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GRANULOMETRIC SMOOTHING

By GUENTHER WALTHER

Stanford University

A new method for smoothing a multivariate data set is introduced
that is based on a simple geometric operation. This method is applied to
the problem of estimating level sets of a density and minimum volume sets
with given probability content. Building on existing techniques, the result-
ing estimator combines excellent theoretical and computational properties:
It converges with the minimax rates (up to log factors) in most cases where
these rates are known and, at the same time, it can be computed, visual-
ized, stored and manipulated by simple algorithms and tools. It is appli-
cable to a wide class of sets that is characterized explicitly in terms of the
underlying densities and includes nonconvex and disconnected sets, and it
is argued that it should give reasonable results in completely general situ-
ations. Applications to the construction of multivariate confidence regions
in frequentist and Bayesian contexts are briefly mentioned.

1. Introduction. An interesting and challenging problem facing the ad-
vance of computers in the field of statistics is the modeling of complex objects
and the interest in the qualitative aspects, for example, the shape, of these
objects. Some recent examples are as follows.

DasGupta, Ghosh and Zen (1995) consider the problem of constructing
smallest volume multivariate confidence sets for the mode of a density as
location parameter. For the special case where the underlying distribution
has a density that is star unimodal and of a known form (up to the location
parameter), they give an analytical formula for a star-shaped confidence set
involving numerical integration and minimization.

In a related context, the so-called excess mass approach, introduced inde-
pendently by Hartigan (1987) and Miiller and Sawitzki (1987) and extended
and investigated in detail by Polonik (1995), can be applied to various sta-
tistical problems, such as that of estimating level sets of a density (and thus
the density itself): If .4 is a class of measurable subsets of R?, then for
a distribution F on R? the excess mass over < at level A > 0 is defined as
E  (A) = sup{F(S)—ALeb(S): S € £}, where Leb denotes Lebesgue measure.
If F has density f and the level set (or density contour cluster) at level A,
L(A) = {x: f(x) = A}, belongs to &, then F(L(A)) — ALeb(L(A)) attains the
excess mass E /(). One can hence attempt to estimate the level set L(A) by a
set S € 4 that attains sup{F,(S) — ALeb(S): S € 4}, where F, is the empir-
ical measure of n i.i.d. observations X, ..., X, drawn from F. A restriction
of the form S € & is necessary as otherwise the resulting estimator will be
S ={X,,..., X,}; on the other hand, prescribing a certain class ¢ allows us
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to model qualitative aspects of the level sets. From a practical point of view,
however, this approach will, in general, flounder on the maximization over the
class & necessary to find the set that attains the sup above. Note that sets
are infinite-dimensional objects. Algorithms have been devised only for simple
classes ¢, like the class of convex sets in R? and the class of ellipsoids in R?
by Hartigan (1987) and Nolan (1991), respectively. The excess mass approach
has the advantage that it outperforms traditional density estimates when the
density has a jump.

A different problem arises when one intends to use an estimate of the den-
sity to estimate the minimum volume set with given probability content 1 —«,
that is, the set L(A) where A is such that F(L(\)) =1 — a. A trial-and-error
procedure would be necessary to find the right level A, with each trial involving
contouring and numerical integration of the density estimate. This minimum
volume set arises in a Bayesian context as a highest posterior density set if
[ given previously denotes the posterior density. In any case the challenging
task arises to implement a data structure on the computer to store a possibly
high-dimensional boundary of a complicated set and effectively work with that
implementation.

These examples show that for such set-valued estimation problems the sta-
tistical theory should not be considered separately from computational issues.
The aim of this paper is to show that in the preceding context the underlying
geometry suggests methods and tools that give rise to estimators that offer
both excellent computational and theoretical properties for a very wide and
flexible class of sets. The idea for these methods derives from Blaschke’s rolling
theorem. Blaschke (1949) gave necessary and sufficient conditions for a ball to
roll freely inside a convex body in R? or R?. Section 2 will generalize this idea
by characterizing the class of compact sets that allow a ball of fixed radius to
roll freely inside and outside the set. The resulting class of sets is very flexi-
ble, allowing nonconvex and disconnected sets. It is shown that a large class of
densities has level sets satisfying this requirement. Section 3 shows how this
characterization can be used to “smooth” a multivariate data set and to devise
estimators for the problem of estimating level sets and minimum volume sets
with given probability content. The theoretical and computational properties
of these estimators are analyzed in detail. The main theorem gives rates of
convergence for these estimators that coincide with the minimax rates, up to
log factors, in most cases where the minimax rates are known. Section 4 dis-
cusses the advantages of the new estimator over competing techniques and
touches on some important applications. All proofs are deferred to Section 5.

For further literature on the problems of level set estimation and the vast
area of confidence sets, see the references in Polonik (1995) and DasGupta,
Ghosh and Zen (1995), respectively, and for minimax results in the context of
set-valued estimation, see Mammen and Tsybakov (1995) and the references
given therein.

2. The geometric approach. The setting throughout is R¢ equipped
with the standard inner product (-, -) and Euclidean norm |- |. B,(x) denotes
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the closed ball in R? with radius r centered at x, and B := B,(0), S4-1:=4B.
If A is a subset of R?, then A€, A, int A and JA denote the complement, clo-

sure, interior and boundary of A, respectively. Further d(x, A) :=inf 4 |[x—a|
for x € R%. For A, C c R? and A € R, write AA := {\a: a € A} and denote by

AoC={a+cac A, ceC}
the Minkowski addition of A and C, and by
AeoC={x:x+CCA}

the Minkowski difference, where we write x + C for {x} + C. One then checks
that

1) AeC= (A% (-1)C)".
For £ € R we use the abbreviation

_[A®sB, ife=0,
*“lAeleB, ife<O.

As a measure of distance between sets we will either use the Hausdorff dis-
tance

dy(A,C):=inf{e>0: AcC,and CC A}
or the Lebesgue measure of the symmetric difference
dLeb(A’ C) = Leb(A AC)

Minkowski addition and subtraction have become common tools in mathemat-
ical morphology and image processing [see Serra (1982)], and we will make
use of two more definitions from that field: The class of compact sets A that
satisfy A=(A® AB)S AB = (A & AB) ® AB for some A > 0 is called Serra’s
regular model; see Serra (1982), page 144.

More generally, Matheron (1975), page 24, defines, for any A c R? and A >0,

2) ¥,(A):=(AeAB)®AB= |J B,(x)
B, (x)CA

and calls the mapping A — V¥, (A) the granulometry of the set A with respect
to the structuring element B. The granulometry represents the “size distribu-
tion” of the set A in the sense that the mapping A — Leb(V,(A)), where Leb
denotes Lebesgue measure on R, gives the volume occupied by the translates
of AB that are included in A. Here we extend the definition of the granulom-
etry to the whole line by setting

(3) ¥ ,(A):=(A®AB)6 B, A>0.

For the generalization of Blaschke’s rolling theorem, it is informative to intro-
duce the following notion of generalized convexity, for which Mani-Levitska
(1993) cites Perkal (1956) as a reference: The set A ¢ R? is called r-convex
(r>0)if A = C,(A), where C,.(A) = Nint B,(x)na=p(int B,(x)) is called the
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r-convex hull of A. For an interpretation why this is a generalized notion of
convexity and for further properties of granulometries, see Walther (1995).

