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ASYMPTOTIC EQUIVALENCE OF NONPARAMETRIC
REGRESSION AND WHITE NOISE

BY LAWRENCE D. BROWN1 AND MARK G. LOW 2

University of Pennsylvania

The principal result is that, under conditions, to any nonparametric
regression problem there corresponds an asymptotically equivalent se-
quence of white noise with drift problems, and conversely. This asymptotic
equivalence is in a global and uniform sense. Any normalized risk function
attainable in one problem is asymptotically attainable in the other, with
the difference in normalized risks converging to zero uniformly over the
entire parameter space. The results are constructive. A recipe is provided
for producing these asymptotically equivalent procedures. Some implica-
tions and generalizations of the principal result are also discussed.

Introduction. The principal result of this paper is that to any nonpara-
metric regression problem there corresponds a white noise with drift problem
which is asymptotically equivalent. The impact of this asymptotic equivalence
is that any asymptotic solution to one of these problems will automatically
yield a corresponding solution to the other. In addition, there is an explicit
recipe for this correspondence. For example, the optimal rates of convergence
will be equal as will suitably normalized local and global asymptotic risks,
and knowledge of a minimax procedure or of a linear minimax procedure in
one problem automatically yields the corresponding procedure in the other
and so forth.

In particular, many classical functional estimation problems which have
previously been treated separately fall into this framework. These problems
include:

1. Estimating the whole function, considered in the white-noise model by
Ž . Ž .Pinsker 1980 and in the regression context by Nussbaum 1985 and

Ž . Ž .Speckman 1985 . See also Donoho, Liu and MacGibbon 1990 and Golu-
Ž .bev and Nussbaum 1990 .

Ž .2. Estimating a point functional such as f x . For white noise, see Ibragi-0
Ž .mov and Hasminskii 1984 and for regression, see Ibragimov and Hasmin-

Ž . wŽ . xskii 1982 . See also Donoho and Liu 1991 , pages 677ff and 688 and
Ž .Donoho and Low 1992 .
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2Ž .3. Estimating a nonlinear functional such as Hf x dx, treated for white
Ž .noise in Fan 1991b and in earlier references cited there and for both

Ž .white noise and regression in Donoho and Nussbaum 1990 .
4. Estimating the whole function based on indirect observations as in Fan

Ž .1991a .

The equivalence theory also covers many adaptive situations. If there is a
particular sequence of estimators which is asymptotically minimax over
a collection of parameter spaces in the white-noise case, then there is a
corresponding sequence based on the regression model which is also minimax
over each of these parameter spaces. Such a sequence of adaptive estimators
for estimating the whole function has been found by Efroimovich and Pinsker
Ž . Ž .1984 in the white-noise case and by Golubev 1987 for nonparametric

Ž .regression. See also Golubev 1991 . For the problem of estimating a linear
Ž .functional in both regression and white noise, see Lepskii 1991 .

Ž .Hall and Johnstone 1992 discuss examples of estimating optimal, possi-
bly random, bandwidths in the regression and white-noise contexts. These
problems are also covered by the general equivalence theory developed in this
paper. See Remark 4.5.

The equivalence theory can provide an additional technical advantage.
Some proofs, for example those involving rates of convergence, may be much
simpler in the white-noise model. Thus one may use the white-noise model to
figure out the optimal rate via homogeneity and then the same rate holds in
nonparametric regression. See, for example, Section 7 of Donoho and Low
Ž .1992 . Analogous equivalence results should be valid for some other non-

Ž .parametric problems. Indeed, Nussbaum 1993 has very recently proved one
such result for nonparametric density estimation.

The first part of the paper contains necessary background. This includes
descriptions of the nonparametric regression and white-noise problems, the
definition of asymptotic equivalence and a discussion of some of its general
consequences.

The second part of the paper contains the main equivalence theorems. Two
cases are treated separately. In one case, the independent variables are
deterministically fixed; in the other, they are a random sample from a
specified distribution.

Part 1. Background.

1. Nonparametric regression. The nonparametric regression model to
be treated in this paper is as follows: Let I : R be a possibly infinite interval.

Ž . 2Ž . Ž .Let f ? : I ª R and s ? : I ª 0, ` be two measurable functions and let
w x Ž .H: R ª 0, 1 be an increasing c.d.f. The variables X , Y , i s 1, . . . , n, areni ni

observed. In the deterministic X variant the independent variables are given
by a deterministic scheme which will be given by

1.1 x s Hy1 ir n q 1 , i s 1, . . . , n ,Ž . Ž .Ž .ni
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except where otherwise noted. In the random X variant the X are indepen-i
dent random variables.

