric maximum likelihood estimator NPMLE of a distribution

function with ‘‘case 1’’ interval censored data is only n1r3, which is slower
'than the familiar n rate. Hence, for the proportional hazards model with

current status data, we should not expect that the maximum likelihood
estimator for the baseline cumulative hazard function converges faster than
n1r3. A natural question is: can we estimate the finite-dimensional regression

'parameter u at n rate? If we can, how can we construct asymptotically
efficient estimators for u ? We give positive answers to these questions in
Section 3 by first confirming that the information for u is positive. Then, in
addition to the results on consistency and convergence rate of the maximum
likelihood estimators, we state the main result that the maximum likelihood
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'estimator of u is asymptotically normal and efficient with n convergence
rate. In Section 4, we consider estimation of the covariance matrix for the
estimator of u . In Section 5, we apply the results to a data set from a

Ž .tumorigenicity study of Hoel and Walburg 1972 . In Section 6, we establish a
theorem for maximum likelihood estimators for a class of semiparametric

Ž .models. This theorem is used to prove the main result Theorem 3.4 stated in
Section 3. Proofs are put together in Section 7.

2. Maximum likelihood estimators of u and L . The goal of this
section is to define and characterize the maximum likelihood estimator
ˆ ˆŽ . Ž .u , L of u , L for a finite sample size n. Here u and L are the ‘‘true’’n n 0 0 0 0

regression parameter and baseline cumulative hazard function. We will also
denote the ‘‘true’’ baseline distribution function as F . The characterization is0
in terms of the score function for u , and makes use of the monotonicity
constraints, since the cumulative hazard function is increasing. The charac-

ˆ ˆŽ .terization also yields an algorithm for computing u , L .n n
Throughout the rest of the discussion, we assume that T and Y are

Ž .independent given Z and that the joint distribution of Y, Z does not involve
Ž .u and F. So, for a single observation X s Y, d , Z , up to a factor not

Ž .dependent on u , F , its probability density function is proportional to

X XdŽ . Ž . Ž .d 1yd exp u z 1yd exp u z< <p x s F y z F y z s 1 y F y F y .Ž . Ž . Ž .Ž . Ž .u , F

Hence the log-likelihood function is, up to an additive constant,
X XŽ .exp u Z u Z2.1 l u , F s d log 1 y F Y q 1 y d e log F Y .Ž . Ž . Ž . Ž . Ž .Ž .

Ž . Ž .Let Y , 1 , Z , . . . , Y , 1 , Z be an i.i.d. sample distributed as1 �T F Y 4 1 n �T F Y 4 n1 1 n n
Ž . Ž .Y, d , Z . Using L s ylog 1 y F , the log-likelihood function for the sam-
ple is

n
Xl u , L s d log 1 y exp yL Y exp u ZŽ . Ž . Ž .Ž .Ž .Ýn i i i

2.2Ž . 1

y 1 y d exp u XZ L Y .Ž . Ž . Ž .i i i

The main advantage of this parametrization is that the log-likelihood func-
tion is concave with respect to the cumulative hazard function L.

Let Y , . . . , Y be the order statistics of Y , . . . , Y ; that is, Y F Y FŽ1. Žn. 1 n Ž1. Ž2.
??? F Y . Let d , Z correspond to Y ; that is, if Y s Y , then d s 1Žn. Ž i. Ž i. Ž i. Ž i. j Ž i. �T F Y 4j j

Ž .and Z s Z . Let L s L Y . Since only the values of L at Y ’s matter inŽ i. j Ž i. Ž i. Ž i.
the log-likelihood function, to avoid ambiguity, we will take the maximum

ˆlikelihood estimator L of L as the right-continuous increasing step func-n 0
ˆ Ž .tion with jump points at Y and values L Y , i s 1, . . . , n, where Y s 0Ž i. n Ž i. Ž0.

ˆ ˆ ˆ ˆŽ . Ž . Ž . Ž .and L 0 s 0. That is, L y s 0 for 0 F y - Y , L y s L Y for Y Fn n Ž1. n n Ž i. Ž i.
ˆ Ž .y - Y , i s 1, . . . , n y 1. However, we do not specify L y for y ) Y . SoŽ iq1. n Žn.

ˆ ˆŽ Ž . .L is completely characterized by the vector L Y , i s 1, . . . , n . Letn n Ž i.
ˆ ˆ dŽ .L s L Y . Let Q ; R be the finite-dimensional parameter space of u .Ž i. n Ž i.
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ˆ ˆThe maximum likelihood estimator of u and L is the u and L corre-0 0 n n
ˆ ˆŽ .sponding to L , . . . , L that maximizesŽ1. Žn.
n

X Xf u , x s d log 1 y exp yexp u Z x y 1 y d exp u Z x ,Ž .˜ Ž . Ž . Ž .Ž .Ý ½ 5ž /Ž i. Ž i. i Ž i. Ž i. i
is1

subject to u g Q and 0 F x F x F ??? F x . The monotonicity constraints1 2 n
are imposed because a cumulative hazard function is always nondecreasing.

Computationally, this is a maximization problem subject to linear con-
straints on the part of x; it can be solved by a number of constraint˜
optimization softwares, such as NPSOL of Gill, Murray, Saunders and Wright
Ž .1986 . However, the following two-step approach is very helpful in under-

ˆ ˆŽ .standing the properties of u , L . This approach is exactly the maximumn n
profile likelihood function procedure. We found it sufficient for moderate
sample size and low-dimensional u . The computation of the example of
Section 5 is carried out via this approach.

Ž . Ž . Ž .a For any u fixed, construct a function L ?; u by maximizing l u , Ln n
with respect to L under the constraint that L is a right-continuous nonde-
creasing step function.

Ž . Ž .b Put L ?; u back into the log-likelihood function, and maximizen
˜Ž Ž ..l u , L ?; u to obtain an estimator u of u . This estimator is called then n n 0

˜Ž .maximum profile likelihood estimator. A natural estimator of L is L ?; u .0 n n

Ž .Step a is concerned with maximizing a concave function over a convex
cone in Rn; hence it is well defined. It is convenient to notice that for any

Ž .fixed u , if d s 0 or d s 1, then to maximize f u , x without violating the˜Ž1. Žn.
Ž . Ž .monotonicity constraints, we have L Y ; u s 0 or L Y ; u s `. So, with-n Ž1. n Žn.

out loss of generality, we may assume that d s 1 and d s 0. It is seenŽ1. Žn.
that maximum profile likelihood estimators are exactly the same as the
maximum likelihood estimators, that is

ˆ ˜ ˆ ˜2.3 u s u and L ? s L ?; u .Ž . Ž . Ž .n n n n n

ˆ ˆ ˆŽ . Ž .Since l u , L G l u , L for any u g Q, if u is an interior point of Qn n n n n 0
ˆ ˆŽ .and if u is consistent we will prove consistency in Theorem 3.2 , then un n

will eventually lie in the interior of Q. So, for the purpose of studying
ˆlarge-sample properties for u , we can write down the score equation for u :n

Ž . Ž . <­r­u l u , L s 0, that is,ˆ ˆusu , LsLn n n

n Xˆ ˆexp yL Y exp u ZŽ . Ž .ž /n i n i
d y 1 y dŽ .Ý i iX½ 5ˆ ˆ1 y exp yL Y exp u ZŽ .2.4Ž . Ž .is1 ž /n i n i

ˆ X̂= L Y exp u Z Z s 0.Ž . Ž .n i n i i

ˆHowever, because of the monotonicity constraints on L , there are non
ˆ ˆŽ . Ž .simple score equations that can characterize L . Notice that by 2.3 , L ? sn n

ˆ ˆ ˆŽ . Ž . Ž .L ?; u . So to characterize L ? is the same as to characterize L ?; u ,n n n n n
which is characterized by a set of inequalities and score equations. This is

Ž .along the line of Proposition 1.1 of Groeneboom and Wellner 1992 .
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THEOREM 2.1. Assume that d s 1, d s 0. Then the maximum likeli-Ž1. Žn.
ˆ ˆŽ .hood estimator u , L satisfies 2.4, andn n

¡ X Xˆ ˆ ˆexp u Z exp yexp u Z Lž / ž /ž /n Ž j. n Ž j. Ž j.~dÝ Ž j. X¢ ˆ ˆ1 y exp yexp u Z LjGi ž /ž /n Ž j. Ž j.
2.5Ž . ¦

X ¥ˆy 1 y d exp u Z F 0Ž . ž /Ž j. n Ž j.§
for i s 1, . . . , n, and

¡ X Xn ˆ ˆ ˆexp u Z exp yexp u Z Lž / ž /ž /n Ž i. n Ž i. Ž i.~dÝ Ž i. X¢ ˆ ˆ1 y exp yexp u Z Lis1 ž /ž /n Ž i. Ž i.
2.6Ž . ¦

X ¥ˆ ˆy 1 y d exp u Z L s 0.Ž . ž /Ž i. n Ž i. Ž i.§
This theorem can be proved using Fenchel’s duality theorem; see, for

Ž .example, Rockafellar 1970 Theorem 31.4. A simple proof can be given
completely similar to that of Proposition 1.1 of Groeneboom and Wellner
Ž .1992 ; hence it is omitted.

