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ASYMPTOTICS WHEN THE NUMBER OF PARAMETERS
TENDS TO INFINITY IN THE BRADLEY–TERRY

MODEL FOR PAIRED COMPARISONS

By Gordon Simons and Yi-Ching Yao

University of North Carolina and Academia Sinica

We are concerned here with establishing the consistency and asymp-
totic normality for the maximum likelihood estimator of a “merit vector”
�u0� � � � � ut�, representing the merits of t+1 teams (players, treatments, ob-
jects), under the Bradley–Terry model, as t→ ∞. This situation contrasts
with the well-known Neyman–Scott problem under which the number of
parameters grows with t (the amount of sampling), and for which the max-
imum likelihood estimator fails even to attain consistency. A key feature
of our proof is the use of an effective approximation to the inverse of the
Fisher information matrix. Specifically, under the Bradley–Terry model,
when teams i and j with respective merits ui and uj play each other,
the probability that team i prevails is assumed to be ui/�ui + uj�. Sup-
pose each pair of teams play each other exactly n times for some fixed n�
The objective is to estimate the merits, ui ’s, based on the outcomes of the
nt�t + 1�/2 games. Clearly, the model depends on the ui ’s only through
their ratios. Under some condition on the growth rate of the largest ra-
tio ui/uj (0 ≤ i� j ≤ t) as t → ∞, the maximum likelihood estimator of
�u1/u0� � � � � ut/u0� is shown to be consistent and asymptotically normal.
Some simulation results are provided.

1. Introduction. We are concerned here with proving the consistency
and asymptotic normality for the maximum likelihood estimator of a “merit
vector” �u0� u1� � � � � ut�� with ui > 0 representing the merits of t + 1 teams
(players, treatments, objects) under the Bradley–Terry model, as t goes to in-
finity. This situation contrasts with that of a variety of interesting classical
examples, described by Neyman and Scott (1948), under which the number of
parameters grows with t (the amount of sampling) and for which the maxi-
mum likelihood estimator fails even to attain consistency. A key feature of our
proof is the use of a remarkably accurate approximation to the inverse of the
Fisher information matrix.

The Bradley–Terry model may be described (for teams) as follows. A set
of t + 1 teams play among themselves, by pairs with independent outcomes.
When teams i and j� with respective merits ui and uj� play each other, the
probability that team i prevails is assumed to take the form

�1�1� pi�j =
ui

ui + uj
� i� j = 0� � � � � t� i 	= j�
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Under this model, if team i prevails over team j a total of ai� j times as a
result of ni�j pairings, then one obtains the relationships

ai� j + aj� i = ni�j = nj� i� i� j = 0� � � � � t� i 	= j�
and the likelihood function assumes the form

t∏
i� j=0
i	=j

pi� j
ai� j =

∏t
i=0 ui

ai∏
0≤i<j≤t �ui + uj�ni�j

�

where

ai =
∑
j 	=i
ai� j�

the total number of victories by team i. Observe that �a0� � � � � at� is a sufficient
statistic.

Clearly, the model depends on the ui’s only through their ratios. Thus, for
the sake of identifiability, it is commonly assumed that

∑t
i=0 ui = 1� This has

the effect of reducing the parameter space to t dimensions. Since we shall
allow t to go to infinity, we find it more convenient to normalize the ui’s by
setting u0 = 1� So, in effect, we are seeking the maximum likelihood estimators
û1� � � � � ût (with û0 = 1) for the ratios u1/u0� � � � � ut/u0�

The consistency and asymptotic normality of the maximum likelihood esti-
mators are expected when t is fixed and all of the ni�j tend to infinity. How-
ever, what can one expect when t is large and the ni�j are relatively small?
For example, in the National Football League, there are 30 teams and no two
teams play each other more than twice each season. While this particular case
seems difficult to study, we shall restrict our attention to a relatively simple
but nontrivial asymptotic setting where ni�j = n for all pairs �i� j� for some
finite fixed n and t is allowed to go to infinity. (Indeed, many basketball con-
ferences under the purview of the NCAA have each pair of teams play each
other exactly twice.) Consequently, a0 + · · · + at = nt�t+ 1�/2�

A formal calculation shows that the maximum likelihood estimators
�û1� � � � � ût� satisfy the equations