1.2 X ; H i.i.d. i s 1, . . . , n.Ž . ni

In either case the conditional distribution of Y given X is described via

1.3 Y s f x q s x « , « ; N 0,1 ind., i s 1, . . . , n.Ž . Ž . Ž . Ž .ni ni ni ni ni

The parameter space Q consists of a possibly large set of choices of f. The
Ž .c.d.f. H and the function s ? are assumed fixed and known prior to experi-

mentation.
Here are some examples which are subject to later results of this paper.

EXAMPLE 1.1. Q is given in terms of a Lipshitz condition as

w xa y1
Ž1. Ž i. iQ s f : f x q D y f x y f x ri! DŽ . Ž . Ž .Ž .Ýa , B ½

is1

< < a < <F B D and sup f x F B if a G 1,Ž . 5
xgI

1.4Ž .

Ž1. < < < < aQ s f : f x q D y f x F B D if 0 - a - 1.� 4Ž . Ž .a , B

wŽ . x1.4 holds for all x, x q D g I. Later we shall require a ) 1r2, as explained
in Remark 4.7.

EXAMPLE 1.2. Q is given by a Sobolev type condition such as

2Ž2. Ža . < <Q s f : f t dt F B and sup f x F BŽ . Ž .Ž .Ha , B ½ 5
xgI

for a s 1, . . . , where f Ža . denotes the a th derivative of f, assumed to exist in
the sense that f Žay1. is absolutely continuous. Note that when H dt s 1, thenI
QŽ1. ; QŽ2. .a , B a , B

�2. White noise. Assume with no loss of generality that 0 g I. Let B :t
4t g I denote Brownian motion on I conditional on B s 0, for example,0

Ž .B ; N 0, t and B , t ) 0, is independent of B , t - 0. Fix n s 1, . . . ." t t 1 t 21 2
� Žn.4Let Z denote the Gaussian process whose white-noise version is repre-t

Žn. 'Ž . Ž .sented as dZ s m t dt q l t dB r n .t t
The parameter space in this model is, as before, the set of possible mean

functions. Consequently, the statistical white-noise problem for given n is to
� Žn.4observe the process Z defined above for some m g Q. In this way at

sequence of problems is defined for n s 1, 2, . . . , each of which has the same
parameter space Q.
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� Žn. 4 � Žn. 4Suppose Y : t g J and Z : t g J are two Gaussian processes, liket t
Ž . Ž .those above, with respective mean functions m t and n t and with identical

2Ž . Žn. Žn.variance functions l t rn. Let g and g denote their respective proba-Y Z
bility densities with respect to any dominating measure j . Let

< Žn. Žn. <2.1 L s g v y g v j dv .Ž . Ž . Ž . Ž .H1 Y Z

w Ž Žn. Žn..Where convenient we also use either the notation L Y , Z or1 t t
Ž Žn. Žn.. xL g , g . Standard calculations yield1 Y Z

2.2 L s 2 1 y 2F yDr2Ž . Ž .Ž .1

where
22 2D s n m t y n t rl t dt .Ž . Ž . Ž .Ž .H

Ž .Consequently, L s O D .1

� Žn.4REMARK 2.1. Let Z be as above. Assume H is absolutely continuoust
Ž .with dHrdt s h and assume h ) 0 a.e. on I. Define the Gaussian process

Žn. Žn. w xy1V s Z , t g 0, 1 .t H Žt .

Žn. U Ž . U 2Ž .Then V has mean m t and variance function l t rn given byt

m Hy1 t l2 Hy1 tŽ . Ž .Ž . Ž .U U 22.3 m t s , l t s .Ž . Ž . Ž .y1 y1h H t h H tŽ . Ž .Ž . Ž .
w xHence there is no significant loss of generality in assuming I s 0, 1 and H

is uniform on I, although to do so will affect the definition of Q, in the
Ž .manner suggested by 2.3 .

3. Statistical equivalence. Consider two statistical problems, PP Ž1. and
Ž2. Ž i. Ž .PP , with sample spaces XX , i s 1, 2 and suitable s-fields , respectively, but

with the same parameter space Q. Denote the respective families of distribu-
� Ž i. 4tions by G : u g Q . The following paragraph describes Le Cam’s metricQ

w Ž .for the distance between two such experiments see, e.g., Le Cam 1986 or
Ž .xLe Cam and Yang 1990 .