REMARK 2.1. From the above discussion, we have that for any finite
ˆ ˆŽ .sample size n, with the assumption d s 1 and d s 0, the MLE u , LŽ1. Žn. n n

ˆ ˆ Ž .exists and is finite. Because if either u or L Y were `, the log-likelihoodn n Žn.
function would be y`.

REMARK 2.2. The assumption that d s 1 and d s 0 will not affect theŽ1. Žn.
ˆ ˆŽ . Ž .results later at all. Since if d s 0 or d s 1, then L Y s 0 or L Y sŽ1. Žn. n Ž1. n Žn.

ˆŽ .ˆ`; so, in the log-likelihood function l u , L , the terms associated with dn n n Ž1.
ˆ ˆŽ .and d are 0, and they will not contribute anything to l u , L .Žn. n n n

ˆ ˆ ˆŽ . Ž . Ž .REMARK 2.3. It is clear that if u , L maximizes 2.2 , let F y s 1 yn n n
ˆ ˆŽ Ž ..exp yL y , that is, F is a piecewise subdistribution function with jumpn n

ˆŽ . Ž Ž .points Y , . . . , Y and values at these jump points 1 y exp yL , . . . , 1 yŽ1. Žn. Ž1.
ˆ ˆ ˆŽ .. Ž .exp yL . So we can take u , F as the maximum likelihood estimator ofŽn. n n

Ž .u , F . In studying large-sample properties of the estimators, we will first0 0
ˆ ˆŽ . Ž .prove that u , F is consistent for u , F . Since, for continuous F , we haven n 0 0 0

ˆ ˆŽ . Ž . Ž .1 y F s exp yL , this implies that u , L is consistent for u , L .0 0 n n 0 0

Ž .The function L ?; u can be computed by using the well-known ‘‘pool-n
adjacent-violators’’ algorithm, see, for example, Robertson, Wright and

Ž .Dykstra 1988 . However, when the sample size n is large, the number of
Ž .nonlinear equations needed to be solved is of the order at least O n . Hence
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this algorithm could be too slow to compute the profile likelihood curve
Ž Ž ..l u , L ?; u . This motivates us to consider the following characterization ofn n
Ž .L ?; u which naturally yields an iterative but more efficient algorithm.n
Define the processes W , G and V byL L L

exp yexp u X z L yXŽ . Ž .Ž .
XW y s 1Ž . H X XL �t F y 4½X 1 y exp yexp u z L yŽ . Ž .Ž .w xy g 0, y

y1 X exp u X z dQ t , yX , z ,Ž . Ž .�t ) y 4 n5
exp 2u X z exp yexp u X z L yXŽ . Ž . Ž .Ž . X

XG y s 1 dQ t , y , zŽ . Ž .HL �t F y 4 n2X XX w xy g 0, y 1 y exp yexp u z L yŽ . Ž .Ž .

and

V y s W y q L yX dG yX , y G 0,Ž . Ž . Ž . Ž .HL L L
w x0, y

Ž . Ž .where Q is the empirical measure of the unobservable points T , Y , Z ,n i i i
i s 1, . . . , n.

Ž .THEOREM 2.2. For any fixed u , suppose that d s 1, d s 0. Then L ?; uŽ1. Žn. n
Ž . Ž .maximizes l u , L if and only if L ?; u is the left derivative of the greatestn n

convex minorant of the ‘‘self-induced’’ cumulative sum diagram, consisting of
the points

G Y , V Y , j s 1, . . . , n ,Ž . Ž .Ž .L Ž? ; u . Ž j. L Ž? ; u . Ž j.n n

Ž .and the origin 0, 0 .

The proof of Theorem 2.2 is completely analogous to that of Proposition 1.4
Ž .of Groeneboom and Wellner 1992 . This theorem gives an iterative procedure

Ž . Žk .Ž .to compute L ?; u for any fixed u . It proceeds as follows. Suppose L ?; u isn
Žkq1.Ž .obtained at the kth iteration; then L ?; u is computed as the left

derivative of the convex minorant of the cumulative sum diagram, consisting
of the points

G Žk . Y , V Žk . Y , j s 1, . . . , n ,Ž . Ž .Ž .L Ž? ; u . Ž j. L Ž? ; u . Ž j.

Ž .and the origin 0, 0 . This algorithm was first proposed by Groeneboom and
Ž .Wellner 1992 to compute the nonparametric maximum likelihood estimator

of a distribution function with ‘‘case 2’’ interval censored data and in a class
of deconvolution problems. They provided some heuristic arguments and
empirical experiences that it converges much faster than the EM algorithm.

Ž .Aragon and Eberly 1992 studied the convex minorant algorithm in more´
detail and showed that, with some modifications, the algorithm converges.
Simulation studies show that in the present situation it also converges very
quickly. This algorithm is used in the example considered in Section 5.
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3. Main results. In this section, we state our main results. Proofs are
put together in Section 7.

First, we need the following assumptions:

Ž . dA1 The finite-dimensional parameter space Q is a bounded subset of R .
Ž . Ž .A2 a The covariate Z has bounded support; that is, there exists z such0

< < Ž .that Z F z with probability 1. b For any u / u , the probability0 0
� X X 4P u Z / u Z ) 0.0

Ž . Ž . � Ž . 4A3 F 0 s 0. Let t s inf t: F t s 1 . The support of Y is an interval0 F 00w x w xS Y s l , u , and 0 F l F u - t .Y Y Y Y F0
Ž .U Ž .A3 Everything is the same as A3 except it is now assumed that 0 - l FY

u - t .Y F0
Ž .A4 The cumulative hazard function L has strictly positive derivative on0

w x Ž . Ž .S Y , and the joint distribution function G y, z of Y, Z has bounded
Ž .second-order partial derivative with respect to y.

Ž . Ž . Ž . Ž .UAssumptions A1 , A2a , A3 and A3 are imposed for consistency and
Ž . Ž . Ž .Urate of convergence of the estimators. In particular, A1 , A2a and A3 are

needed for the entropy calculation in Lemma 3.1 which is crucial for obtain-
ˆing rate of convergence and for proving asymptotic normality of u . Assump-n

Ž . Ž .tion A2b is imposed for identifiability of u ; A4 is useful in the proof of
Theorem 3.4.

3.1. Information calculation. It is well known that in most parametric
Žmodels and many semiparametric models such as the Cox model with right

'.censoring , we can estimate the finite-dimensional parameter at n conver-
gence rate and asymptotically efficiently. A necessary condition is that we
must have positive information. With current status data, it is not clear a
priori that the information is, in fact, positive. Therefore, we first calculate
the information for the regression parameter in the Cox model with current
status data, and show that it is, indeed, positive under reasonable assump-
tions.

Denote
<F y zŽ .

3.1 Q y , d , z s d y 1 y dŽ . Ž . Ž .
<1 y F y zŽ .

and

<F y zŽ .
2<3.2 O y z s E Q Y , d , Z Y s y , Z s z s .Ž . Ž .Ž .

<1 y F y zŽ .

Ž . Ž .UTHEOREM 3.1. Suppose that assumptions A2 and A3 are satisfied.
Then

Ž .a The efficient score function for u is
X <E Zexp 2u Z O Y Z Y s yŽ . Ž .Ž .XUl x s exp u Z Q y , d , z L y z y .Ž . Ž . Ž . Ž . Xu ½ 5<E exp 2u Z O Y Z Y s yŽ . Ž .Ž .



COX MODEL WITH INTERVAL CENSORING 547

Ž .b The information for u is
m2

E ZR Y , Z YŽ .Ž .m2U3.3 I u s E l X s E R Y , Z Z y ,Ž . Ž . Ž . Ž .u ½ 5E R Y , Z YŽ .Ž .
m2 X d Ž . 2Ž < . Ž < .where a s aa for a g R , and R Y, Z s L Y Z O Y Z .