Finally, if A is convex and compact, then a ball of radius r is said to roll
freely in A if for each boundary point b € JA there exists x € R? such that
b € B,(x) C A; see Schneider (1993). If A is only closed, then for rB to roll
freely in A we require, in addition, that A © r B be path-connected in order to
preserve the physical meaning of rolling freely.

The following generalization of Blaschke’s rolling theorem links together
all the preceding notions.

THEOREM 1. Let S # & be a compact subset of R and r, > 0. Then the
following are equivalent:

1) W\(S) =S for A € (—r¢, rol;
(i) S and S¢ are ry-convex and int S; # O for each path-connected compo-
nent S; C S;
(iii) @ ball of radius r rolls freely inside each path-connected component of
S and S¢ for all 0 <r < ry;
(iv) S is a (d — 1)-dimensional C' submanifold in R® with the outward
pointing unit normal vector n(s) at s € JS satisfying the Lipschitz condition

1
[n(s) — n(t)| < r—|s —t| forall s,te€dS.
0

Moreover, for some r, > 0 the preceding is equivalent to:

(v) S belongs to Serra’s regular model.

The theorem shows that the smoothness of 7S is linked to the behavior
at the origin of the granulometry ¥,(S). The theorem is proved in Walther
(1995) for path-connected S, but as remarked there, it extends to compact
S in a straightforward way. Also, a further characterization is given there.
In the following we denote by < (r,) the class of all nonempty compact sets
in R? that satisfy the conditions of Theorem 1 with rolling parameter r.
Further, for a set C let £(ry) denote all sets in £ (r,) that also satisfy S c C.
Examples of sets in R? that satisfy the conditions of Theorem 1 are shown
in Figure 1, where some level sets L(A) := {x: f(x) > A} of the density
of the Gaussian mixture %Zf‘le(mi, 1—101) are plotted with m; = (0.8, 2.2),
my = (2, 1.2) and mg = (2, 2). It is, in fact, quite a general phenomenon that
level sets of densities belong to £(r() for some r, as the next theorem shows.

THEOREM 2. Let f: R?+— Rand —oo <l <u < sup f. Assume:

() f € CYU), where U is a bounded open set that contains L(l —n) \
int L(u + n) for some n > 0;

(ii) grad f satisfies |grad f| > m > 0 on U as well as a Lipschitz condition
on U (or on dL(A) for all A € [L, u]):

|grad f(x) —grad f(y)| < klx — y| for x,y € U [or dL(N)].
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F1G. 1. Some level sets of the Gaussian mixture density f .

Then, for each A € [L, u], L(\) satisfies the conditions of Theorem 1 with r, =
m/k.

The theorem shows that in the example of the Gaussian mixture density £,
the level sets at almost all levels belong to (r) for some r,. The simple case
of a Gaussian mixture is illustrative here because it shows how the generalized
rolling theorem generalizes the well-known elliptical contours of a Gaussian
distribution to the case of generalized convexity shown in Figure 1.

3. Estimating level sets and minimum volume sets. Note that first
subtracting and then adding a ball B, to a set S corresponds to rolling a ball of
radius A inside S, as can be seen from the definition (2). Hence ¥, “smooths”
the set S in some sense and filters away small components of S. Similarly,
P_,(S) is the smoothed set obtained by rolling a ball of radius A along S
in S¢. This follows from (3) and (1), which imply ¥_,(A) = (¥, (A°))¢ for all
A € R [the set (W, (A°))° =: ¥5(A) is also called the dual mapping of ¥,; see
Matheron (1975), page 187]. The granulometric smoothing procedure ¥_, is
especially interesting when applied to a point cloud. Adding B, fills the space
between points so that the following subtraction of B, reveals the shape of the
data set in a certain sense. A large A will give a coarser summary of the shape
with the convex hull in the limiting case A = oo, and a small A will give more
detailed information, with the limiting case A = 0 recovering the original set
2. Figure 2 gives an illustration of the granulometric smoothing procedures
V¥, and ¥_; applied to the union S of two polytopes and a two-dimensional
point cloud £°, respectively.
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In the following discussion an empirical version of ¥, will be used to con-
struct various estimators. A question that arises naturally in this context is
whether applying the granulometric smoothing procedures ¥, and ¥_,, pos-
sibly repeatedly, to an arbitrary set S will always produce a smooth set in the
sense of Theorem 1. The answer is negative, but it is shown in Walther (1995)
that the smoothing works in a quite general context.

For the estimation of level sets and minimum volume sets, we distinguish
the cases where the underlying density f is smooth and where it has a jump.

3.1. The smooth case. Let [, u be numbers such that 0 <! <u <supf <
oo. We will make the following assumption on f:

ASSUMPTION A. (i) f € C?(U), where p > 1 and U is a bounded, open set
that contains L({ — n) \ int L(x + n) for some 7 > 0.
(i) On U, grad f satisfies |grad f| > m > 0 as well as a Lipschitz condition:

|grad f(x) — grad f(y)| < klx —y| forx,yeU.

Besides the level set L(A) := {x: f(x) > A}, we define, for y € (0, 1],
C(7) = L(A(y)), where A(y) := sup{A: F(L()) = 7}.

Under Assumption A and if vy is such that A(y) € (I, u), then F(C(vy)) = y.
This follows from Theorem 2 and Lemma 2(b) (in Section 5) together with (6).
Hence C(y) is then a minimum volume set with probability content y by the
Neyman—Pearson fundamental lemma.

It turns out that for smooth f the excess mass approach can be improved
upon by using estimators that are based on density estimation procedures. For
that reason we will investigate in the following the performance of a granulo-
metric smoothing procedure that is based on a density estimator f.

Let 2;, :={X,,..., X, } where the X, arei.i.d. f, and let f, be any density
estimate of f based on Z;,. In the following a kernel density estimate will
be used, but any other density estimate can be employed analogously. Set
Z;FA) ={X € Z,: [ (X) = A}, 2,7 (A) := 2,\Z,F(A). Now apply an empirical
version ¥ of the previous smoothing procedure to obtain the estimators for
L(A) and C(y):

L,(\) =%, (2;") = ((Z; W) @r,B)FnZ; (1) &r,B,
Cn(Y) = Ln()‘n(y))9 where An(’)’) = max{)\: Fn(Ln(/\)) = 7}'

__ To see the analogy of"l\'r to ¥,, observe that, by (1), ¥,.(S) = (S°@rB)‘®rB.
¥ has the advantage of possessing excellent computational properties; see the
following discussion.