Ž . w .Let AA be any measurable action space and let L: Q = AA ª 0, ` denote a
5 5 � Ž . 4 Ž i.loss function. Let L s sup L Q, a : u g Q, a g AA . d will be the generic

Ž .symbol for a randomized decision procedure in the ith problem. The risk
from using procedure d Ž i. when L is the loss function and u is the true value

Ž i.Ž Ž i. .of the parameter is denoted by R d , L, u . Le Cam’s metric is

D PP Ž1. , PP Ž2.Ž .
Ž1. Ž1. Ž2. Ž2.< <s max inf sup sup sup R d , L, u y R d , L, u ,Ž . Ž .

Ž1. Ž2.d u 5 5L : L s1d3.1Ž .
Ž1. Ž1. Ž2. Ž2.< <inf sup sup sup R d , L, u y R d , L, u .Ž . Ž .

Ž2. Ž1.d u 5 5L : L s1d
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Ž Ž i.Thus, if D - « , this means that for every procedure d in problem i there is
a procedure d Ž j. in problem j, j / i, with risk differing by at most « ,

5 5 .uniformly over all L such that L s 1 and u g Q. Two sequences of
� Ž1. 4 � Ž2. 4problems PP : n s 1, . . . and PP : n s 1, . . . are asymptotically equivalentn n

Ž Ž1. Ž2..if D PP , PP ª 0 as n ª `. In this case, for any sequence of proceduresn n
d Ž1. in problems PP Ž1., n s 1, . . . , there is a sequence d Ž2. in problems PP Ž2. forn n n n
which

< Ž1. Ž1. Ž2. Ž2. <lim sup sup R d , L, Q y R d L, Q s 0.Ž . Ž .n n n n
nª` Q 5 5L : L s1

Such sequences of procedures are said to be asymptotically equivalent.
In our proofs of statistical equivalence the key step is to arrange matters

so that XX Ž1. s XX Ž2.. Then define

Ž1. Ž2. < Ž1. Ž2. <3.2 L PP , PP s sup g x y g x j dx ,Ž . Ž . Ž . Ž . Ž .H1 Q Q
ugQ

where j dominates GŽ i. and g Ž i. s dGŽ i.rdj , i s 1, 2. The following well-Q Q Q

known fact can then be used to establish asymptotic equivalence.

THEOREM 3.1.
< Ž1. Ž2. < Ž1. Ž2. 5 53.3 R d , L, Q y R d , L, Q F L PP , PP L .Ž . Ž . Ž . Ž .1

Consequently,
3.4 D PP Ž1. , PP Ž2. F L PP Ž1. , PP Ž2. .Ž . Ž . Ž .1

Also,
D PP Ž1. , PP Ž2. ª 0 if L PP Ž1. , PP Ž2. ª 0.Ž . Ž .n n 1 n n

Ž .PROOF. 3.3 is just a restatement of the standard inequality

Ž1. Ž2.h x g x y g x j dxŽ . Ž . Ž . Ž .Ž .H
< < < Ž1. Ž2. <F sup h x g x y g x j dx . IŽ . Ž . Ž . Ž .Ž . Hž /

Two other techniques are also used repeatedly: one is reduction by suffi-
ciency; the other involves relations between the L norm and the Hellinger1
metric. The use of sufficiency is based on the following.

LEMMA 3.2. Let XX and its s-field be a Polish space with its associated
Borel field. Let PP Ž1. denote an experiment with sample space XX . Let S: XX ª YY

Ž2. Ž .be a sufficient statistic and let PP denote the experiment in which Y s S X
Ž Ž1. Ž2.. Žis observed. Then D PP , PP s 0. A Polish space is one which is locally

compact, metrizable and second countable. All the measurable spaces encoun-
.tered in this paper possess these properties.

PROOF. The lemma follows from the fact that under the hypothesis there
Ž < . Ž < Ž .. Ž . Ž .exists a measurable map d dx y such that Hd B S x G dx s G B . SeeQ Q

Ž .Le Cam 1986 . I
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Ž Ž1. Ž2..The Hellinger metric H G , G is defined by
21r2 1r22 Ž1. Ž2. Ž1. Ž2.H G , G s g x y g x j dx .Ž . Ž . Ž . Ž .Ž .H

It provides a bound for L since1

3.5 L GŽ1. , GŽ2. F 2 H GŽ1. , GŽ2. .Ž . Ž . Ž .1

Another useful fact is that if the GŽ i. are product measures, GŽ i. s Łm GŽ i.,js1 j
then

2 Ž1. Ž2.m H G , GŽ .j j2 Ž1. Ž2.3.6 H G , G s 2 1 y 1 yŽ . Ž . Ł 2js1

w Ž .xLe Cam 1986 . Finally, direct calculation yields

H 2 N m , s 2 , N m , s 2Ž . Ž .Ž .1 1 2 2

21r22s s m y mŽ .1 2 1 2s 2 1 y exp y .2 2 2 2s q s 4 s q sŽ .1 2 1 2

3.7Ž .