3.2. Asymptotic properties. As we have shown, for each fixed sample size
ˆ ˆ ˆŽ .n, u , L is well defined. The following theorem asserts the consistency of un n n

ˆand the consistency of L on the support of Y.n

Ž . Ž . Ž .THEOREM 3.2 Consistency . Suppose that assumptions A1 , A2 and
Ž .A3 are satisfied. Then

û ª u a.s.,n 0

w xand if y g S Y is a continuity point of F ,0

L̂ y ª L y a.s.Ž . Ž .n 0

Moreover, if F is continuous, then0

ˆsup L y y L y ª 0 a.s.Ž . Ž .n 0
w xygS Y

ˆ ˆŽ .We now consider the convergence rate for u , L under an appropriaten n
ˆnorm defined later. After consistency of u is established, we can focus ourn

Ž .attention on a neighborhood of u . For any h ) 0, let B u , h be the ball0 0
centered at u and with radius h. If u is on the boundary of Q, then take0 0
Ž . Ž . Ž .B u , h to be B u , h l Q. In this way, we always have B u , h ; Q. In the0 0 0

w xfollowing, we will assume that the support S Y of the censoring variable Y
is finite and is strictly contained in the support of F , the distribution of the0

w xfailure time T, so L is bounded away from 0 and ` on S Y . Since we have0
ˆ ˆw xproved that L converges on S Y , we may restrict L to the following classn n

of functions:

F s L : L is increasing and 0 - 1rM F L y F M - `� Ž .
3.4Ž . w xfor all y g S Y ,4

where M is a large positive constant. Restrict the class of log-likelihood
Ž . Ž .functions l u , L defined by 2.1 to

3.5 HH s l u , L : u g B u , h , L g F .� 4Ž . Ž . Ž .0

Ž .We will apply Theorem 3.2.1 of Van der Vaart and Wellner 1996 , which
shows that the convergence rate is determined by the smoothness of the

Žmodel and the modulus of continuity of the objective function which is
.the log-likelihood function in the case of maximum likelihood estimation over

the parameter space.
Ž . � 2 4 5 5For any probability measure Q, define L Q s f : Hf dQ - ` . Let ? 22

5 5 Ž 2 .1r2be the usual L norm, that is, f s Hf dQ . For any subclass FF of22
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Ž . Ž Ž .. �L Q , define the bracketing number N « , FF, L Q s min m: there exist2 w x 2
f L, f U, . . . , f L, f U such that for each f g FF, f L F f F f U for some i, and1 1 m m i i
5 U L 5 4f y f F « .2i i

Ž .LEMMA 3.1. Let HH be defined by 3.5 , and suppose that Z has bounded
support. Then there exists a constant C ) 0 such that

sup N « , HH , L Q F C 1r« d e1r « for all « ) 0,Ž .Ž . Ž .w x 2
Q

where d is the dimension of u . Hence, for « small enough, we have

sup log N « , HH , L Q F C 1r« .Ž . Ž .Ž .w x 2
Q

Here Q runs through the class of all probability measures.

Define the distance d on Rd = F as follows:

< < 5 5d u , L , u , L s u y u q L y L ,Ž . Ž .Ž . 21 1 2 2 1 2 1 2

< < dwhere u y u is the Euclidean distance in R ,0

1r2
25 5L y L s L y y L y dQ yŽ . Ž . Ž .Ž .2 H1 2 1 2 Y

and Q is the marginal probability measure of the censoring variable Y.Y
Applying Lemma 3.1 and Theorem A.1 and Lemma A.1 in the Appendix, we
can prove the following result.

Ž . Ž . Ž .THEOREM 3.3 Rate of convergence . Suppose that assumptions A1 , A2
Ž .Uand A3 are satisfied. Then

ˆ ˆ y1r3d u , L , u , L s O n .Ž . Ž .ž /ž /n n 0 0 p

ˆThe overall rate of convergence is dominated by L . This rate agrees withn
the convergence rate of the NPMLE of a distribution function studied by

Ž .Groeneboom and Wellner 1992 . It is shown in the next theorem that the
ˆ 'convergence rate of u can be refined to achieve n .n

Ž .THEOREM 3.4 Asymptotic normality and efficiency . Suppose that u is an0
Ž . Ž . Ž .U Ž .interior point of Q and that assumptions A1 , A2 , A3 and A4 are

satisfied. Then
y1 y1Uˆ' 'n u y u s I u n P l x q o 1 ª N 0, I u ,Ž . Ž . Ž . Ž .Ž . Ž .n 0 0 n u p d 00

Ž . U Ž .where P is the empirical measure of d , Y , Z , i s 1, . . . , n, l x is then i i i u 0
Ž .efficient score defined in Theorem 3.1 and I u is the information.0

ˆSince u is asymptotically linear with efficient influence function, and then
Ž . Ž .model the likelihood function is sufficiently smooth Hellinger differentiable
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Ž .with respect to u , L , it is asymptotically efficient in the sense that any
ˆregular estimator has asymptotic variance matrix no less than that of u . Wen
Ž .do not go into the details here, but refer the reader to Van der Vaart 1991

Ž .and Bickel, Klaassen, Ritov and Wellner 1993 , Chapter 3.

( )4. Estimation of the information matrix I u . We now consider0
Ž . Ž .y1estimation of the information matrix I u . By Theorem 3.4, I u rn is the0 0

ˆasymptotic variance]covariance matrix for u .n
Ž . Ž .Recall in the expression for I u , R y, z is defined to be0

exp yL y exp zXuŽ . Ž .Ž .0 0X2 2< <R y , z s L y z O y z s exp 2 zu L y .Ž . Ž . Ž .Ž . Ž . X0 0 1 y exp yL y exp zuŽ . Ž .Ž .0 0

Denote

ˆ Xˆexp yL y exp zuŽ . Ž .ž /n nX 2ˆ ˆ ˆ4.1 R y , z s exp 2 zu L y .Ž . Ž . Ž .Ž .n n n Xˆ ˆ1 y exp yL y exp zuŽ . Ž .ž /n n

Let

m y s E R y , Z Y s y and m y s E ZR y , Z Y s y .Ž . Ž . Ž . Ž .Ž . Ž .1 2

Ž . Ž .Then, when we have obtained reasonable estimators m y and m y for1n 2 n
Ž . Ž . Ž .m y and m y , we can estimate I u by1 2 0

m2n1 m YŽ .2 n iˆ ˆ ˆ4.2 I u s R Y , Z Z y .Ž . Ž .Ž . Ýn n n i i i½ 5n m YŽ .1n iis1

Ž . Ž .The hard word is to estimate m y and m y . Also, u and the rest of R1 2 0
Ž .need to be estimated. When Z is a continuous covariate vector, m y '1

ˆŽ Ž . < . Ž Ž . < .E R y, Z Y s y can be approximated by E R y, Z Y s y . Then we cann
ˆŽ Ž . < .estimate E R y, Z Y s y by nonparametric regression approaches; see, forn

Ž .example, Stone 1977 .
When Z is a categorical covariate, the above nonparametric smoothing

procedure does not work well because of the discrete nature of the values of
ˆ Ž .R y, z . Here we consider the simplest case when Z is a dichotomousn
variable indicating two treatment groups; that is, Z only takes values 0 or 1

� 4 � 4 w Ž . < xwith P Z s 1 s g and P Z s 0 s 1 y g . Thus E ZR Z, Y Y s y s
Ž . � < 4 Ž . Ž . Ž .R 1, y P Z s 1 Y s y s R 1, y f y grf y , and1

< <� 4 � 4E R Z, Y Y s y s R 1, y P Z s 1 Y s y q R 0, y P Z s 0 Y s yŽ . Ž . Ž .
R 1, y f y g R 0, y f y 1 y gŽ . Ž . Ž . Ž . Ž .1 0s q ,

f y f yŽ . Ž .
Ž . Ž .where f y is the conditional density of Y given Z s 1, f y is the condi-1 0

Ž .tional density of Y given Z s 0 and f y is the marginal density of Y. Notice
that we only need to estimate the ratio of the above two conditional expecta-

Ž .tions. f y will cancel when we take the ratio of the two conditional expec-
tations.
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First we can estimate g by the total number of subjects in the treatment
ˆ Ž .group with Z s 1 divided by the sample size. Let f y be a kernel density1n

ˆŽ . Ž . Ž .estimator of f y and f y be a kernel density estimator of f y . Then a1 0 n 0
w Ž . < x w Ž . < xnatural estimator of E ZR Z, Y Y s y rE R Z, Y Y s y is

ˆ ˆR 1, y f y gŽ . Ž .ˆn 1n n
m y s .Ž .ˆn ˆ ˆ ˆ ˆR 1, y f y g q R 0, y f y 1 y gŽ . Ž . Ž . Ž . Ž .ˆ ˆn 1n n n 0 n n

ˆ Ž . Ž .Here R y, z is defined in 4.1 . With a proper choice of the bandwidth andn
Ž . Ž .kernel in estimation of f y and f y , the above estimator is consistent; see,1 0
Ž . Ž .for example, Silverman 1986 . Hence a reasonable estimator of I u is0

n1 2ˆ ˆ ˆ4.3 I u s R Y , Z Z y m Y .Ž . Ž . Ž .Ž .ˆŽ . ½ 5Ýn n n i i i n in is1

ˆŽ .We will use 4.3 to obtain an estimator of the standard error of u in ann
example in the next section.