�1�2� ai
n

=
t∑
j=0
j 	=i

ûi
ûi + ûj

� i = 1� � � � � t �û0 = 1��

Also, observe that

�1�3� E�ai� = n
t∑
j=0
j 	=i

ui
ui + uj

� i = 1� � � � � t�

So the method of moments [under which each ai is equated to E�ai�] and the
method of maximum likelihood both lead to the likelihood equations (1.2), and
hence to the same estimators û1� � � � � ût�
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Unfortunately, the equations in (1.2) can fail to provide a solution within
the parameter space, that is, satisfying the inequalities,

�1�4� ûi > 0� i = 1� � � � � t�

But, as noted by Zermelo (1929) and (independently) by Ford (1957), a unique
solution can be found to (1.2), satisfying (1.4), under what we shall call Con-
dition A.

Condition A. For every partition of the teams (players, treatments, ob-
jects) into two nonempty sets, a team in the second set has beaten a team in
the first at least once.

Fortunately, we can insure, in Section 2, that Condition A occurs with prob-
ability approaching one as t→ ∞ providing we impose some bounding on the
merits. It is enough (Lemma 1) that

max
0≤i� j≤t

ui
uj

= o
(√

t

log t

)
as t→ ∞�

And with no more than this assumption, we are able to establish the consis-
tency of the maximum likelihood estimators, as given in Theorem 1 below.

Let

�1�5�
Mt �= max

0≤i� j≤t
ui
uj
� δt �= 8Mt

√
log�t+ 1�
n t

and

�ui �=
ûi − ui
ui

� i = 0� � � � � t�

where for definiteness when Condition A fails we set ûi = 1 for i = 1� � � � � t�
Otherwise, the ûi’s �i = 1� � � � � t� are defined by the likelihood equations given
in (1.2).

Our statement of consistency takes the following form.

Theorem 1. If

�1�6� Mt = o
(√

t

log t

)
as t→ ∞�

then

�1�7� max
i=0�����t

��ui� ≤ max
0≤i� j≤t

��ui − �uj� = Op�δt� = op�1� as t→ ∞�

On the other hand, deriving the asymptotic normality of the maximum
likelihood estimators is much more involved and requires approximating the
inverse of the Fisher information matrix. This is done in Section 3, where
Theorem 2 below is proved.
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Let Vt = �vi� j� denote the covariance matrix of �a1� � � � � at�� where

�1�8� vi� i=
t∑
k=0
k 	=i

nui uk
�ui + uk�2

� vi� j= − nui uj

�ui + uj�2
� i� j=1� � � � � t� j 	= i�

Also, let v0�0 = ∑t
i=1��nu0 ui�/�u0 + ui�2� = ∑t

i=1��nui�/�1 + ui�2�� Note
that Vt is the Fisher information matrix for the parameterization �log u1� � � � �
log ut�� Furthermore, we introduce a t × t matrix St = �si� j� as a close
approximation to V−1

t � where

�1�9� si� j =
δi� j

vi� i
+ 1
v0�0

� i� j = 1� � � � � t�

and where δi� j is the Kronecker delta.

Theorem 2. If Mt = o�t1/10/�log t�5�� then for each fixed r ≥ 1� as t→ ∞�
the vector ��u1� � � � � �ur�′ is asymptotically normally distributed with mean 0
and covariance matrix given by the upper left r×r block of St� defined in (1.9).

Section 4 contains simulation results along with some discussions. The
proofs of the supporting lemmas in Sections 2 and 3 are relegated to Sec-
tion 5.

It should be remarked that our asymptotic setup assumes implicitly that
the ui’s depend on t. But, for notational simplicity, the dependence of ui on t
is suppressed throughout the paper.

Finally, we close this section by giving a very brief history of the Bradley–
Terry model. Zermelo (1929) is generally credited with being the first person
to study the Bradley–Terry model, using merits to model probabilities for
pairwise comparisons, as described in (1.1), and showing that the likelihood
equations (1.2) uniquely determine the merit of every team when Condition A
holds (apart from scaling).