Part 2. Equivalence results.

w x 2Ž .4. Deterministic X. Let I s a , b , y` - a - b - `. Let s ? ) 0 be
a given absolutely continuous function on I such that

­
4.1 ln s t F C , t g I.Ž . Ž . 1­ t

for some C - `. Suppose1

< <4.2 sup f t : t g I , f g Q s B - `� 4Ž . Ž .
Ž .and also 4.5 , below. Assume H is absolutely continuous on I and

4.3 H X t s h t ) 0 a.e. on I.Ž . Ž . Ž .
Ž .With x as in 1.1 define the step functionni

f x , j F t - j , i , . . . , n ,Ž .ni iy1 i
4.4 f t sŽ . Ž .n ½ f x , t s b ,Ž .nn

y1Ž . Žwhere j s H irn . The dependence of j on n is suppressed for conve-i i
.nience. Assume

b 2
4.5 lim sup n f t y f t h t dt s 0.Ž . Ž . Ž . Ž .Ž .H n

nª` afgQ

Ž .REMARK 4.1. Equation 4.5 is a uniform smoothness condition on f. It is
satisfied in a wide variety of examples. In particular it is satisfied in Exam-

Žples 1.1 and 1.2 when a ) 1r2. See Remark 4.7 for discussion of the case
.a F 1r2.
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Ž . w xFor example, to verify 4.5 in Example 1.1 for the case a ) 1r2, I s 0, 1 ,
aŽ . < Ž . Ž . < < Ž . <H uniform and s ? s 1 we note that f t y f t F B t y ir n q 1 ,n

Ž .where i y 1 rn F t - irn. Hence
2 an i1 irn2 2n f t y f t dt F nB t y dtŽ . Ž .Ž . ÝH Hn n q 1Ž .0 iy1 rnis1

2 aq12 2n B 11rn2 2 2 aF n B t dt s ª 0H ž /2a q 1 n0

Ž .since 2a q 1 ) 2. Hence 4.5 is satisfied.

Ž . Ž .THEOREM 4.1. Under assumptions 4.1 ] 4.5 the deterministic X nonpara-
metric regression model is asymptotically equivalent to the white-noise model
Ž . Ž . Ž . 2Ž . 2Ž . Ž .2.1 having m t s f t , l t s s t rh t .

Žn.PROOF. Let Z be the white-noise model described byt

l tŽ .
Žn.dZ s f t dt q dB .Ž .t n t'n

� Ž . 4 �Ž Ž . 4 Ž . Ž .Note that sup l t : t g I rinf l t : t g I - ` because of 4.1 and 4.3 .
Ž . Ž .Hence 4.5 , 2.2 and Theorem 3.1 show that

Žn. Žn.D Z , Z ª 0.� 4 � 4Ž .t t

Define
2 Žn.ns x dZŽ . jni ti2 Žn.4.6 K s and S s K .Ž . Hi i i 2j l ti Ž .j2 iy1dtr l tŽ .Ž .H

jiy1

Žn. Žn.� 4 � 4The variables S : i s 1, . . . , n are sufficient for Z : t g I . Hencei t

Žn. Žn.D Z , S s 0� 4� 4Ž .t i

by Lemma 3.2.
The variables SŽn., i s 1, . . . , n, are independent withi

K 2 dtji iŽn. 2V S s s s x ,Ž .Ž . Hi ni2n l tŽ .jiy1

f tŽ .j niŽn.E S s K dtŽ . Hi i 2l tŽ .jiy1

4.7Ž . 1r2h tŽ .ji's n s x f x dtŽ . Ž . Hni ni 2s tŽ .jiy1

s xŽ .nis f x ,Ž .ni
s jŽ .ni
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where j F j F j . The existence of j follows from the mean valueiy1 ni i ni
j i Ž . Ž .theorem since H h t dt s 1rn. Assumption 4.1 then yieldsj iy 1

E SŽn. s f x 1 q O j y jŽ . Ž .Ž .Ž .i ni i iy1

w Ž .uniformly in f g Q, i and n. Note also that the O ? term is zero if
2Ž . 2 xs t s g , a constant.