In the special case when Y and Z are independent, the above nonparamet-
ric smoothing is not necessary. In this case, we have

m2E ZR Y , ZŽ .Ž .Z
I u s E R Y , Z Z y ,Ž . Ž .0 ½ 5E R Y , ZŽ .Z

where E means expectation with respect to Z. We can simply estimateZ
Ž .I u by0

m2
n¡ ¦n ˆ1 Ý Z R Y , ZŽ .js1 j n i j~ ¥ˆ ˆ ˆ4.4 I u s R Y , Z Z y .Ž . Ž .Ž . Ýn n n i i i n¢ §ˆn Ý R Y , ZŽ .is1 js1 n i j

Notice that it is always true that
m2

E ZR Y , Z YŽ .Ž .
E R Y , Z Z yŽ .½ 5E R Y , Z YŽ .Ž .

m2E ZR Y , ZŽ .Ž .ZF E R Y , Z Z y .Ž .½ 5E R Y , ZŽ .Z

Ž .If 4.4 is used improperly, that is, when there exists dependency between Y
ˆŽ . Ž .and Z, then 4.4 will overestimate I u , and hence the variance of u will be0 n

underestimated.

5. An example from a tumorigenicity study. In this section, we
apply the algorithm and the asymptotic normality Theorem 3.4 to an example

Ž .from a tumorigenicity study described in Hoel and Walburg 1972 . See also
Ž . Ž .Finkelstein and Wolfe 1985 and Finkelstein 1986 . One hundred and

forty-four RFM mice are assigned to either a germ-free or a conventional
environment. The purpose of this study is to compare the time from begin-
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ning of the study until the time to observe a tumor. Since lung tumors are
nonlethal and cannot be observed before death in RFM mice, it is appropriate
to treat this data as interval censored data.

We now fit a proportional hazards model to this data set. Let the censoring
indicator d s 1 if lung tumor is present, otherwise d s 0. The censoring
variable Y is the age at death. The covariate Z s 1 for the conventional mice
and Z s 0 for the germ-free mice. Figure 1 shows the profile likelihood

ˆfunction versus the regression parameter u . It is maximized at u s y0.55.n
ˆSo u s y0.55 is the value of our maximum likelihood estimator. To estimaten

ˆthe standard error of u , we first compare the distribution of the death timesn
of two treatment groups. Figure 2 shows the two histograms; the curves
imposed on the histograms are the kernel density estimators. It is clear that
the densities of the death times of two treatment groups are different. For the
conventional RFM mice, most deaths occur between 500 to 800 days. How-
ever, for the germ-free RFM mice, most deaths occur between 600 to 1000
days, and more than half of them occur between 800 to 1000 days. This

FIG. 1. Profile likelihood function for RFM mice. The profile likelihood function is maximized at
ˆ ˆu s y0.55. The estimated asymptotic standard error of u is s s 0.29.ˆn n n
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FIG. 2. Histograms of ages at death for two groups of RFM mice. The histograms for two groups
of RFM mice. The two curves are kernel density estimators using triangular kernel and band-
width equal to 200 days.

indicates a rather strong correlation between the death time and Z. So we
ˆŽ .use Theorem 3.4 and formula 4.3 to estimate the standard error of u .n

Ž . Ž .Applying the procedure for estimating I u using 4.3 discussed in Section0
ˆ4, we obtain that the estimated standard error of u is 0.29. An approximaten

Ž .95% confidence interval for u is y1.12, 0.01 . So an approximate 95%0
u0 Ž .confidence interval for e is 0.33, 1.01 . The p-value for testing u s 0 is0

Ž .0.054. The p-value of Finkelstein’s 1986 score test is 0.1. However, the
Ž .approach of Finkelstein 1986 requires discretization of the data and does

not give a confidence interval for u .0
Figure 3 shows the maximum likelihood estimator of the survival functions

based on the model. The solid line is the estimator for the baseline survival
Ž .function in the Cox model Z s 0, germ-free mice . The dotted line is the

Ž .estimator of the survival function for the conventional mice Z s 1 .

6. Maximum likelihood estimation in a class of semiparametric
models. In this section, we consider a class of semiparametric models. In
particular, we give sufficient conditions for the maximum likelihood estimator
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FIG. 3. Estimated survival functions for two treatment groups. The solid line is the maximum
Ž .likelihood estimator for the baseline survival function in the Cox model Z s 0, germ-free mice .

Ž .The dotted line is the estimator of the survival function for the conventional mice Z s 1 .

of the finite-dimensional parameter in a semiparametric model to be asymp-
totically normal and efficient. The results are applied to prove Theorem 3.4.

Consider a semiparametric model

PP s p x : u , f g Q = F ,Ž . Ž .� 4u , f

where p is a probability density function on the sample space XX , Q ; Rd isu , f

a finite-dimensional parameter space and F is an infinite-dimensional
Banach space. Usually, F is a collection of uniformly bounded real functions.

Suppose that X , . . . , X are i.i.d. samples from a probability density1 n
Ž . Ž .function p x , where u , f is the ‘‘true value’’ of the parameter. Letu , f 0 00 0

Ž . Ž . Ž .l x s log p x . The maximum likelihood estimator of u , f is theu , f u , f 0 0
ˆ ˆŽ .u , f that maximizes the log-likelihood functionn n

n

l u , f s l X over Q = F .Ž . Ž .Ýn u , f i
is1
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Ž .Wong and Severini 1991 showed that under some regularity conditions,
even though the convergence rate of the maximum likelihood estimator of an

'infinite-dimensional parameter is slower than the n rate, a smooth func-
tional of the maximum likelihood estimator of an infinite-dimensional param-

'eter has n convergence rate and is asymptotically efficient. They also
specialized their results to a class of semiparametric models, which implies
that the maximum likelihood estimator of the finite-dimensional parameter is
asymptotically efficient. However, their results do not seem to readily apply
to the Cox model with current status data. The infinite-dimensional parame-
ter spaces they considered are usually the spaces of smooth functions. But,
for the model considered here, the natural parameter space of the infinite-
dimensional parameter is the class of increasing functions, that is, the
baseline cumulative hazard functions. No smoothness assumption is imposed
to defined the maximum likelihood estimator. In fact, the maximum likeli-
hood estimator of the cumulative hazard function is a right-continuous step
function.

The main goal here is to propose another approach to obtain the asymp-
ˆtotic distribution of the maximum likelihood estimator u of the finite-n

dimensional parameter u , in the presence of an infinite-dimensional nuisance
'parameter whose estimator may converge with a rate slower than n .