Zermelo also proposed an iterative algorithm to solve equations (1.2) and
established the convergence of the algorithm to the true solution (under Con-
dition A). The model, and various parts of the theory, have been rediscovered
over the intervening years: Bradley and Terry (1952), Ford (1957), Jech (1983).
Moreover, Bradley (1954) proposed a statistical test of the hypothesis that the
model is correct. An informative summary of these papers can be found in
Stob (1984). It is also worth mentioning that a large portion of Chapter 4 of
David (1988) is devoted to a discussion of the Bradley–Terry model, including
maximum likelihood estimation, confidence intervals, hypothesis testing and
goodness-of-fit tests of the model.

There is a vast literature on paired comparisons models and related sta-
tistical analyses. See Davidson and Farquhar (1976), which provides a list of
over 350 papers on this topic. Among the many paired comparisons models,
it is worth noting that the Bradley–Terry model is the only one that satisfies
certain desirable properties. The interested reader is referred to Bühlmann
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and Huber (1963), Suppes and Zinnes [(1963), pages 49, 50], Colonius (1980)
and Jech (1983).

2. Consistency. The consistency result, Theorem 1, is a simple conse-
quence of the following three lemmas, the proofs of which are relegated to
Section 5.

Lemma 1. IfMt satisfies (1.6), thenP�Condition A is satisfied� → 1 as t→
∞� Thus, with probability approaching 1 as t→ ∞� the estimators û1� � � � � ût
are specified uniquely by the equations given in (1.2), and satisfy

max
i=0�����t

∣∣∣∣
t∑
j=0

{
ûi

ûi + ûj
− ui
ui + uj

}∣∣∣∣ = 1
n

max
i=0�����t

�ai −E�ai���

Lemma 2.

�2�1� P
(

max
i=0�����t

�ai −E�ai�� <
√
n t log�t+ 1�

)
≥ t− 1
t+ 1

→ 1 as t→ ∞�

Thus, if Mt satisfies (1.6), then with probability approaching 1 as t→ ∞� the
estimators û1� � � � � ût satisfy the inequality

�2�2� max
i=0�����t

∣∣∣∣
t∑
j=0

{
ûi

ûi + ûj
− ui
ui + uj

}∣∣∣∣ <
√
t log�t+ 1�

n
�

Lemma 3. If the estimators û1� � � � � ût satisfy inequality (2.2), then

�2�3� max
0≤i� j≤t

��ui − �uj� <
δt

1 − δt
�

where δt is defined in (1.5). Thus, if Mt satisfies (1.6), then

P

(
max

0≤i� j≤t
��ui − �uj� <

δt
1 − δt

)
→ 1 as t→ ∞�

Given these lemmas, if Mt satisfies (1.6), then δt/�1 − δt� = O�δt� = o�1�
as t→ ∞� so that

max
i=0�����t

��ui� ≤ max
0≤i� j≤t

��ui − �uj� = Op�δt� = op�1� as t→ ∞�

since �u0 = �1 − 1�/1 = 0� This proves Theorem 1.
Clearly, some control on the growth of Mt is needed. For if some ui’s are

very large, and/or others are very small, corresponding to a large value ofMt�
the teams with relatively poor merits stand very little chance of beating those
with relatively large merits, thereby making estimation very difficult. It would
be of interest to see if the condition Mt = o�

√
t/ log t� can be relaxed.

Alternative statements of consistency are possible. For instance, it is possi-
ble to show, under alternative assumptions, that maxi=1�����t �ûi − ui� = op�1�
as t → ∞� The form appearing in Theorem 1 seems natural for the present
context.
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3. Central limit theorems. In this section, we establish the central limit
theorem (Theorem 2) for the estimated merits û1� û2� � � � � ût as the number of
teams t+ 1 → ∞� with the number of repetitions n held fixed.

It is easily checked that

�3�1� n t

4Mt

≤ vi� i ≤
n t

4
� i = 0�1� � � � � t�

where Mt ≥ 1 and vi� i are defined in (1.5) and (1.8), respectively �t ≥ 1�� It is
only necessary to check, for i� k = 0�1� � � � � t, k 	= i� that

�3�2� 4 ≤
(
ui
uk

+ 1
)(
uk
ui

+ 1
)
≤ 4Mt�

As noted before, the matrix Vt� defined in (1.8), is the Fisher information
matrix for the parameterization �log u1� � � � � log ut�� With it, one can immedi-
ately describe a classical central limit theorem for the maximum likelihood
estimator of �log u1� � � � � log ut�.