Ž . Ž .The above, together with 3.6 and 3.7 , yields

2 Žn. � 4H S , x , Y� 4Ž .i ni ni

22s O f x j y jŽ . Ž .Ýž /ni i iy14.8Ž .
F B2 b y a O sup j y j : i s 1, . . . , n� 4Ž . Ž .Ž .i iy1

s o 1 uniformly over f g QŽ . Ž .
Ž . Ž . Ž� Žn.4 � 4. Ž .by 4.2 and 4.3 . Hence lim D S , x , Y s 0 by 3.5 and Theoremnª` i ni ni

Ž� Žn.4 � 4.1. It follows from the preceding facts that lim D Z , x , Y s 0. Inª` t ni ni

Ž . Ž .TECHNICAL NOTE. The conditions 4.1 ] 4.3 are clearly stronger than
2 Ž . Žnecessary. They are used in order to yield the conclusion H s o 1 uni-

. Ž . 2Ž . 2formly over f g Q which appears in 4.8 . For example, if s ? s g , a
w x Ž . w x Ž .constant, I s 0, 1 and h t s 1 on 0, 1 , then 4.3 holds and we may also
Ž . Ž .drop conditions 4.1 and 4.2 .

The above theorem yields a prescription for producing, from a sequence of
procedures in one problem, an asymptotically equivalent sequence in the
other. The following corollary gives a precise recipe. The corollary applies to
either nonrandomized or randomized procedures.

� 4COROLLARY 4.1. Let d be a sequence of procedures in the regressionn
model of Theorem 4.1. Define g in the corresponding white-noise problem byn

dZ Žn.
j tiŽn. Žn. Žn.4.9 g Z s d S where S s KŽ . Ž . Ž . Hn t n i i i 2l tŽ .jiy1

Ž . � 4 � 4as in 4.6 . Then g is asymptotically equivalent to d .n n
� 4Conversely, suppose g is a given sequence of procedures in the white-noisen

� 4problem. Then d is an asymptotically equivalent sequence in the asymptoti-n
cally equivalent regression problem, where d is the randomized proceduren
described for any measurable A g AA as follows:n

Žn.dZj tiŽn. Žn. Žn.< <4.10 d A s s E g A Z K dt s s , i s 1, . . . , n .Ž . � 4 � 4Ž . Ž . Hn i n t i i2ž /l tŽ .jiy1

PROOF. The corollary is implicit in the proof of Theorem 5.1. Note that dn
Žn.Ž . Ž .in 4.10 is well defined since it is independent of the drift parameter f t of

Žn. Žn. Žn.� 4 � 4 � 4the Z process because for each n, S is sufficient for Z . It i t
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Ž . Ž .The construction 4.10 is not entirely felicitous for two reasons: 1 d will,n
Ž .in general, be randomized even when g is not; 2 the conditional expecta-n

tion may be hard to evaluate. The following two remarks show that these
difficulties can sometimes be partially alleviated.

Ž .REMARK 4.2. Jensen’s inequality can sometimes be used to improve 4.10 .
Here is a precise statement. Suppose each AA is a closed convex subset of an

Ž .separable Banach space, and suppose each L u , ? is a convex lower semi-n
Ž . Xcontinuous function satisfying lim L u , a s `. Define d as the non-5 a5 ª` n n

randomized procedure taking the values

X Žn. < Žn.4.11 d s s ad da s .Ž . � 4 � 4Ž . Ž .Hn i n i

� X 4 � 4Then d is asymptotically at least as good as d .n n
Even when L is not convex it may be thatn

< X <4.12 sup R d , L n B , u y R d , L n B , u ª 0.Ž . Ž . Ž .n n n n
u

� X 4 � 4 � 4in which case d and d are asymptotically equivalent sequences for L .n n n
See Remark 4.3 for one such situation.

Ž .A real-valued linear estimator in the white-noise problem is a nonran-
domized estimator which can be expressed in the form

g Z Žn. s r t dZ Žn. , withŽ .Ž . Hn t n t

4.13Ž .
r 2 t l2 t dt - `.Ž . Ž .H n

Ž Žn.. Ž . Ž .It follows that g Z has a normal distribution with mean Hr t m t dt andn t n
2Ž . 2Ž .variance Hr t l t dtrn.n

A linear estimator in the regression problem is, similarly, one which can be
expressed in the form

n1
Žn. Žn.4.14 d s s r s .Ž . Ž . Ýn i ni in is1

As above, such estimators are normally distributed.