Throughout this section, to avoid confusion with derivatives, we use aT

X d Ž .Trather than a to denote the transpose of vectors a g R . Let u s u , . . . , u .1 d
We start by defining the score functions of the log-likelihood function. For any

� Ž . 4fixed f g F, let f t : t in a neighborhood of 0 g R be a smooth curve in F
Ž . Ž . Ž . <running through f at t s 0, that is, f 0 s f. Let h s ­r­ t f t and letts0

H be the collection of all h defined above. Set

T
­ ­ ­

l u , f ; x s l x s l x , . . . , l x ,Ž . Ž . Ž . Ž .1 u , f u , f u , fž /­u ­u ­u1 d

­
w xl u , f ; x h s l x .Ž . Ž .2 u , f Ž t .­ t ts0

ˆ ˆŽ .In some cases, the maximum likelihood estimator u , f satisfies the follow-n n
ing estimating equations:

ˆ ˆ ˆ ˆS u , f ' P l u , f ; X s 0ž / ž /1n n n n 1 n n

and

ˆ ˆ ˆ ˆw x w xS u , f h ' P l u , f ; X h s 0,ž / ž /2 n n n n 2 n n

where h runs over H, and P is the empirical measure of the observationsn
X , . . . , X . On the other hand, in general, the exact MLE may not exist.1 n

ˆ ˆŽ .u , f may only satisfyn n

ˆ ˆ y1r2S u , f s o nŽ .ž /1n n n p
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and

ˆ ˆ y1r2w xS u , f h s o n for some h g H .Ž .ž /2 n n n p

ˆ ˆŽ .However, this will not affect the asymptotic properties of u , f .n n
Let S and S be the limit versions of S and S ; that is,1 2 1n 2 n

w xS u , f s Pl u , f , X and S u , f s Pl u , f ; X h .Ž . Ž . Ž . Ž .1 1 2 2

Ž . Ž .Here P s P , and we use linear functional notation Pf s Hf x dP x .u , f0 0

Define

˙ TS u , f s yPl u , f ; X l u , f , X ,Ž . Ž . Ž .11 1 1

˙ ˙Tw x w x w xS u , f h s S u , f h s yPl u , f ; X l u , f ; X hŽ . Ž . Ž . Ž .12 21 1 2

and
˙ w x w x w xS u , f h , h s yPl u , f ; X h l u , f ; X h .Ž . Ž . Ž .22 1 2 2 1 2 2

Ž .TFurthermore, for h s h , . . . , h , where h g H, k s 1, . . . , d, denote1 d k

Tw x w x w xl u , f , x h s l u , f , x h , . . . , l u , f , x h ,Ž . Ž . Ž .Ž .2 2 1 2 d

w x w x w x w xS u , f h s Pl u , f , x h , S u , f h s P l u , f , x h ,Ž . Ž . Ž . Ž .2 2 2 n n 2

˙ ˙T Tw x w x w xS u , f h s S u , f h s yPl u , f ; X l u , f ; X hŽ . Ž . Ž . Ž .12 21 1 2

and
˙ w x w x w xS u , f h, h s yPl u , f ; X h l u , f ; X h .Ž . Ž . Ž .22 2 2

� 4Let the infinite-dimensional space F y f s f y f : f g F be endowed0 0
5 5 5 5with a seminorm ? . In applications, ? can be chosen to be the most

convenient one. Here are the assumptions needed for the result in this
section.

Ž .CONDITION 1 Consistency and rate of convergence . We have

ˆ ˆ yb< < 5 5u y u s o 1 and f y f s O n for some b ) 0.Ž . Ž .n 0 p n 0 p

Ž . U Ž U U .TCONDITION 2 Positive information . There is an h s h , . . . , h , where1 d
hU g H, k s 1, . . . , d, such thatk

˙ ˙ Uw x w xS u , f h y S u , f h , h s 0Ž . Ž .12 0 0 22 0 0

˙ ˙ UŽ . Ž .w xfor all h g H. Furthermore, S u , f y S u , f h is nonsingular.11 0 0 21 0 0

This condition is closely related to the information calculation for a semi-
parametric model. We have

˙ ˙ Uw x w xS u , f h y S u , f h , hŽ . Ž .12 0 0 22 0 0

w U x w xs yP l u , f ; X y l u , f ; X h l u , f ; X h .� 4Ž . Ž . Ž .Ž .1 0 0 2 0 0 2 0 0

U Ž .w U xSo for k s 1, . . . , d, if h g H and if l u , f ; x h is the projection of thek 2 0 0 k
Ž .kth element of l u , f ; x in the closure of the space generated by1 0 0
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� Ž .w x 4 0 Ž .l u , f ; x h , h g H in L P , then we will have the first part of Condi-2 0 0 2
0 Ž . � 2 4tion 2. Here L P s a: Ha dP s 0, Ha dP - ` . Denote2

U w U x6.1 l u , f ; x s l u , f ; x y l u , f ; x h .Ž . Ž . Ž . Ž .1 2

U Ž .l u , f; x is called the efficient score for u . Moreover,
m2U U˙ ˙ w x6.2 I u s yS u , f q S u , f h s E l u , f ; XŽ . Ž . Ž . Ž . Ž .Ž .11 21

Ž .y1is the information for estimation of u , and I u is the information bound.

Ž .CONDITION 3 Stochastic equicontinuity . For any d x0 and C ) 0,n

' 'sup n S y S u , f y n S y S u , f s o 1Ž . Ž . Ž . Ž . Ž .1n 1 1n 1 0 0 p
yb< < 5 5uyu Fd , fyf FCn0 n 0

and
U' w xsup n S y S u , f hŽ . Ž .2 n 2

yb< < 5 5uyu Fd , fyf FCn0 n 0

U' w xy n S y S u , f h s o 1 .Ž . Ž . Ž .2 n 2 0 0 p

This condition can be most conveniently verified via methods developed in
empirical process theory, in particular, via entropy calculations and using

Ž .maximal inequalities; see, for example, Pollard 1989, 1990 and Van der
Ž .Vaart and Wellner 1996 .

Ž .CONDITION 4 Smoothness of the model . For some a ) 1 satisfying ab )
Ž . �Ž . < < 5 51r2 and for u , f in the neighborhood u , f : u y u F d , f y f F0 n 0

yb 4Cn ,

˙ ˙w x w xS u , f y S u , f y S u , f u y u y S u , f f y fŽ . Ž . Ž . Ž .1 1 0 0 11 0 0 0 12 0 0 0

< < 5 5 as o u y u q O f y fŽ . Ž .0 0

and
U U U˙w x w x w xS u , f h y S u , f h y S u , f h u y uŽ . Ž . Ž . Ž .Ž .2 2 0 0 21 0 0 0

U˙ w xyS u , f h , f y fŽ .22 0 0 0

< < 5 5 as o u y u q O f y f .Ž . Ž .0 0

Notice the interaction between the convergence rate b and the smoothness
of the model indicated by a . The faster the convergence rate, the less
smoothness of the model is required.

U Ž . Ž . Ž .CONDITION 5. With l and I u defined in 6.1 and 6.2 ,0

U'n P l u , f ; x ª N 0, I u .Ž . Ž .Ž .n 0 0 d 0

If the information is finite and greater than 0, then this condition is
satisfied because P lU is an average of i.i.d. random variables with mean 0n
and finite second moment.
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THEOREM 6.1. Suppose that

ˆ ˆŽ . Ž .i the estimator u , f satisfiesn n

ˆ ˆ y1r2 ˆ ˆ U y1r2w xS u , f s o n and S u , f h s o n ;Ž . Ž .ž / ž /1n n n p 2 n n n p

Ž .ii Conditions 1]5 are satisfied.

Then

y1 y1Uˆ' 'n u y u s I u n P l u , f ; x q o 1 ª N 0, I u .Ž . Ž . Ž . Ž .Ž . Ž .n 0 0 n 0 0 p d 0

ˆ ˆ y1r2 ˆ ˆ U y1r2Ž . Ž . Ž .w x Ž .PROOF. Since S u , f s o n , S u , f h s o n ,1 n n n p 2 n n n p
Ž . Ž .w U xS u , f s 0 and S u , f h s 0, by Conditions 1 and 3, we have1 0 0 2 0 0

ˆ ˆ' 'n S u , f y n S u , f s o 1Ž . Ž .ž /1 n n 1n 0 0 p

and
U Uˆ ˆ' 'w x w xn S u , f h y n S u , f h s o 1 .Ž . Ž .ž /2 n n 2 n 0 0 p

These two equations plus Condition 4 imply that

a˙ ˆ ˙ ˆ ˆ ˆ< < 5 5a S u y u q S f y f q o u y u q O f y fŽ . Ž . Ž . Ž .ž /11 n 0 12 n 0 n 0 n 0

y S u , f s o ny1r2 ,Ž . Ž .1n 0 0 p

U U˙ ˆ ˙ ˆw xb S h u y u q S h , f y fŽ . Ž .21 n 0 22 n 0

ˆ ˆ a< < 5 5q o u y u q O f y fŽ . Ž .ž /n 0 n 0

w U x y1r2yS u , f h s o n .Ž . Ž .2 n 0 0 p

aˆ' Ž5 5 . Ž .By Condition 1 and ab ) 1r2, n O f y f s o 1 . So, by Conditionn 0 p
Ž . Ž .2 and a minus b , we have

˙ ˙ U ˆ ˆ< <w xS y S h u y u q o u y uŽ . Ž .ž /11 21 n 0 n 0

w U x y1r2s y S u , f y S u , f h q o n .Ž . Ž . Ž .Ž .1n 0 0 2 n 0 0 p

It follows that

U˙ ˙ ˆ' w xn S y S h u y uŽ .ž /11 21 n 0

U' w xs y n S u , f y S u , f h q o 1 .Ž . Ž . Ž .Ž .1n 0 0 2 n 0 0 p

Finally, since

w U x US u , f y S u , f h s P l u , f ; XŽ . Ž . Ž .1n 0 0 2 n 0 0 n 0 0

and

˙ ˙ Uw xS y S h s yI u ,Ž .11 21 0

the result follows from the second part of Condition 2 and Condition 5. I
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7. Proofs.