For the choice of r, note that if m and % in Assumption A are known, then
we know from Theorem 2 that L(A), C(y) € &#(m/k). This prior information
can then be built into the estimator by setting r, = m/k (or slightly smaller).
Observe that, by definition, a ball of radius r,, rolls inside L, and C,,. But, in
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general, the boundaries of L, (1) and C, (y) will have vertices pointing inside,
so the estimators will not belong to #(r) for any r by Theorem 1. However,
Theorem 3 together with Theorem 2 of Walther (1995) shows that rolling a
ball of radius r, along the outside of these estimators will “project” them into
4(F,), where 7,/r, — 1, without affecting their rates of convergence. This
is shown for C,(0.75) in Figure 3, using a sample of size n = 100 from the
mixture density f;; given in Section 2, r, = 0.2 and a kernel density estimate
with Gaussian kernel.

If m and % are unknown, then one has to let r,, shrink to 0 slowly as the
sample size increases; see Theorem 3.

Observe that there is a straightforward algorithm to compute these esti-
mators: L, (A) consists of the union of balls around those points in 2" that
have a distance of at least r, from each point in & . Computing the centers
of these balls takes O(dn?) steps, thus depending on the dimension d only
in a linear way. The same complexity applies for the density estimation on
2,,, for example, in the case of a kernel density estimate. Further, using a
bisection search, C,(y) can be computed in O(dn? log n) steps, because L, (A)
is constant in A except for at most n values A = f,(X;),i = 1,...,n. The
representation of the estimators can be further simplified by replacing sev-
eral overlapping balls with a larger one; this could be done, for example, by a
tree-structured algorithm. In any case the estimator can be stored as a list of
centers and radii and is easily worked with.

The next theorem investigates the properties of these estimators in the case
where f, is a kernel density estimate, that is,

faleri= YR (E2),

noi=1 Op

where o, is a bandwidth sequence and K a kernel that will be assumed to
satisfy
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FI1G. 3. Estimate of C(0.75) based on a sample of size 100 from f ;.
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ASsSUMPTION K. K is a continuous kernel of order at least p with bounded
support and finite variation.

In the following a, > b, for sequences {a,}, {b,} means a,/b, — oco.

THEOREM 3. Let f: R% — R be a density satisfying Assumption A and let
K be a kernel satisfying Assumption K. Let o, be of the order (log n/n)(d+2p)
and let r, satisfy

log 1\ V/(@+D)
max(a,f,( 8 ) > Lr,<ryg—e forsomee>D0,
n

where ry ;= m/k. Then

(4) 2/(d+1 d+2
1 /(d+1) o 1 p/(d+2p)
_ O<max<< ogn) po-D/a) ( Ogn> )) s,
n

n

If further y <y are such that I < A(y), A(y) < u, then

sup dy(C(y), Co(7))

vely, 7]

2/(d+1) p/(d+2p)
= O<max(<10gn> r;(d_l)/(dﬂ), <logn) )) a.s.
n n

The proof of the theorem proceeds by establishing an exponential inequality
and is given in Section 5.

6))

REMARK 1. The statements of the theorem also hold when d;., is used
instead of dg. This follows from (9), (10) and (6) in the case of L,(A) and can
be seen similarly in the case C,(A).

REMARK 2. Theorem 3 shows that L,()A) has a faster rate of convergence
than the empirical A-cluster studied in Polonik (1995), Proposition 3.7, when f
is smooth enough [to apply said proposition note that (A) and (8) imply y =1
and r = (d — 1)/2 there]. The reason is that the empirical A-cluster does not
make use of the smoothness of f.

REMARK 3. The proof of Theorem 3 shows that the term (log n/n)?/(d+2p)

stems from the estimation of £ and the term (logn/n)% (@+1) o (DD o

the specific method used to reconstruct the set L(A) based on 2;(A), 2, (A).
This latter reconstruction can be improved by basing it on a larger set of
points: Sample another m points from a density that is bounded away from
zero on a set containing L(A) ® ¢B (e.g., resample from f,) and evaluate [,
based on the original sample only, on the augmented sample %, ,, of size n+m
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to obtain 2,7, (1) :={X € Z;, f.(X) > A} and analogously 2y m(A). The
proof of Theorem 3 then shows that the resulting estimator

L, (V)= ((ZymN®r,B) N2, (V) @r,B

converges at the rate

1 2/(d+1) 1 p/(d+2p)
O<max(< og(n + m)> rngn 1)/(d+1)’ < og n) )

n+m n

REMARK 4. In a general situation, if L(\) does not belong to £(r) for any
ro, for example, if L(A) has vertices, the estimator will still be consistent if f
is not flat at ¢L(A) and L(A) can be approximated by sets in £(r;) as ry | O.
This will, in general, be the case for sets encountered in practice.

REMARK 5. A simple estimator can be built usigg the regularization con-
cept of Grenander (1981), page 373, and setting L,(A) = Uxcy X & 1, B;
see also Cuevas (1990). Using techniques similar to the proof of Theorem 3,
one can show that the rate of the reconstruction step is not faster than
(log n/n)Y/? (and is obtained when r,, is of the same order). The corresponding

rate (logn/n)?@+ D, @D/ g0 1, ()) and fixed or slowly decreasing r,
shows that L, (X), although of the same structure (a union of balls), greatly

outperforms L, (X).

3.2. The nonsmooth case. In the case where the density has a jump along
dL(A), the excess mass approach turns out to be superior to procedures based
on kernel density estimates. It will be shown how the preceding granulometric
smoothing technique can be applied to the excess mass approach to produce an
estimator that converges to L(A) with the minimax rates, up to log factors, if
d > 2. The estimate employs a kernel density estimator as a pilot estimate and
uses an approximation scheme based on Monte Carlo sampling. The estimate
is hence computer-intensive to obtain, but once computed, it is of the same
simple form as in the smooth case.

Specifically, we consider densities satisfying:

AssSUMPTION B. For fixed numbers 0 <[ <l < A < u,ry > 0 and some
compact set C c R?, f satisfies L(A) € £o(ry), LA)®roBcCandl < f <1
on (L(A))NC, f>uon L(A).

The assumptions involving the set C are imposed to facilitate the exposition.
The following estimator can be modified to handle the case f < on (L())),
f > u on L(X), by putting down auxiliary points as described previously in
Remark 3.

The estimator is constructed as follows. Start again by computing on Z;, a
kernel density estimate f, with bandwidth o, — 0, o, > (logn/n)*?, and

set 20 = {X € Z,: fo(X) = A}, 27 1= 2, \ 2. Setting 2 := 2} (2, @
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20,B), 2.~ = 2 N (Z;F & 20,B)° and R := 2, \ (2; U Z.) will make
sure 2, C L(\) and .Q?n: C (L(A))¢ for large n. Next we will successively

smooth the sets 2, U R; for various R; C R by employing the granulometric
smoothing procedure twice. This will ensure that the following candidate sets
Z, ; are regular enough, that is, close enough to elements of <(r), for the
excess mass approach to work. The sets R;, i = 1,..., I, are obtained by a
randomization procedure, for example, accepting each X € R into R; with
probability proportional to f .(X), or by considering all possible subsets R; C
R if |R| is small. One obtains

Zn,i:z{XeQZ”n: | X -Y|>2r, forall Y € ((%URJ@I‘,LB)CH%}@F,LB.