REMARK 4.3. The equivalence transformation is especially convenient for
Ž .linear estimators. In order to demonstrate this, it is easier to write 4.14 in

w xan alternate form. As before, for convenience, specialize to the case I s 0, 1 ,
2Ž . 2Ž . 2 Ž .H is uniform, and also assume l ? s s ? s g . Let e t denote then

� Žn.4normalized linearized cumulative sums of s ; that is,i

ny11 t y j iy1Žn. Žn. Žn.e t s s q s y s ,Ž . Ž .Ýn i m my1½ 5n j y ji iy1ks1

j F t - j , i s 1, . . . , n.iy1 i
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Ž .Then the general linear estimator 4.14 can be rewritten in the form

1Žn.4.15 d s s r t de t .Ž . Ž . Ž .˜Ž . Hn i n n
0

Note that

Žn.dZj tiŽn. Žn.<e t s E Z K dt s s , i s 1, . . . , n .Ž . Hn t i i2l tŽ .jiy1

w 2Ž . 2 xHere j s irn, l t s g and K s ng . Hence, suppose a linear estimatori i
Ž . X Ž .4.13 is given in the white-noise problem. Then the estimator d of 4.11 isn

Ž . Ž . Ž .given by 4.15 with r t s r t .ñ

The preceding results apply to regression problems on a bounded interval.
They can be extended without much additional complication to also apply on
unbounded intervals if a somewhat different scheme for determining the X
values is introduced, as follows:

Ž . w xLet I s a, b and I s a , b , y` F a - a - b - b F ` and let Hn n n n n n
w xbe an increasing c.d.f. on a , b . Choose the independent variables accord-n n

ing to

4.16 x s Hy1 ir n q 1 .Ž . Ž .Ž .ni n

Ž .The constants j which also depend on n are defined as before, but withi
Ž .H in place of H, and f is defined by 4.4 with the additional conventionn n

f t s 0, t - a , t ) b .Ž .n n n

Ž .The assumption 4.5 is then replaced by

b 2n 24.17 lim sup n h t f t y f t rs t dt s 0.Ž . Ž . Ž . Ž . Ž .Ž .H n n
nª` afgQ n

Here is a formal statement of the equivalence result. Its proof involves only
minor modifications of the proof of Theorem 4.1, and will be omitted.

� 4 Ž . Ž .COROLLARY 4.2. Define x as above. Assume 4.1 ] 4.2 are satisfied onni
Ž . Ž . Ž . 2Ž . 2y`, ` and H satisfies 4.3 . Assume 4.17 is satisfied and either s ? s g ,n

Ž . Ž . Ž . w y1Ž .a constant, or b y a max j y j s o 1 . Here j s H 1rn ,n n 1F iF n i iy1 i n
j s a and j s b . As usual, the dependence of j on n is suppressed in the0 n n n

xnotation. Then the deterministic X nonparametric regression model is asymp-
Ž . Ž . Ž .totically equivalent to the white-noise model 2.1 having m t s f t and

2Ž .incremental variance function depending on n and given by l t sn
2Ž . Ž .s t rh t .n

REMARK 4.4. There is an additional question which arises in the preced-
X � Žn.4ing situation: Suppose y` - a - b - ` and H ª H with H s h. Let Zn t

Ž . Ž . 2Ž .be the white noise with drift f t s m t and with variance function l t s
Ž . 2Ž . Ž� 4 � Žn.4.h t rs t . Is it true that D x , Y , Z ª 0?ni ni t
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An affirmative answer to the preceding question appears to require some
condition on the convergence of H to H. In some examples it is not hard ton
supply such a condition. Consider, for example, the situation in Example 1.1

Ž . 2Ž . 2with a G 1. Assume for simplicity of exposition that s t s g . Make the
other assumptions in Theorem 4.1 and assume also that

'< <4.18 sup H t y H t s D s o 1r nŽ . Ž . Ž . Ž .n n
t

as n ª `. Then the answer is affirmative.
� U U4To establish the preceding claim, let x , Y denote the deterministic Xni ni

nonparametric regression based on H. Then

2i i
U U 2 y1 y1� 4 � 4D x , Y , x , Y s g f H y f HŽ . Ýni ni ni ni n ž / ž /ž / ž /n q 1 n q 1

F g 2 nD2 B2 ª 0.n

Ž� U U4 � Žn.4.Then apply Theorem 4.1 to see that D x , Y , Z ª 0.ni ni t

REMARK 4.5. The preceding methodology can be used when the loss
functions also depend on the observations. Thus, suppose the loss in the

Ž1. �Ž .4 w xregression problem is L : Q = AA = x , y ª 0, B and in the white-noisen ni ni
Ž2. � Žn.4 w x 2Ž . 2problem it is L : Q = AA = Z ª 0, B . For simplicity assume s ? s g ,n t

� Žn.4 � Ž .4 � Žn.4a constant. Define T from Z n in the same manner as S wasi t i
Žn.� 4 w Ž .xdefined from Z see 4.6 . Assume the two loss functions asymptoticallyt

agree in the sense that for each f g Q,

< Ž2. Ž1. Žn. <E L f , a, Z y L f , a, x , T ª 0Ž . � 4Ž .Ž .f n t n ni i4.19Ž .
uniformly in a g AA.