PROOF OF THEOREM 3.1. Without loss of generality, we only prove the
theorem for Z g R. The general case can be proved similarly. We first
compute the score function for u and F. The score function for u is simply the
derivative of the log-likelihood with respect to u , that is,

<F y zŽ .
u zl̇ x s ze L y d y 1 y d .Ž . Ž . Ž .u <1 y F y zŽ .

� < < 4Now suppose FF s F , h - 1 is a regular parametric subfamily of FF s0 h

� 4 Ž . Ž . < Ž .F: F < m, m s Lebesgue measure . Set ­r­h log f t s a t . Then a ghs0h
0 `Ž . Ž . Ž . <L F and ­r­h F t s H a dF. The score operator for f ishs02 h t

` <H a dF F y zŽ .yu zl̇ a x s e yd q 1 y d .Ž . Ž . Ž .f <F y 1 y F y zŽ . Ž .
Ž . Ž .Let Q y, d , z be defined by 3.1 . Then

H`a dFyu z u z˙ ˙l x s ze L y Q y , d , z and l a x s ye Q y , d , z .Ž . Ž . Ž . Ž . Ž . Ž .u f F yŽ .
U ˙ ˙Ž . Ž . Ž . Ž .With A2 and A3 , l is square integrable, and for any a g L F , l a isu 2 f

U̇square integrable. To calculate the efficient score l for u , we need to find au

function a# so that

˙ ˙ ˙ 07.1 l y l a# H l a for all a g L F ,Ž . Ž .u f f 2

˙ ˙ ˙ 0 zŽ .Ž . Ž . Ž .that is, E l y l a# l a s 0 for all a g L F . Let r z s e . Some calcula-u f f 2
tion yields

˙ ˙ ˙yE l y l a# l až /ž /u f f

` `H a dF H a# dFY Y
<s E E r 2uZ O Y Z ZL Y q Y ,Ž . Ž . Ž .Y ½ 5F Y F YŽ . Ž .

Ž < . Ž .where O Y Z is defined by 3.2 . Let
`H a# dFY

<E r 2uZ O Y Z ZL Y q Y s 0.Ž . Ž . Ž .½ 5F YŽ .
Then

H` a# dFY
< <L Y E r 2uZ O Y Z Z Y s y E r 2uZ O Y Z Y .Ž . Ž . Ž . Ž . Ž .

F YŽ .
Thus with a# determined by

<` L y F y E Zr 2uZ O Y Z Y s yŽ . Ž . Ž . Ž .
a# dF s y ,H <E r 2uZ O Y Z Y s yŽ . Ž .y
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Ž .7.1 holds. Notice that a# is only determined on the support of Y. However,
l̇ a# is a square integrable function with expectation 0. So the efficient scoref
function for u is

U̇ ˙ ˙l x s l x y l a# xŽ . Ž . Ž .ž /u u f

<E Zr 2uZ O Y Z Y s yŽ . Ž .
s r u z Q y , d , z L y z y .Ž . Ž . Ž . ½ 5<E r 2uZ O Y Z Y s yŽ . Ž .

The information for u is

2
E ZR Y , Z YŽ .Ž .2U̇7.2 I u s E l X s E R Y , Z Z y ,Ž . Ž . Ž . Ž .u ½ 5E R Y , Z YŽ .Ž .

Ž . 2Ž < . Ž < .where R Y, Z s L Y Z O Y Z . I

ˆWe now consider the proof of Theorem 3.2. First notice that F is onlyn
w xdefined on the support S Y of the distribution of the censoring variable Y.

ˆ Ž .Furthermore, since l G 0, we have F 0 s 0, according to the convention weY n
ˆ ˆ ˆŽ . Ž . Ž Ž .. w xintroduced in Section 2 for L y , and F y s 1 y exp yL y for y g S Y .n n n

w xLet FF be the set of all Borel subprobability measures on S Y . Then FF can be
equipped with the vague topology by defining that, for any sequence F g FFn
and F g FF, F converges vaguely to F if and only ifn

w x7.3 f dF ª f dF for every f g C S Y ,Ž . Ž .H Hn 0

Ž w x.where C S Y is the set of all continuous functions that vanish outside a0
w x Ž .compact subset of S Y . See Bauer 1981 , Chapter 7. Let the regression
Ž d .parameter space Q a bounded subset of R be equipped with the usual

Euclidean topology. Then the product space Q = FF can be equipped with the
product of the Euclidean topology and the vague topology. For any sequence
Ž . Ž . Ž . Žu , F g Q = FF, we say that u , F converges to u , F under the above-n n n n

. Ž .defined product topology if and only if u ª u and 7.3 holds.n
The proof of Theorem 3.2 is adapted from Van der Vaart and Wellner

Ž .1992 , where these authors considered consistency of the NPMLE of the
mixing distribution in a mixture model.

Ž . dPROOF OF THEOREM 3.2. By condition A1 , Q is a bounded subset of R .
Without loss of generality, we can take Q to be a compact subset, since we
can always find a compact subset QU of Rd such that Q ; QU and work with
QU. Throughout the proof, we will work with subprobability measures rather
than subdistribution functions. In an abuse of notation, we also use F to

Ž . w xdenote the measure m induced by F, so F x should be thought as m 0, x .F F
Ž .Let x s y, d , z and let

X XŽ . Ž .exp u z exp u zf u , F ; x s d 1 y F y q 1 y d F y .Ž . Ž . Ž . Ž .Ž .
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Let 0 - a - 1 be a fixed constant throughout the proof. Let E be the
Ž .expectation under u , F . For any subprobability measure F and regression0 0

parameter u , if at least one of the two is not equal to the corresponding true
Ž .value F or u , by concavity of the function u ª log u, condition A2b and0 0

Jensen’s inequality,

f u , F ; XŽ .
7.4 E log 1 q a y 1 - 0.Ž . ½ 5ž /f u , F ; XŽ .0 0

U UŽ . Ž . Ž .U UFor an open ball NN around u , F , define f x; NN s sup f u , F ; x .Žu , F .g NN
Ž .Then, for a sequence of open balls NN with radius « shrinking to u , F as«

Ž . Ž . Ž .« ª 0, we have f x; NN ª f u , F; x . By 7.4 , for « sufficiently small, there is«

an h ) 0 so that«

f X ; NNŽ .«
7.5 E log 1 q a y 1 n h - 0.Ž . «ž /f u , F ; XŽ .0 0

ˆ ˆŽ .On the other hand, since u , F is the maximum likelihood estimator, wen n
have

n n
ˆ ˆlog f u , F ; X G log f u , F ; X .Ž .Ý Ýž /n n i 0 0 i

is1 is1

By concavity of the function u ª log u, this implies

n ˆ ˆf u , F ; Xž /n n i
7.6 log 1 q a y 1 G 0.Ž . Ý ž /f u , F ; XŽ .0 0 iis1

Ž .For any vaguely open neighborhood NN of the true u , F , its complement in0 0 0
Q = FF is a vaguely closed subset of a compact set, hence also vaguely

� Ž . 4compact. The open cover NN , u , F f NN of this complement has a finiteŽu , F . 0
ˆ ˆŽ .subcover NN , . . . , NN . If u , F is not in NN , it is in one of theŽu , F . Žu , F . n n 01 1 k m

Ž .subcovers. By 7.6 , we have

m n f X ; NNŽ .i Žu , F .k kˆ ˆu , F f NN ; log 1 q a y 1 n h G 0 .D Ý½ 5ž /n n 0 Žu , F .k k½ 5ž /f u , F ; XŽ .0 0 iks1 is1

The probability of each of the sets in the union is the probability that an
average of uniformly bounded and independent random variables is nonnega-

Ž .tive. However, these random variables have negative expectation by 7.5 . By
Hoeffding’s inequality, each of the probabilities is of the order ey« n,

2 Ž Ž ..2where « can be chosen equal to 2m r h y log 1 y a . Here h s0 0
� 4max h : 1 F k F m , and m is any negative number that is greater thanŽu , F .k k