This estimator is again a union of balls, the centers of which are easily com-
puted by a straightforward algorithm comparing various distances between
the elements of 2,. Computing all these centers takes O(dn?) time. Finally,
choose as an estimator L]()) a set Z, ; that attains the excess mass over the
competing estimators Z,, ;:

(F, — ALeb)(LL(A)) > (F, — ALeb)(Z, ;) foralli=1,...,1.

An appealing choice for I in practice is to monitor the increase in the largest
excess mass found so far and to terminate the algorithm once this increase
tends to level off. For the computation of Leb(Z,, ;), one can use the formula
of Naiman and Wynn (1992) that reduces the volume of the union of a finite
number of balls with equal radius in R to an expression involving volumes
of intersections of at most d + 1 balls. Another possibility is to approximate
Leb(Z,, ;) by random methods, for example, sampling from a uniform distri-
bution on a cube or ball containing Z, ; and using the fraction of the sample
falling into Z,, ; to estimate its volume. Using such a random sample of size J
for each Z, ; gives a total cost of O((n? + J)I) to compute the final estimate
LEI()).

The estimator LI()) serves as an approximation to the estimator L,(A)
that employs Naiman and Wynn’s exact formula and considers all possible
subsets R; C R. For this estimator L,(A) one obtains the following result.

THEOREM 4. Under Assumption B, if 0 < r, < rq is fixed, then

2/(d+1)
o((log”> ) as., ifd>3,

n

1
0( ‘if;) as., if d <3.

If r, is unknown, one has to let r, shrink to 0 so that r, > (log n/n)Y/(@+D
and incurs a penalty in the convergence rate as in Theorem 3. Of course, this
penalty can be made arbitrarily small if r,, shrinks slowly enough.

dren(L(A), Ly (2)) =
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REMARK 6. Up to log factors, the rates for d > 2 in Theorem 4 agree with
those established by Polonik (1995), Proposition 3.7, for the empirical gener-
alized A-cluster [observe that (8) and Assumption B give r = (d — 1)/2 and
v = oo for Polonik’s Proposition 3.7].

REMARK 7. Following Proposition 3.8, Polonik remarks that for the prob-
lem of estimating the support of a uniform distribution, the empirical gen-
eralized A-cluster converges with the minimax rate. Similarly, for d > 2 the
rates of Theorem 4 are up to log factors minimax rates for Assumption B. This
follows from Mammen and Tsybakov (1995), Theorem 5.1, Model 2. The class
%5, 1, used there is larger than 4(r), but the proof of their Theorem 5.1 shows
that the minimax rate is determined by the smoothness of a parametrization
of the boundary in terms of a Lipschitz condition on the derivatives, and that
condition (iv) of Theorem 1 implies the same minimax rate for 4(r,) as for
%5, 1,- Mammen and Tsybakov (1995) also state that optimal rates for the prob-
lem of level set estimation for general smoothness classes are not yet known
and comment on the difficulty of finding practical estimators.

REMARK 8. Asin the smooth case, one can obtain a version of the estimator
that belongs to the class £4(r;) by rolling a ball along the outside.

4. Comparison with other approaches and applications. This sec-
tion puts the results of the previous sections in the context of competing tech-
niques, which consist of two fundamentally different approaches: contouring
a density estimate and the excess mass approach, which specifically incorpo-
rates shape information. Both of these techniques have several disadvantages
when evaluated against the two main criteria, statistical performance and
computational feasibility. The excess mass approach produces an estimator
that satisfies the prescribed shape restrictions and has a better statistical
performance if the density is not smooth. In the case where the density is
smooth, however, contouring a density estimate based, for example, on an ap-
propriate kernel allows one to exploit the smoothness and results in better
rates of convergence. But this method does not allow one to incorporate prior
shape information on the level set. The computational aspects are unsatisfac-
tory for both methods: The excess mass approach, in general, does not seem
amenable to a computational realization, and algorithms exist only for the
classes of convex sets in R? and ellipsoids in R?. Contouring a density es-
timate, based on a kernel or other method, provides the challenging task of
implementing a data structure to store several multidimensional components
of the resulting set. In addition, when estimating a minimum-volume set with
given probability content, the right level for contouring has to be found by a
search procedure that involves numerical integration of the density estimate
over a candidate level set in each step.

It was shown in Theorem 2 that the class 4(r) described in Theorem 1
plays a very important role in density estimation: Under some mild smooth-
ness condition on the density, the level sets will belong to 4 (r) for some r. This
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explains the significance of the shape-restricted inference tailored to this class
that is provided by the granulometric smoothing procedure. This procedure al-
lows one to incorporate prior information on the rolling radius r. Furthermore,
Theorem 3 and the following Remark 4 show how this procedure can be em-
ployed without this prior information, leading to a penalty term in the rate of
convergence, and that this procedure is still consistent should the level set not
belong to the widely applicable class £(r). It was shown both how the excess
mass approach can be applied to the granulometric smoothing procedure and
also how that procedure can be used in conjunction with a density estimator
to exploit smoothness of the density, yielding excellent statistical performance
in the smooth case as well as in the nonsmooth case. The analysis in Section 3
makes clear the computational advantages of the procedure: The computa-
tional complexity of this estimator depends on the dimension only in a linear
way, and there exist simple algorithms and a simple data structure that allow
easy computation, storage and manipulation of the estimator.

To put this technique into a concrete context, two important applications
shall briefly be delineated. In a Bayesian context, highest posterior density
regions are a common tool to summarize the structure of the posterior distri-
bution. Chapter 5.3 of Tanner (1993) describes some of the difficulties involved
in computing the contents and boundaries of highest posterior density regions
even in low-dimensional situations. Note that a highest posterior density re-
gion with content 1 — « is a minimal volume set of the posterior density with
that content. Thus, if one can sample from the posterior, for example, with the
Gibbs sampler, the Metropolis algorithm or the Monte Carlo EM algorithm,
then the set C, (1 — «) introduced in Section 3 gives a readily implemented
estimator for the (1 — «) highest posterior density region in any dimension.

In a frequentist context, Hall [(1992), page 160] describes the construction
of multivariate bootstrap confidence regions whose shape is determined by
the data so that the regions are (approximately) likelihood based in the sense
described in Hall (1992), page 17. See also Cox and Hinkley [(1974), pages 236,
238] for arguments supporting likelihood-based confidence regions. Let 6, be
an estimate of a d-dimensional parameter 6, based on n i.i.d. observations,
(1/n)S be an estimate of the covariance matrix of 6,, and consider the root
T = n'2371/2(4, — 6,). The goal is to find a (1 — a)-confidence region # for
0y by constructing (an estimate of) a level set S of the density f of T' such
that P(T' € S) =1 — . So S is a minimum volume set for f with probability
content 1 — «. Following Hall [(1992), page 160] draw b resamples of size n to
obtain T, ..., T};. Apply a density estimator to these b values of T* to obtain
a density estimate f; of f. The resulting (1 — a)-confidence region as given on
page 160 of Hall (1992) is then # = {6 — n='/2312x: x € S}, where S is the
level set of f » that contains a proportion 1— « of the b values T7, ..., T;. The
difficulties arising in the construction of such a set were described in Section 1.
A solution is given by the estimator S = Cp(1 — «) introduced in Section 3.