The proof of Theorem 4.1 can then easily be adapted to prove that correspond-
ing procedures in the two problems have asymptotically equal risk functions
under the respective losses LŽ1. and LŽ2..n n

The preceding observation can be used to prove equivalence in the problem
Ž .of optimal bandwidth selection as formulated in Hall and Johnstone 1992 .

Ž .The condition 4.19 is relatively straightforward to check in their context.
The resulting conclusion is that their asymptotic result, once proved in the
white-noise setting, is then also valid in the nonparametric regression set-
ting.

REMARK 4.6. Looking at Example 1.1 in the case where a F 1r2 shows
Ž . w xwhat can happen when the key regularity condition 4.5 fails. Let I s 0, 1 ,

Ž . Ž .h ? s 1 and s ? s 1. In the white-noise problem

1Žn.'n Z y m t dt ª N 0, 1Ž . Ž .H1
0
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Ž1. win distribution uniformly over m g Q . In fact the left side is exactlyŽ1r2, 1.
Ž . xN 0, 1 . However, in the regression problem of Section 1 there cannot exist

an estimator dŽ2. such thatn

1Ž2.'4.20 n d x , Y y f t dt ª N 0, 1Ž . Ž . Ž . Ž .Hn ni ni
0

uniformly over f g QŽ1. . By virtue of Remark 3.1, this shows that the twoŽ1r2, 1.
wproblems are not asymptotically equivalent. To verify the impossibility of

Ž . < < Ž . < Ž . Ž'4.20 , let « s t y i t r n q 1 , where i t is defined by t y i t r n qŽ . Ž .n
. < � < Ž . < 4 Ž . Ž . Ž .1 s min t y jr n q 1 : j s 1, . . . , n . Then f t s 0 and f t s « t aren

Ž1. Ž .both in Q , and x , Y has the identical distribution in both cases.Ž1r2, 1. ni ni
1' 'Ž . Ž . Ž .However, n H « t dt ; 2 r3. Hence validity of 4.20 for f t s 0 implies0 n
Ž . Ž . xits failure for f t s « t .n

Although the two sequences of problems are not asymptotically equivalent
in the strong sense of Theorem 4.1, nevertheless in many special cases they
are asymptotically equally useful. For example, they will have the same local

Ž .asymptotic minimax risks for estimating f x under squared error loss or0
Ž .for estimating f t under integrated squared error loss.

5. Random X. Results analogous to those of the preceding section can
be derived for the random X nonparametric regression problem, as defined in
Ž .1.2 . In this case the nonparametric regression problem is asymptotically
equivalent to a white-noise model in which the drift depends on the observed
values of X, as well as the unknown parameters.

w xTo describe this white-noise model on I s a , b , y` - a - b - `, let
x , . . . , x denote the ordered values of X and let x s a , x s b andŽ1. Žn. Ž0. Žnq1.
let

i y 1 t y xŽ iy1.
H̃ t s qŽ .n n q 1 n q 1 x y xŽ . Ž .Ž i. Ž iy1.5.1Ž .

if x F t F x , i s 1, . . . , n q 1.Ž iy1. Ž i.

y1˜ ˜ ˜Ž . Ž .Now define j s H irn and define f by 4.4 with j in place of j . Letni n i i
˜ ˜Ž . Ž .h t denote the left-hand derivative of H at t. In place of 4.5 assumen n

2b 2˜ ˜5.2 lim prob sup n f t y f t h t rs t dt s 0.Ž . Ž . Ž . Ž . Ž .Ž . Ž .H n n
anª` fgQ

Ž .REMARK 5.1. Assumption 5.2 is usually not much harder to verify than
Ž . w x Ž .is 4.5 . For example, if I s 0, 1 , H is the uniform distribution, s t s 1 and

Ž .a ) 1r2 in Example 1.1, then 5.2 follows since

22 y1 y1˜ ˜ ˜ ˜ ˜f t y f t h t dt s f H v y f H v dvŽ . Ž . Ž . Ž . Ž .Ž . Ž . Ž .H H ž /n n n n n
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and

2 2 ay1 y1 2˜ ˜ ˜E n f H v y f H v F nB E x y x ª 0Ž . Ž . Ž .Ž . Ž .ž /½ 5n n n Ž j. Ž jy1.