Proposition 1. As n → ∞� with t ≥ 1 fixed, �log û1 − log u1� � � � � log ût −
log ut� is asymptotically normally distributed with mean zero and covariance

matrix Vt
−1�

This is equivalent to the central limit theorem described by Bradley (1955).
Moreover [since log y − log x = �y − x�/x +O��y − x�2� as y → x > 0], it is
also equivalent to the following proposition.

Proposition 2. As n → ∞� with t ≥ 1 fixed, ��u1� � � � � �ut� is asymptoti-

cally normally distributed with mean zero and covariance matrix Vt
−1�

It follows that both t-dimensional random vectors,

�3�3� Vt
1/2�log û1 − log u1� � � � � log ût − log ut�′ and Vt

1/2��u1� � � � � �ut�′

converge, as n → ∞� to a normal limit with independent N�0�1� elements,
where Vt

1/2 denotes the symmetric positive definite square root of Vt�
It seems reasonable to ask whether something similar happens if we reverse

the roles of n and t� holding n fixed and letting t go to infinity. What kind of
a central limit theorem, if any, might one expect? Two ideas come to mind,
one linked to Vt

−1� as in Propositions 1 and 2, the other linked to Vt
1/2� as

in (3.3) and the remark following. Thus we might hope to be able to conclude,
under appropriate assumptions, with r ≥ 1 and n held fixed and as t → ∞�
that:

1. ��u1� � � � � �ur� is asymptotically normally distributed with mean zero and
covariance matrix the upper left r× r block of Vt

−1� or
2. The first r elements of the vectors in (3.3) converge, as t→ ∞� to a normal

limit with independent N�0�1� elements.
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We have no idea whether a theorem of the second type is possible, and we
don’t have a direct proof of a theorem of the first type. Instead, we shall prove
a theorem (Theorem 2) in the spirit of the first type but with Vt

−1 replaced
by a close symmetric positive definite approximation, St = �si� j�� defined in
(1.9). The quality of the approximation improves as t grows, as described in
Lemma 4 below. An implication of the first type (involving Vt

−1, Theorem 2a
below) will be inferred from Theorem 2.

There are several advantages to working with St instead of Vt
−1� The most

obvious advantage is that St has an explicit form, which plays a vital role in
our method of proof. (This is especially clear in the proof of Lemma 7, where
cancellations among various remainder terms are possible only because of
the specific form of St.) Second, it simplifies the description of the covariance
matrices associated with the limiting normal distributions. Closely related,
it permits more explicit descriptions of statistical procedures based on our
central limit theorem. Examples of these appear at the end of this section.

A precise statement of the quality of the approximation St� for V−1
t � has

been established by Simons and Yao (1998) elsewhere. As it applies here, it
takes the following form.

Lemma 4. If

�3�4� Wt �= Vt−1 −St�
then, for Mt defined in (1.5),

�3�5� �Wt � ≤
( �Mt + 1�4

4nMt
2 + �Mt + 1�6

16nMt
3

)
× 1
t2

≤ 4Mt
2�Mt + 1�
n t2

�

where here (and elsewhere) � A � denotes maxi� j �ai� j� for a general matrix
A = �ai� j��

The proof of Lemma 4, as well as those of Lemmas 5–7, is given in Section 5.
The underpinning of any central limit theorem for the estimators û1� � � � � ût

is a central limit theorem for the ai’s.

Proposition 3. If

�3�6� Mt = o�t� as t→ ∞�
then as t→ ∞:

(i) The components of �a0 − E�a0�� � � � � ar − E�ar�� are asymptotically in-
dependent and normally distributed with variances v0�0� � � � � vr� r� respectively,
for each fixed integer r ≥ 1� and

(ii) More generally,

t∑
i=0

ci
ai −E�ai�√

vi� i
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is asymptotically normally distributed with mean zero and variance
∑∞
i=0 c

2
i

whenever c0� c1� � � � are fixed constants and the latter sum is finite.

This is a bit surprising because the statistics a0� a1� � � � � at sum to
n t �t + 1�/2� and, hence, are linearly dependent. But, in view of (3.1),
assumption (3.6) guarantees that the variances v0�0� � � � � vr� r diverge as
t → ∞� thereby eliminating the influence, on the asymptotic limit, of the
outcomes of games between teams i and j, 0 ≤ i < j ≤ r� a finite number of
games. Thus, for the purpose of proving part (i), one may replace the statistics
a0� a1� � � � � ar� respectively, by the independent random variables

ãi �= ai� r+1 + ai� r+2 + · · · + ai� t� i = 0�1� � � � � r �t > r��
Then part (i) can easily be established by referring to [Loève’s (1963), page
277] “bounded case,” or by verifying the Lindeberg condition.