Finally, it is possible to build on the ideas of Romano (1988a, b) and
DasGupta, Ghosh and Zen (1995) to construct multivariate bootstrap confi-
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dence regions for the mode as a location parameter in a quite general setting.
This idea will be developed elsewhere.

5. Proofs. First, some auxiliary results will be given that will be used to
prove Theorems 3 and 4. Theorem 2 will conveniently be proved together with
Lemma 2.

For any compact set C in RY,

(6) Leb(S,.,) =Leb(S)+ O(e) as e | 0, uniformly in S € L(ry).
This can be shown using the property that if S € £ (r(), then a ball of radius

ro rolls freely in S and in S¢.

LEMMA 1. If0 < & < ry < ry and xq, X9 € R with |x; — x| <71y +1ry—&,
then

4ca—1 (d-1)/2_(d+1)/2
Leb(B,l(xl) N Brz(DCz)) > mrl ,9( ) ,

where c; = w2 /T(1 +d/2).

PROOF. Let e be any unit vector. Elementary considerations show
Leb(Brl(xl) N Brz(xQ)) > Leb(B,l(O) NB,, ((ry+ry— &)e))
> Leb(B,,(0) N B, ((2r; — &)e))

- 2Leb<Brl(0)ﬂ {y: (y,e) >ry— ;})

For 0 < x < r; the hyperplane {y: (y,e) = r; — x} intersects B, (0)
in a (d — 1)-dimensional ball of radius /(2r; — x)x, which has volume

cq-1(v/(2r; — x)x)?1. So by Fubini’s theorem the last line in the preceding
equation equals

&/2 ———d-1 £/2 - s
2[0 Cd—l(\/(2r1 - x)x) dx > zcd—lfo (rix) 4 V2dx  as 3 =r

4 -
_ Cd—1 PA=D/2 (d+1)/2. 0O
(d + 1)2(d+1)/2 1

LEMMA 2. Under the assumptions of Theorem 2 there exists h > 0 such that:
(a) For all A € [I, u] and all t with 0 < |t| < h,

. m
xelil(f;‘)t f(x)>A— <2tv2mt>
and

sup f(x) <A+ (mt \% 2mt>.
xe(L(A)°), 2
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(b) If Ay, Ay are such that | < Ay < Ay <u and Ay — Ay < (m/2)h, then
2 1
L(A —(Ag —A;)BC L(A L(A — (A — Ay)B
(1)9m(2 1)B C L(xg) C (1)92m(2 1)B,

LO9)® 5 (g~ A)B € L) € L(A) & = (A — A)B.

(¢) For Ay, Ay as in (b),

1/d
Leb(L(A1)) = Leb(L(Ay)) + d(Leb(L(A2)))“ ™" 5L (a3 = 4,).
where c; = w2 /T(1 4+ d/2).

PROOF OF THEOREM 2 AND LEMMA 2. Recall that a nonempty set S ¢ R¢
is called a (d — 1)-dimensional surface if S = f~1(0) := {x: f(x) = 0} for some
smooth function f: U — R, U c R? open and grad f(x) # 0 for all x € S [see
Thorpe (1979), page 16]. S is a (d — 1)-dimensional C! submanifold iff it is
locally a (d — 1)-dimensional surface with f € C'; see Theorem 2.1.2 in Berger
and Gostiaux (1988).

Ifxe L(I—m)\intL(u +n) Cc U, then

grad f(x) . . m
(7) f<xi€|gradf(x)|) f(x) 2 :i:zs for0<e<mn
and some n; > 0. This is so because | grad f(x)| > m on U gives (7) for some
11 = 1n1(x), but as L(I — n) \ int L(u + n) is compact and f € C}(U), one can
pick a universal n; > 0.

Now let A € [[,u] and x € f%(A) := {y: f(y) = A}. Then x € L(l) \
int L(u + 1), so (7) shows f~1(A) € dL()A). Conversely, JL(A) C f~1(A) as f is
continuous in a neighborhood of dL(A) as dL(A) C L(A) \intL(u + ) Cc U.
So dL(A) = f1(A) = (fly)~'(A) and thus JL()) is a (d — 1)-dimensional C*
submanifold. By elementary differential geometry [see, e.g., Thorpe (1979),
page 14], grad f(x) is a normal vector to f~1(A) at x € f~!(A). This shows
that

_ grad f(x)
|grad f(x)|

is an outward-pointing unit normal vector at x € JL(A). Then one obtains, for
x,y € dL(A),

n(x) :=

n(x) — n(y)? < |grad f(x)|| grad f(y)| (2 9 l(grad f(x), grad f(y)) )

m? grad f(x)[| grad ()|
_ 2| grad f(x)||grad f(y)|
- o

+ o (1grad f(x) — grad f(y) ~ | grad f(x)” ~ | grad f()P)
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L (1erad f(x) — grad f(y)]? — (| grad £(x)] — | grad £ (5)])’)

m2

2 2
< —lx—y|%
< alx =l

Hence dL()) satisfies condition (iv) of Theorem 1 with ry = m/k. Further, L())
is compact as U is bounded and as dL()A) C f~}(\) was shown previously. This
proves Theorem 2.

The assertion concerning the inf in Lemma 2(a) is obtained by showing
that for some A > 0 the following three inequalities hold for all A € [/, u]
and all £ > 0: f(x) > A+ (m/2)t if x € L(A) ©¢B and d(x,dL(A)) < 7ny;
f(x) > A+(m/2)hif x € L(A)6tB and d(x, dL(A)) > ny; and f(x) > A—2m¢t if
x € L(A)®tB and 0 < t < h. The routine proof of these inequalities is omitted.
The assertion concerning the sup in Lemma 2(a) is proved analogously.

As for part (b), setting ¢t = —(2/m)(Ay — A;) in part (a) gives

xeL(Al)e(lzf/lrfL)(Az_Al)B f(x) > A4+ (g = Ay) = Ay,
proving the first inclusion. Further, setting ¢ = (1/2m)(A; — A;) and using
(1), one obtains sup,c(r,)e(1/2m)0-1)B) (%) < A1+ (Ag — A1) = Ay, whence
(L(A)e(1/2m)(Ay— Ay)B)¢ C L(Ay)¢, which yields the second inclusion of the
first assertion. The second assertion follows analogously.

Part (¢) follows from (b) and the Brunn-Minkowski inequality [see, e.g.,
Burago and Zalgaller (1988)]: As L(Ay) is nonempty and compact by Theo-
rem 2, said inequality gives

Leb(L(AZ)@Z}n(Az-Al)B> > [(Leb(L(/\z)))l/d+<Leb<2}n(/\2—)\1)3>>l/d}d.

Recall
Ay — Ay Ay — A\
L B) = . O
eb( 2m ) cd( 2m )

LEMMA 3. Let C c R? be compact, ry > 0 and X;, 1 <i < n, be i.i.d. from
some density f on R<.