˜y1� Ž .4uniformly in v, n, where j s min i: x ) H v .Ž i. n

˜2 2 ˜Ž . Ž . Ž .In the preceding situation define l t s s t rh t andn n

l̃ tŽ .nŽ X , n.5.3 dZ s f t dt q dB .Ž . Ž .t n t'n

� Ž X , n.4Note that the distribution of Z depends on the ancillary observations Xt
˜2through the local variance function l .n

Ž . Ž . Ž .THEOREM 5.1. Assume s , f, H satisfy 4.1 ] 4.3 and 5.2 . Then the
random X nonparametric regression model is asymptotically equivalent to the

Ž .white-noise model 5.3 .

PROOF. Analogously to Theorem 4.1, let

l̃ tŽ .nŽ X , n.˜ ˜dZ s f t dt q dB .Ž .t n t'n

The remainder of the proof exactly follows the pattern of proof of Theorem 4.1
˜ ˜ Ž .with Z in place of Z and f in place of f. Also 4.8 needs to be modified

slightly to begin as

22 Žn. 2� 45.4 H X , S , X , Y s O E f x j y jŽ . Ž . Ž .� 4Ž . Ýž /ni i ni ni ni i iy1ž /
� 4 � 4 Žand so forth, since x and j are random. An alternative proof could beni i

.based directly on Corollary 4.2. I

REMARK 5.2. A conspicuous feature of the preceding result is that knowl-
edge of H is not required to construct Z Ž X , n. nor to carry through the proof oft
the theorem. Thus, suppose it is only assumed that H g HH, where

2b 2˜ ˜lim prob sup sup n f t y f t h t rs t dt s 0Ž . Ž . Ž . Ž .Ž . Ž .H n n
anª` fgQHgHH

2Ž . 2 Ž .and also that either s t s g or 4.3 is modified to require the existence of
an h satisfying0

inf h t : h g HH G h t ) 0 a.e. on I.� 4Ž . Ž .0

Then the equivalence assertion of Theorem 5.1 remains valid.
Note also that the construction in Corollary 4.2 of equivalent procedures

together with the contents of Remarks 4.2]4.4 can easily be carried over to
the current situation.
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REMARK 5.3. Suppose H is known. An issue which then arises is whether
this knowledge can serve in place of observation of the ancillary statistics
X , . . . , X . More precisely, let X F ??? F X denote the ordered values of1 n j j1 n

� 4 � 4X : i s 1, . . . , n and let Y , . . . , Y denote the corresponding values of Y .i j j i1 n
� 4Then given knowledge of H, is the experiment Y : i s 1, . . . , n asymptoti-j1

�Ž . 4cally equivalent to X , Y : i s 1, . . . , n ? Because of Theorem 5.1, this isi i
Ž̃ X , n.� 4equivalent to asking whether the experiment Z : t g I is asymptoticallyt

˜ Ž̃ X , n.�Ž . 4equivalent to H , Z : t g I .n t
w x 2Ž .The general answer to this question is ‘‘No.’’ Suppose I s 0, 1 , s t s 1

Ž̃ X , n.� Ž . 4 � 4for t g I and Q s f : f t s ct, c g R . Then in the experiment Z thet
Ž̃ X , n.UMVU and minimax estimator is 2Ht dZ , which has variancet

y1 ˜2 ˜ y15.5 4n tl t dt q Var 2 t dH t s 2n 1 q 1r3 .Ž . Ž . Ž . Ž .H Hn nž /
˜ ˜X , n�Ž .4Meanwhile, for the experiment H , Z the UMVU and minimax estima-n t

˜ Ž̃ X , n. y1Ž .tor is 2HH t dZ , which has variance 2n . This shows the two experi-n t
ments are not asymptotically equivalent.

On the other hand, for many purposes the two experiments are equally
useful asymptotically. Roughly speaking this happens when the rate of

'convergence of the estimator used is slower than the classical n rate.
Heuristically, what happens in such problems is that the imprecision intro-

˜duced by not observing H is represented by a term analogous to the secondn
Ž .one on the left of 5.5 , which is of order 1rn. When the estimator converges

y1'at slower than n rate, so that its variance converges more slowly than n ,
this second term is asymptotically negligible. Such behavior can be deduced

Ž . Ž .in examples like those cited in Donoho and Liu 1991 and Low 1992 .
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