Ž .the expectation in 7.5 . This is true for all n G 1. Hence
`

ˆ ˆP u , F f NN - `.Ý ½ 5ž /n n 0
ns1
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ˆ ˆŽ .By the Borel]Cantelli lemma, it follows that, with probability 1, u , F g NNn n 0
for all n sufficiently large. By the definition of our product topology, this
implies that

û ª u a.s.,n 0

ˆand F converges vaguely to F almost surely under P . In terms ofn 0 Žu , F .0 0
Ž . Ž .distribution functions, by Theorem 4.3.1 ii of Chung 1974 , page 81, this

w ximplies that for y g S Y , if y is a continuity point of F ,0

ˆ ˆlim F y y F 0 s F y y F 0Ž . Ž . Ž . Ž .Ž .n n 0 0
nª`

Ž .almost surely with respect to P . Since F 0 s 0 and by our conventionŽu , F . 00 0ˆ Ž .F 0 s 0, we haven

ˆlim F y s F y , P -a.s.Ž . Ž .n 0 Žu , F .0 0nª`

In particular, if F is continuous, this, in turn, implies0

ˆlim sup F y y F y s 0Ž . Ž .n 0
nª` w xygS Y

almost surely with respect to P . In view of Remark 2.3, the proof isŽu , F .0 0

complete. I

w Ž .xPROOF OF LEMMA 3.1. It is known see, e.g., Van de Geer 1993 that for
the class of functions

� 4F s L : L is an increasing function and 0 - 1rM F L F M - ` ,

where M is a constant, its « bracketing number is of the order of m s
Ž Ž .. Ž 1r « .N « , F, L P s O e . This means, there exists a set of functions,w x 2

LL, LU, . . . , LL , LU , such that, for each L g F, LL F L F LU for some i and1 1 m m i i
5 U L 5 LL y L F « . We can certainly use the following set of functions: L y « ,2i i i
LU q « , i s 1, . . . , m. Let LU L s LL y « and LUU s LU q « . Then, for anyi i i i i

U L L U UU 5 UUL g F, we have, for some i, L q « s L F L F L s L y « and L yi i i i i
U L 5L F 3« . Since F is uniformly bounded away from 0, we may choose «2i

small enough such that all the bracketing functions stay away from 0. We
Ž .first show that we can choose k points u , . . . , u in B u , h such that, for1 k 0

Ž . Ž .any u , L g B u , h = F,0

7.7 exp zXu LU L y F exp zXu L y F exp zXu LUU yŽ . Ž . Ž . Ž . Ž .Ž . Ž .j i j i

for i decided above and some 1 F j F k. Since Z has bounded support, we can
Ž X . Ž .find a constant 0 - C - ` such that exp zu - C for all z and u g B u , h .1 1 0

exp zXu L y y exp zXu LU L yŽ . Ž . Ž .Ž .j i

s exp zXu L y yexp zXu LU L y qexp zXu LU L y yexp zXu LU L yŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž .i i j i

U L < < < <G C L y y L y y C u y u G C « y C u y uŽ . Ž .Ž .1 i 2 j 1 2 j
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and
X UU X UU < <exp zu L y y exp zu L y G C L y y L y y C u y uŽ . Ž . Ž . Ž . Ž .Ž . Ž .j i 1 i 3 j

< <G C « y C u y u .1 3 j

Here C ) 0 and C ) 0. So if we choose u , . . . , u such that, for any2 3 1 k
Ž . < < � 4 Ž .u g B u , h , u y u F min C «rC , C «rC for some 1 F j F k, then 7.70 j 1 2 1 3

holds. It is well known that the minimum value of k can be on the order of
Ž d .O 1r« .
Let

l L x s d log 1 y exp yexp yzXu LU L y y 1 y d exp zXu LUU y ,Ž . Ž . Ž . Ž .Ž . Ž .ž /ž /i j j i j i

lU x s d log 1 y exp yexp yzXu LUU y y 1 y d exp zXu LU L y .Ž . Ž . Ž . Ž .Ž . Ž .ž /ž /i j j i j i

Ž Ž .. Ž .Since log 1 y exp yx is an increasing function, we have, for each u , L g
Ž .B u , h = F,0

l L x F l u , L ; x F lU xŽ . Ž . Ž .i j i j

for some 1 F i F m, 1 F j F k. Furthermore, since Z has bounded support
and the functions LU L and LUU are bounded away from 0,i i

X XUU U L UU U Lexp zu L y y exp zu L y F C L y y L y ,Ž . Ž . Ž . Ž .Ž . Ž .j i j i 4 i i

X XUU U Llog 1 y exp yexp yzu L y y log 1 y exp yexp yzu L yŽ . Ž .Ž . Ž .ž / ž /ž / ž /j i j i

UU U LF C L y y L y ,Ž . Ž .5 i i

for some positive constants C and C . Thus4 5

UU U LU Ll x y l x F C q C L y y L y F 3 C q C « .Ž . Ž . Ž . Ž . Ž . Ž .i j i j 4 5 i i 4 522

This implies, there exist l L , lU , i s 1, . . . , m, j s 1, . . . , k, such that, for anyi j i j
L U 5 U L 5 Žp g HH, l F l F l for some 1 F i F m, 1 F j F k, and l y l F 3 C q2i j i j i j i j 4

. Ž Ž ..C « . This means that the bracketing number N « , HH, L P for the class HH5 w x 2
Ž yd 1r« .is of order mk s O « e . I

PROOF OF THEOREM 3.3. We apply Theorem 3.2.1 of Van der Vaart and
Ž .Wellner 1996 .

Ž .By the Kullback]Leibler inequality, El u , L, X is maximized at u s u0
Žand L s L . So its first derivative at u and L is equal to 0 this can also be0 0 0

.easily verified directly . Since F is uniformly bounded away from 0 and ` and
Z has bounded support, Taylor expansion yields that

El u , L , X y El u , L , X F yCd2 u , L , u , LŽ . Ž . Ž . Ž .Ž .0 0 0 0

for some constant C ) 0. Thus

Ch 2

sup El u , L , X y El u , L , X F y .Ž . Ž .Ž .0 0 4ŽŽ . Ž ..hr2Fd u , L , u , L Fh0 0
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By Lemma 3.1 and Lemma A.1 in the Appendix,

U 'E sup n P y P l u , L , x y l u , L , xŽ . Ž . Ž .Ž .n 0 0
ŽŽ . Ž ..d u , L , u , L Fh0 0

h1r2
1r2s O 1 h 1 q M .Ž . 2ž /'h n

Here EU is the outer expectation. Let

h1r2
1r2f h s h 1 q M .Ž .n 2ž /'h n

2r3 y1r3 'Ž . Ž . Ž .Then f h rh is a decreasing function, and n f n s O n for nn n
ˆ ˆlarge. Furthermore, by Theorem 3.2, u is consistent and L is uniformlyn n

consistent. Hence the conditions of Theorem 3.2.1 of Van der Vaart and
Ž .Wellner 1996 are satisfied. This implies

ˆ ˆ y1r3d u , L , u , L s O n . IŽ . Ž .ž /ž /n n 0 0 p

PROOF OF THEOREM 3.4. Let

exp yexp u X z L yŽ . Ž .Ž .
r y , z ; u , L s .Ž . X1 y exp yexp u z L yŽ . Ž .Ž .