(@ Iff=b>00n S e Lp(rg) and 0 < & <r/2Argy, then
P(S, 9, ¢ (SN{X;, 1<i<n})a®rB)
< D(e, S,)exp(—nabmin(r — e, ro) 4 D/2gld+1)/2),

where D(e, S,) :=max{card M: M C S,, |x — y| > ¢ for different x, y € M} is
the packing number for S,, and a is a dimensional constant.
(b) If further f >b>00n C,0 < e <r/3Aland ry>r—2¢, then

P(S, 3. ¢ (SN{X;, 1 <i <n})@®rB for some S € £p(r,))

< D(e, Cr)D<1(8), sd1> exp(—nab(r — 2&)@"1D/2(g/2)@+1)/2),
r
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PROOF. We will employ a variation of the packing argument used in the
proof of Theorem 1[a] in Diimbgen and Walther (1996). Write 2.5 for S N
{X,;, 1 <i <n}. Let M be a maximal subset of S,_,, such that |x — y| > ¢ for
different x, y € M. So, for any set T ¢ R¢, M c T implies S, ,, ¢ T & &B.
Hence

P(S, 2. ¢ 2y @rB) <P(M ¢ 2, & (r — £)B)
< Y P2 N B,_.(m)=0)

meM
< D(e, S,)sup,,cs_, P(2;° N B,_.(m) = Q).

Let m € S,_,,. Then there exists s € S with |m —s| < r—2e. As S satisfies the
conditions of Theorem 1 with rj > 0, there exists x € S with s € B, (x) C S,
so |m — x| < rqg+r —2e. Lemma 1 shows that

Leb(B,_,(m)N B, (x)) > amin(r — g, ry)* D272,
where a is a dimensional constant. Hence

P(2;5NB,_,(m)=@)=P(X;¢SNB,_,(m) forall 1 <i <n)

Il
=

(1-P(X,; € SN B,_,(m)))

1
1-P(X, € B, (x)N B,_,(m)))"
1 — abmin(r — g, ro) 4= D/2gld+02)"

xp(—nabmin(r — &, ry)@-D/2gd+1)/2),

~
Il

A IA
[¢] —_~

IA

which proves part (a). To prove (b), let M be a maximal subset of C,_s, such
that |x — y| > & for different x, y € M and set MS :== M N S.If S € Lx(ry)
and s € S,_3,, then it follows from Theorem 1(iii) that s € B, (x) C S,_3, for

some x. This implies S,_5, C (M5-3) @ 2¢B. Hence
P(there exists S € Zu(r): S,_3, ¢ 2,° @ rB)
< P(there exists S € £¢(ry): M5Sse ¢ 225 @ (r — 2¢)B)
= P(there exists m € M: m € S, 3, and m & 25 @ (r —2¢)B
for some S € £(ry))

= D(85 Cr73a) sup ]P)(m € Sr738 and Q/;’LS N Br72e(m) = Q

meC

r—3e

for some S € G¢(ry)).

If m € S,_3,, then as in the proof of part (a) one sees that there exists x
with [m — x| < ry+r —3e and B, (x) C S. Hence the last probability in the
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preceding inequality is not larger than
IP’(QZ”n N B, ()N B,_5,(m) =D
for some x with B, (x) C C and |m — x| <ro+r— 3.9).

One verifies that r, > r — 2¢ implies for e := (x — m)/|x — m| (and any unit
vector e if |x — m| = 0):

B,.O(.?C) n Br72e(m) ) Bro(m + (rO +r— 3‘9)9) n Br72s(m)
D Bro(m +(ro+r-— %s)é) N B, _5.(m),

whenever é is a unit vector with |e—é| < £/10r and ¢ < 1. So if M is a maximal

subset of the unit sphere so that |x — y| > £/10r for different x, y € M , then
the previous probability is not larger than

5\ ~
IP’(Q”” NB,, (m + <r0 +r— 28)8) N B, _5.(m) = for some é € M with
5 \.
B, [m+ r0+r—§s é)NB, 4. (m)cC

< card ﬂ(l - ]P’(Xl € B, (m + <r0 +r— ge>é> N B,_zs(m)>>

5
where B, (m + (ro +r— 28)é> NB, 5, (m)cC
< card M(1 — abmin(r — 2¢, ry) @~ D/2(g/2)[@+D/2)"

< D(lf)r’ Sd_1> exp(—nab(r — 2&) " V/2(g/2)d+D/2), O

PROPOSITION 1. Let F be a probability measure on R with bounded den-
sity, C ¢ R? be compact and ry > 0. Then
O(n™2@) qs., ifd >3,
sup |F,(S)—F(S)| =
o) ) (S) 0 <10g n
Jn

) a.s., ifd=1,2,3.

PROOF. Let

Ni(e, £o(ry), F) :=inf{m: there exist measurable G4, ...,G,, ¢ R?
such that for every G € £(r,) there exist
i,je{l,...,m} with G; C G C G; and
F(G;\G;) <&}
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be the metric entropy with inclusion of £, (r() with respect to F. We will show,
for d > 2,

(8 log N;(e, Zo(ro), F) < Me™ @172 for 0 < £ <1 and some M.

Then Corollary 2.5 in Alexander (1984) gives the assertion for the case d > 3.
[In his definition of metric entropy N f , Alexander requires that the bracketing
sets G;, G; be in (ry). However, the proof of his Theorem 2.3 (on which
Corollary 2.5 is based) goes through without this requirement. So we may
substitute N;(s2, £o(ry), F) for N3(e, Zo(ry), F).]

In the case d = 1 one can readily find an explicit bound for N;, but for the
following it is enough to note that N; for d = 1 is not larger than N; for d = 2.
Soifd =1, 2, then fol(log N (&2, Zo(ry), F))2de < 0o, and Theorem 6.2.1 in
Dudley (1984) gives the assertion for this case.

It remains to prove (8). Let G € £(r(). Part (iv) of Theorem 1 and Theo-
rem 2.1.2(iv) in Berger and Gostiaux (1988) show that /G is locally the graph
of a real-valued function f defined on R%"! (possibly after a permutation of
the coordinate axes) and that grad f satisfies a uniform Lipschitz condition.
Hence we can find a fixed number N = N(r() of overlapping rectangles R;,
i=1,...,N, covering C such that for each G € 4(ry), G = U,;c5(G N R;),
J c{l,...,N}, and GNR; € €(2,k,d) for some k, where ¢(2,k,d) is
defined in Dudley (1984), page 51. Theorem 7.1.1 in Dudley (1984) shows
log N;(e,€(2,k,d), F) < M;e@ V2 0 <e <1 But G=J;.;(GNR,;) and
|J| < N imply N(e, £o(ry), F) < (N;(¢/N, €(2, k,d), F))N. Equation (8)
follows. O

PrOOF OF THEOREM 3. We will first prove (4) by showing that there exist
constants ¢, M > 0 such that, for &, := c(log n/n)2/(@+Dp, (¢~ D/(@HD

9) P(L(A)_apmop—e, C Ly, () for all A € [1, u] eventually) =1,

(10) P(L,(A) C L(X), iopmop for all A € [1, u] eventually) = 1.