Part (ii) shows that it is possible to include the entire minimal sufficient
statistic in a single central limit theorem statement. It follows from part (i)
and the fact that

�3�7� lim
r→∞ lim sup

t→∞
Var

( t∑
k=r+1

ci
ai −E�ai�√

vi� i

)
= 0

[cf. Theorem 4.2 of Billingsley (1968)]. To prove (3.7), it suffices to show that
the eigenvalues of the covariance matrix of �ai−E�ai��/√vi� i, i = r+1� � � � � t
are bounded by 2 (for all r < t). A simple, but elegant, proof of this (commu-
nicated to us by Ancel Mewborn of the University of North Carolina), based
on the Perron–Frobenius theory, is described in Lemma 5 below. We shall only
use part (i) in what follows.

Lemma 5. If A is a symmetric positive definite matrix with diagonal
elements equal to 1, and with negative off-diagonal elements, then its largest
eigenvalue is less than 2.

Let a �= �a1� a2� � � � � at�′� and observe that �St �a−E�a���i� the ith element
of St �a −E�a��� is equal to �ai −E�ai��/vi� i − �a0 −E�a0��/v0�0 [because the
elements of a − E�a� add to −�a0 − E�a0��], which has asymptotic variance
1/vi� i + 1/v0�0 [when (3.6) holds]. Likewise, the asymptotic covariance of the
ith and jth elements is 1/v0�0 when i 	= j� Therefore, Proposition 3 leads
directly to the next proposition.

Proposition 4. If Mt satisfies (3.6), then, as t → ∞� the first r rows of
St �a −E�a�� are asymptotically normally distributed with covariance matrix
given by the upper left r× r block of St� defined in (1.9) �r ≥ 1��

The reader is reminded that the asymptotic variances v0�0� � � � � vr� r� appear-
ing in part (i) of Proposition 3, depend on t� and, consequently, the asymptotic
covariance matrix described in this proposition also depends on t�
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The importance of Proposition 4 is that it yields a central limit theorem
for �u1� �u2� � � � under an additional assumption on Mt� Specifically, what is
needed is a strong enough assumption that

�3�8� �ui = �St �a −E�a���i �1 + op�1�� as t→ ∞� i = 1�2� � � � � r�

or, what implies (3.8),

�3�9� �ui = �St �a −E�a���i + op�t−1/2� as t→ ∞� i = 1�2� � � � � r�

That (3.9) implies (3.8) is a simple consequence of the second inequality in
(3.1) and the content of Proposition 4.

A strong enough assumption on Mt to guarantee (3.9) [and hence (3.8)] is
Mt = o�t1/10/�log t�5�� as described in Theorem 2.

The task of proving Theorem 2 is to establish (3.9). This will follow directly
from

�3�10� �Wt �a −E�a���i = op�t−1/2� as t→ ∞�

where Wt is defined in (3.4), and by

�3�11� �ui = �Vt−1 �a −E�a���i + op�t−1/2� as t→ ∞�

Proofs of (3.10) and (3.11) are given, respectively, in Lemmas 6 and 7 below.

Lemma 6. If Rt denotes the covariance matrix of Wt a� then

�3�12� �Rt � ≤ 4�3 +Mt�Mt
2

n t2
�

Consequently, (3.10) holds if Mt = o�t1/3� as t→ ∞�

Lemma 7. If Mt = o�t1/10/�log t�5� as t→ ∞, then (3.11) holds.

Of course, Theorem 2 has an analog along the lines of Proposition 1. That is,
Theorem 2 remains true if we replace the vector ��u1� � � � � �ur�′ by the vector
�log û1−log u1� � � � � log ûr−log ur�′� In addition, the following are consequences
of Theorem 2.

Theorem 2a. If Mt = o�t1/10/�log t�5�� then, as t → ∞� the vector
��u1� � � � � �ur�′ is asymptotically normally distributed with mean 0 and co-

variance matrix given by the upper left r× r block of Vt
−1 (Vt = �vi� j� defined

in (1.8); r ≥ 1).