Ž . u z Ž .Ž Ž . Ž .. Ž .The score for u is l u , L; x s ze L y d r y, z; u , L y 1 y d . By 2.4 ,1

ˆ ˆ ˆ ˆS u , L ' P l u , L ; x s 0.ž / ž /1n n n n 1 n n

Ž . Ž .For any h g L Q recall that Q is the marginal distribution of Y , define2 Y Y

w x u zl u , L ; x h s e h y d r y , z ; u , L y 1 y d .Ž . Ž . Ž . Ž .Ž .2

Ž . Ž . <l can be thought of as the derivative ­r­« l u , L q « h, x . Denote«s02

<L y E Z exp 2u Z O Y Z Y s yŽ . Ž . Ž .0 0Uh y sŽ .
<E exp 2u Z O Y Z Y s yŽ . Ž .0

and
w U x w U xS u , L h s P l u , L ; x h .Ž . Ž .2 n n 2

Ž . Ž .w U xFrom the proof of Theorem 3.1, l u , L; x y l u , L; x h is orthogonal to1 2
Ž .w x 0 Ž . Ž . Ul u , L; x h in L P for any h in L Q . Let h be the kth component of2 2 2 Y k

U ˆ Uh , k s 1, . . . , d. Since L q « h is not necessarily in the space F, we mayn k
ˆ ˆ UŽ .w xnot have S u , L h s 0. Instead, we prove that2 n n n

ˆ ˆ U y1r2w xS u , L h s o n .Ž .ž /2 n n n p

Since L is a strictly increasing continuous function, its inverse Ly1 is0 0
well defined. Let j s hU (Ly1, that is, the composition of hU on the inverse0 0

ˆŽ Ž ..of L . Then j is well defined on the range of L . Since j L y is a right-0 0 0 n
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ˆ Ž .continuous step function and has exactly the same jump points as L y , byn
ˆthe characterization of L ,n

ˆ ˆ ˆ ˆP j L y exp u z d r y , z ; u , L y 1 y d s 0.Ž . Ž .Ž . Ž . ž /ž /n n n n n

Ž . Ž . Ž . UBy assumptions A2a , A3 and A4 , h has bounded derivative. This and
the assumption that L has strictly positive derivative implies that j has0 0
bounded derivative. So, noticing hU s hU (Ly1 (L s j (L , we have0 0 0 0

U ˆ ˆ ˆP h y exp u z d r y , z ; u , L y 1 y dŽ . Ž .Ž . ž /ž /n n n n

ˆ ˆ ˆ ˆs P j (L y y j (L y exp u z d r y , z ; u , L y 1 y dŽ . Ž . Ž .Ž . Ž . ž /ž /n 0 0 0 n n n n

ˆs P y P j (L y y j (L yŽ . Ž . Ž .Ž .n 0 0 0 n

= ˆ ˆ ˆexp u z d r y , z ; u , L y 1 y dŽ .Ž . ž /ž /n n n

ˆ ˆ ˆ ˆq P j (L y y j (L y exp u z d r y , z ; u , L y 1 y d .Ž . Ž . Ž .Ž . Ž . ž /ž /0 0 0 n n n n

Ž y1r2 .We first show that the first term converges on the order of o n . Letp

c x ; u , L s j (L y y j (L yŽ . Ž . Ž .Ž .0 0 0
7.8Ž .

=eu z d r y , z ; u , L y 1 y d .Ž . Ž .Ž .
For any h ) 0, consider the class of functions

< < 5 5C h s c x ; u , L : u y u q L y L F h and L g F .� 4Ž . Ž . 20 0

Ž .It is verified in Lemma 7.1 that C h is a Donsker class. This implies

sup P y P c x ; u , L s o ny1r2 .Ž . Ž . Ž .n p
y1r3Ž .cgC Cn

Ž y1r2 .This implies the first term is on the order of o n . The second term isp
equal to

ˆ ˆP exp u z j (L y y j (L yŽ . Ž .Ž . Ž .n 0 0 0 n

=
ˆ ˆexp yexp u z L y y exp yexp u z L yŽ . Ž . Ž .Ž .Ž .ž /n n 0 0

ˆ ˆž /1 y exp yexp u z L yŽ .Ž .ž /n n

1r22ˆF C P L y y L yŽ . Ž .0 nž /
=

1r22ˆ ˆP exp u z L y y exp u z L yŽ . Ž . Ž .Ž .n n 0 0ž /
s O ny2r3 ,Ž .p
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by the Cauchy]Schwarz inequality and Theorem 3.3. Here C is a finite
Ž . Ž .constant coming from the mean value theorem and assumptions A2 , A3

ˆ ˆŽ . Ž . Ž ..and A4 as well as the positive lower bound of 1 y exp yexpu z L y .n n
Thus the first assumption of Theorem 6.1 is verified. Now we verify Condi-
tions 1]5 listed there. By Theorem 3.3, Condition 1 is satisfied with b s 1r3.
The information calculation asserts that Condition 2 holds. To verify Condi-
tion 3, consider the following two classes of functions:

< < 5 5l u , L ; x y l u , L ; x : u y u F h , L y L F h ,� 4Ž . Ž .1 1 0 0 0 0

U U < < 5 5w x w xl u , L ; x h y l u , L ; x h : u y u F h , L y L F h ,� 4Ž . Ž .2 2 0 0 0 0

where h is near 0. It is proved in Lemma 7.1 that the entropy numbers for the
above two classes are of order 1rh. This implies that these two classes are
Donsker, and hence Condition 3 is satisfied. Condition 4 is satisfied with
a s 2. This can be verified straightforwardly by using a Taylor expansion. So
ab s 2 = 1r3 ) 1r2. Condition 5 is satisfied because the information matrix
Ž .I u is finite and positive. Thus the result follows from Theorem 6.1. I0

LEMMA 7.1. For any h ) 0, define the class of functions

< < 5 5C h s c x ; u , L : u y u q L y L F h and L g F ,� 4Ž . Ž . 20 0

Ž . Ž .where c is defined in 7.8 and F is defined in 3.4 . Then the L covering2
Ž Ž ..number N « , C, L Q of C:2

sup N « , C , L Q F constant ? 1r« d exp 1r« .Ž . Ž .Ž . Ž .2
Q

Hence, for « close to 0, the entropy number

sup log N « , C , L Q F constant ? 1r« .Ž .Ž .2
Q

Ž .Here Q runs through all probability measures. This implies that C h is a
Donsker class.

Ž .PROOF. It was shown in Van de Geer 1993 that for the uniformly
Ž .bounded class of functions F defined in 3.4 , its L covering number is on2

Ž 1r « .the order of m s O e . This means, there exists a set of functions
5 5L , . . . , L , such that, for any L g F, L y L F « for some 1 F i F m.21 m i

Ž d .Moreover, there exist u , . . . , u , where k s O 1r« , such that, for any1 k
Ž . < < Ž . Ž .u g B u , h , u y u F « for some 1 F j F k. Now define c x s c x; u , L ,0 j i j j i

where i s 1, . . . , m and j s 1, . . . , k. Then, since L g F, L is uniformly
bounded from 0 and `. Moreover, Z is bounded, and it follows that, for any
c g C,

5 5c y c F constant ? «2i j

for the same 1 F i F m and 1 F j F k as determined above. This implies that
Ž d . Ž .the covering number for the class C is on the order of mk s 1r« exp 1r« .

I
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APPENDIX

The following theorem is Theorem 3.2.1 of Van der Vaart and Wellner
Ž .1996 . This theorem establishes the relationship between the smoothness
and modulus of continuity of the objective function and the rate of conver-
gence of a maximization estimator. It is used to prove Theorem 3.3.

Ž .THEOREM A.1 Rate of convergence . For each n let M and M ben n
Ž .stochastic processes indexed by a set Q. Let u g Q possibly random andn

Ž . Ž0 F d - h be arbitrary and let u ª d u , u be an arbitrary map possiblyn n n
. w .random from Q to 0, ` . Let C be a generic constant. Suppose that, for every

Ž .n and d - d u , u F h,n n

sup M u y M u F yd 2Ž . Ž .n n n
Ž .dr2-d u , u Fd , ugQn n n

and
U 'E sup n M y M u y M y M u F Cf dŽ . Ž . Ž . Ž . Ž .n n n n n n

Ž .dr2-d u , u Fd , ugQn n n

Ž . a Ž .for function f such that d ª f d rd is increasing on d , h for somen n n
a - 2. Here EU denotes outer expectation. Let r F Cdy1 satisfyn n

2 'r f 1rr F n every n.Ž .n n

ˆ ˆ y2Ž . Ž . Ž .If the sequence u satisfies M u G M u y O r and is consistent forn n n n n p n
ˆ UŽ . Ž .u , then r d u , u s O 1 . If the displayed conditions are valid for h s `,pn n n n n

ˆthen the condition that u is consistent is unnecessary.n

Ž .The following lemma is Lemma 3.2.2 of Van der Vaart and Wellner 1996 .
Let X , . . . , X be i.i.d. random variables with distribution P and let P be1 n n' Ž .the empirical measure of these random variables. Denote G s n P y Pn n

5 5 < <and G s sup G f for any measurable class of functions FF. DenoteFFn f g FF n

h

J h , FF , L P s 1 q log N « , FF , L Q d« .Ž . Ž .Ž . Ž .'Hw x 2 w x 2
0

LEMMA A.1. Let FF be a uniformly bounded class of measurable functions.
Then

J h , FF , L PŽ .Ž .w x 2U 5 5E G F CJ h , FF , L P 1 q M ,Ž .Ž .FFP n w x 2 2ž /'h n
2 2 5 5if every f in FF satisfies Pf - h and f F M. Here C is a finite constant not`

depending on n.
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