Then (4) follows as L(A)_gpo2—,, C L,(A) implies L(A) C L,(A)oppp4,, for n
large enough by Lemma B.1(c) of Walther (1995), because L(A) € £ (m/k) for
all A € [, u] by Theorem 2. Equations (9) and (10) will be proved in two steps.
Define the events

A, = {w: 2;F(\)(w) C L(A)(pm/2)0p for all A € [1, u]},
B, = {w: 2;7 (\)(®) C (L(A)_(a/2)02)° for all A € [1, u]}.
First, it will be shown that

(11) P(A,, eventually) = P(B, eventually) = 1,

P(L(\)atop \ L) (s, s,y s20107

(12)
CZ,(M)@r,Bforall Ae[l,u] eventually) =1.

Then these auxiliary results will be used to prove (9) and (10).
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To prove (11), observe that one can find r > 0 such that the compact set
U(r) .= (L(l) \ int L(u)) @ rB satisfies U(r) C U. The kernel K satisfies
the assumptions of Theorem 3.1 in Stute (1984). That theorem and Taylor’s
theorem, respectively, show that there is a compact set C > U(r/2) such that

(13) sup|f, — fol=0(mPI4H2P) as,  n— oo,
c

(14) sup|f,, —fl=0(af), n— oo,
C

where we write f, for [o;2K((- — x)/0,)f(x)dx. Using (MON) of Walther
(1995), one verifies

(L(w) N C%) @ gB c L) e %B.

Together with the fact that K has bounded support, o, — 0 and Lemma 2(a),
this shows that, for some v > 0 and n large enough,

inf f, > inf f>u+v and sup [, <l—wv,
L(u)nCe ™ ™" (L(u)nCe)®(r/4)B (L(1))enCe "

where the last inequality follows in an analogous way. f . converges to f,
uniformly on C¢, as o¢ >» logn/n, supf < oo and the assumptions on K

guarantee that the graphs of K(- — x/0) have polynomial discrimination; see
Pollard (1984), page 36. Hence we obtain

A v
P{ inf = lly ) =1
(L(lul}mcc fo(x)>u+ 5 eventua y) ,
(15) v
IP( sup f(x)<l—= eventually) =1.
(L(1))*nCe 2

Equations (13)—(15) together with Lemma 2(a) imply that there exists M > 0
such that

]P’( sup f.(x) < Aforall Ael[l,u] eventually) =1,
xe(L(A)&(M/2)a¥ B

IP’( inf fa(x) > Aforall A e[l,u] eventually) =1.
xeL(A\)o(M/2)ok B

Equation (11) follows.

To prove (12), let N, be the integer part of 2(u — 1)((m/2)M o)~ and let
I =X <.+ <Ay, =ubesuch that A ; — A < (m/2)Mq} for all k < N,,.
Then
(16) LX) —r,—e 4 mo? C L(Api1)—(r, s, )+2Mo?
for all £ < N, by Lemma B.1(c) of Walther (1995) and Lemma 2(b), provided
n is large enough. Now suppose

A7) LOWwor \ LW (s yearor € 2 (\p) @1, B forallk=1,...,N,.
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Let A € [/, u] and let & be such that A € [Ay, Ap1]. Then L(A, ;) C L(A) C
L(A;) and (16) give
L(M)pop \ LV _(r,—s,y+2m0r € LA Mop \ LX) (7, — e, )+ Mo?
C Q/;z_(/\k) () rnB
C 2, (A)@®r,B by the definition of 2, .

So if the set on the left-hand side of the preceding inclusion is not contained
in 2,7 (A) & r, B for some A, then the inclusion in (17) must fail for some &.
This shows

P{L(A)aop \L(N)_(r —¢. yramop €25 (A) @1, B for some e[, u]}NA,)

(18) N,
= Z IP)({L(/\k)M(r,f \L(Ak)—(rn—sn)+Mrr,f ¢ ‘Q/;L_(Ak) @ rnB} N An)
k=1

(A, is included for later use of this inequality.)

Next, by Assumption A one can find 0 < r < ry/2 such that f > /2 on L(J),.
Pick any A € [/, u]. One verifies that for large enough n the (nonrandom) set
S(n) := L(A), \ int L(A)y,,» satisfies the conditions of Theorem 1 with rolling
radius at least r/4. On the event A, we have S(n) N {X;,i = 1,...,n} C
Z,7(A). Hence Lemma 3(a) gives

P({S(n),, ., ¢ 2 (\)@r,BjNA,)
(19) < D(s,/2. S(n), )
x exp(—2nalmin(r, — &,/2, r/4)4"D2(g, /2)(dHD/2),
It is easy to check that if S,T7 c R%, 0 < b,0 < cand S® cB c T, then
(T\S), = Ty \ S_,. Together with r + r, — &, > Mo}, and Lemma B.1(c) of
Walther (1995), this gives
S(n)rn—an 2 L()\)r+rn—sn \ (L(A)Mo',f)—rn-&-sn
) L(/\)MU,{’ \ L(/\)f(rnfsn)+M0',f'

Using diameter(.S(n), ) < diameter(L(l))+2r, the bound in Pollard (1990),
page 14, yields

(20)

(21) D(z,/2,8(n), ) < (4(diameter(L(1)) + 2ro)e, " +1).

Equations (19)—(21) and ¢, < r, show that for n large enough the right-hand
side of (18) is bounded by

N,Ci&, exp(—Cangld_l)/zsﬁldHW) < n?exp(—Cyc@tV210g n),

with some constants C;, Cy, ¢ >0, as N, <const o, ” = const(n/ log n)?/(d+2p),
Choosing the factor ¢ in ¢, large enough yields Y, n9 exp(Cyc'*V/2logn) <
oo, so (12) follows from (18) via the Borel-Cantelli lemma and because
P(A,, eventually) = 1.
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Equation (9) can be proved in a similar way: One checks that L(A,)_p,»_, C
L,(A) for all k =1,..., N, implies L(A)_gppr_, C L,(A) for all A € [, u].
So once we find a constant r > 0 such that for each A € [[, u] and n large
enough (and not depending on A)

P({S(n),,—., ¢ L,(AM)} N B,)
< D(2,/2. 8(n),, ) exp(—nalmin(r, - &,/2, 1)4D/%(e, /2)T72),

where S(n) = L(A)_p,p_,,, then (9) will follow from the Borel-Cantelli
lemma as before. This is so because P(B, eventually) = 1 and S(n), _, =
L(A)_pmep—s, for n large enough; see Lemma B.1(c) of Walther (1995).
Lemma B.2 of Walther (1995) shows that S(n) € £(r) for large enough n.
Using (1), one sees that on the event B,, we have S(n)N{X,, i=1,...,n} C
(Z;; (M@ r,B)XNZ; (). So (22) follows from Lemma 3(a).

Finally, (11) and (12) show that P((Z,(A) & r,B) N Z;F(A) C
L(AM)_(r,-s,)+omor Tor all A € [[,u] eventually) = 1. So (10) follows from
Lemma B.1(c) of Walther (1995).

To prove the claim (5) concerning C,(y), set a,, := ¢, + 2M o}, . Assume

L(M)_q, € Ly(\) € L(\),, forall A€ [Z,ul,
Asblp] |[F.(L(A)) — F(L(A))| = ay.

(22)

(23)

We will show that (23) implies

(24) sup |An(7) - )‘(7)| = Dan
vely, 71
for some constant D specified later, provided n is large enough.

But (24) implies, for every vy € [y,7], LIMY))—2/mpa, C L(A,(¥)) C
L(A(Y))2/m)pa, if Da, < (m/2)h by Lemma 2(b). Together with (23), this gives
Lh(/\('Y))—(Z/m)Dan—an - Ln(/\n(y)) and also Ln()‘n(')/)) C L(/\(’Y))(Z/m)Dan-&-an' This
shows

(25) C(Y) - Cn(’)/)(2/m)Da,,+a,l and Cn(’)/) - C('}’)(Z/m)DanJran

for n large enough, because then
LOG)) = (LA imybe, o) ampera. 88 L)) € £(m/h).

Now the assertion of the theorem follows because the statements in (23) hold
eventually a.s. by (9), (10) and Proposition 1 together with Theorem 2.

It remains to prove that (23) implies (24). Set D := C + 2m with

-1/d
4dmecy,

¢= ld(Leb(L(u)))d-1/d’

where c¢; = 7%/2/T(1 +d/2), and suppose A,(y) > A(y) + Da,, for some y €
[v,7]- Then

C,(v) € L,(M(y) + Da,) € L(A(y) + Day),, C L(A(y) + Da, —2ma,),
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where the last two inclusions follow from (23) and Lemma 2(b), respectively.
Hence

F,(C,(7) < F,(L(A(y) + Ca,))
< F(L(My) + Ca,)) +a, by (23)
< F(L(A(¥))) = A(¥) - Leb(L(A(¥) \ L(A(y) + Ca,)) + a,
= v — A(y)[Leb(L(A(y))) — Leb(L(A(y) + Ca,))] + a,
1/d
< y — ld(Leb(L(u)))@-Dd ;Lm Ca, +a, by Lemma 2(c)
=7v—a,.

This contradiction to the definition of C,(y) shows that, in fact, A,,(y) < A(y)+
Da,,. Note that A,(y) > A(y)— Da,, can be shown analogously, proving (24). O

PrOOF OF THEOREM 4. The technical arguments of the proof are very sim-
ilar to those in the proof of Theorem 3, so only the main steps of the proof will
be given. R A

One checks infy g4 8/, = A and supyes, B:fn < A eventually a.s., so
the argument of Lemma 3(a) together with the Borel-Cantelli lemma shows
that

32?} c L)), Qf;n: c (L(n))S, R C L()\)3Un \L()\)_%n eventually a.s.
and hence, also by Lemma 3(a) and using ‘/I\f,rn(glﬁ”,}) C ‘/I\Lrn(é;,} UR;) C
V., (2 UR),

(26) L(M)_y4,, C ‘T’_,n (él;,} U Ri) C L(A)4,, eventually a.s. uniformly in i.
Now
@7) v, (¥, (3?,} UR;)) =7, (37,,+ UR;)

by (1) and as W_, (A_, )= A_, for any set A [use (MON) in Walther (1995)].
Further, L(A) = ¥, (L(A)) = ¥_, (L(A)). This together with (26), (27) and
Theorem 2 of Walther (1995) shows that

the sets S, ; :=V, (¥_, (V_, (Zw UR,))) =W, (¥_, (Z;" UR,)) sat-
(28)  isfy the conditions of Theorem 1 with rolling radius at least (r, + r,,)/2
as well as L(A)_4, C S, ; C L(A)y,, eventually a.s. uniformly in i.

One checks that Z, ; =U({X € 2,: X®r,BC S, ;}®r,B),andas S, ; cC
for all i eventually a.s., Lemma 3(b) together with the Borel-Cantelli lemma
yields the uniform convergence of Z,, ; to S, ;:

(29)  (Sp,i)=c(ogn/nyrarn C Z, ; C S, ; eventually a.s. uniformly in i
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for some constant c. Setting R; := RN L(A) and using Lemma 3(a) and The-
orem 2 of Walther (1995), one also finds that L(A)_ 1ogn/mpern C S, ; C
L(M)¢(1og njny2e+n eventually a.s., so together with (29) one obtains

P<L(/\)—20(logn/n)2/<d“) C Zn,j
(30)

C L(AN)ac(iog n/nyx@n for some j eventually) =1.

Now set H,(-) := F(-) — ALeb(-), H, ,(-) := F,(-) — ALeb(:), p, :=
c;(logn/n)?@+Y if d > 3 and p,, := c;(logn//n) if d < 3, where ¢; > 2c is a
constant that derives from Proposition 1. It will be shown that, for measurable
Z cC:

(31) Ifdp(L(A), Z) > a, then H,(Z) < H,(L(A)) — min(|l — A|, |u — A])a.

If dyep(L(A), Z) > kp, and S_, C Z C S, for some S € £ (7) with
(32) 7>0,then H, ,(Z) < HA(L(/\)) - (m1n(|l - /\| lu— Ak —(2¢sup f +
)p, eventually a.s. for some ¢ > 0.

If L(\)_, C Z C L(A), , then H, ,(Z) = H,(L(\)) — (2ué + 1)p,

(33) eventually a.s.

Equations (6), (30) and (33) show that eventually a.s. there exists a candi-
date set Z, ; with dpg,(L(A), Z, ;) < cy(logn/n)?@*D for some c, and
H, \(Z, ;) = H),(L())) - (2uc + 1)p,. If we choose %k in (32) large enough
so that min(|l — A|, |u — A|)k — (2¢sup f + 1) > 2ué + 1, then (32) and (29)
show that all Z,, ; with dy,(L()), Z,, ;) > kp, obey H, \(Z, ;) < H, \(Z, ;)
eventually a.s. uniformly in i. It follows that di(L(A),L,(A)) <
max(cy, (log n/n)?(@+Y kp ) eventually a.s., proving the theorem.
It remains to prove (31)—(33). For (31), observe F(Z\ L(A)) <lLeb(Z\L(A))
and F(L(A)\ Z) > uLeb(L(A)\ Z). Hence
H)(Z) = F(L(A) + F(Z\ L(A)) — F(L(AM)\ Z)
— A(Leb(L(A)) + Leb(Z \ L(1)) — Leb(L(A) \ Z))
< H)(L(X) —min(|l — AL, [A — u[)dpap(L(A), Z).
As for (32),
H, \(Z) < F,(S,,)— ALeb(Z)
<F(S,, )+ p,—ALeb(Z) eventually a.s.
[by Proposition 1 and Lemma B.2 of Walther (1995)]
<F(S_,)+2cp,supf —ALeb(Z)+ p, for some ¢ by (6)

< H,(L(A)) = min (|l — A|, |u — A|)kp, + (2¢sup f + 1)p, by (31).
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Finally, (33) follows from
F.(Z)—ALeb(Z) > F(L(A)_, ) — p, — ALeb(L(A), ) eventually a.s.
[by Proposition 1 and Lemma B.2 of Walther (1995)]
> F(L(A)) — uép, — p, — A(Leb(L(A)) + ép,) by (6)
> H,(L(})) — (2u¢ + 1) p,. O
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