Theorem 2b. If Mt = o�t1/10/�log t�5�� then, as t→ ∞� the vector �log û1�
� � � � log ûr�′ is asymptotically normally distributed with mean �log u1� � � � �
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log ur�′ and covariance matrix given by the upper left r×r block of St� defined
in (1.9) �r ≥ 1��

Theorem 2a follows from Theorem 2 and Lemma 4. Theorem 2b is equiva-
lent to Theorem 2. (See the remark following the statement of Proposition 1.)

We conclude this section with several remarks.

Remark 1. While it seems reasonable to suspect the growth rate
t1/10/�log t�5 in Theorem 2 is far from the best possible, it is not clear to
us how one can significantly improve the rate. It may be tempting to con-
jecture that a condition similar to (1.6) [which is much less restrictive than
t1/10/�log t�5] is enough for the asymptotic normality to hold. In principle, one
could carry out a simulation study to test whether condition (1.6) appears to
be enough. However, such a simulation study would have to be very carefully
designed since the behavior of the maximum likelihood estimators depends
not only on Mt� but also on the configuration of all of the merits. We have
not made such an attempt. Only a very limited simulation study is done and
presented in the next section.

Remark 2. We have only considered the case of ni�j = n for all pairs �i� j�
for some finite fixed n� What can be said when the ni�j are not the same? For
example, some of the games might be cancelled due to poor weather conditions.
If the number of cancelled games is bounded, then this will have little effect
on the maximum likelihood estimators when t is large, so that the consistency
and asymptotic normality still hold. A more interesting case is when the ni�j
are quite different from one another. Then the Fisher information matrix will
take a more complicated form, and hence a new approximation to its inverse
is needed in place of St� The result in Simons and Yao (1998) appears to be
applicable when the ni�j are bounded between two fixed numbers. We plan to
investigate this and other related situations in the future.

Remark 3. By Theorems 2b, an approximate 100�1−α�% confidence inter-

val for log�ui/uj� is log�ûi/ûj� ±Z1−α/2
√

1/v̂i� i + 1/v̂j� j, where v̂i� i and v̂j� j
are the natural estimates of vi� i and vj�j, found by replacing all u1� � � � � ut
[appearing in their definitions in (1.8)] by their corresponding estimates, and
where Zβ refers to the 100β percentile point of the standard normal distri-
bution. Similarly, to test whether ui = uj at level α, the hypothesis can be

rejected if � log�ûi/ûj�� > Z1−α/2
√

1/v̂i� i + 1/v̂j� j. Here, as suggested by a ref-

eree, instead of using v̂i� i and v̂j� j� one may use the estimates of vi� i and vj�j
under the null hypothesis of ui = uj� The same comment applies to the next
remark.

Remark 4. More generally, Theorems 1 and 2, can be used to produce
multiple and simultaneous (Scheffé-type) confidence intervals for contrasts,
and for testing the equality of more than two merits. For example, to test
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whether u1 = u2 = u3 = u4 at level α, the hypothesis can be rejected if

(
log
û1

û2
� log

û2

û3
� log

û3

û4

)



1
v̂1�1

+ 1
v̂2�2

−1
v̂2�2

0

−1
v̂2�2

1
v̂2�2

+ 1
v̂3�3

−1
v̂3�3

0
−1
v̂3�3

1
v̂3�3

+ 1
v̂4�4




−1

×




log û1/û2

log û2/û3

log û3/û4


 > χ2

3�1−α�

where χ2
3�1−α refers to the upper 100α percental point for the chi-square distri-

bution with 3 degrees of freedom. A more succinct description of this rejection
condition can be given as

4∑
i=1

v̂i� i �log ûi�2 − �v̂1�1 + · · · + v̂4�4�−1
( 4∑
i=1

v̂i� i log ûi

)2

> χ2
3�1−α�

While Theorem 2b enables one to construct confidence intervals for linear
combinations of a finite number of log-merits, we do not know how to deal
with the case of linear combinations involving all merits.

Remark 5. As suggested by a referee, an interesting related problem is to
impose a linear model on the merit parameters ui� u =X�� and to study the
large sample behavior of the maximum likelihood estimator of �� Here is a
challenging question: under what conditions on X and on the dimension of
� (which grows with t) can one obtain consistency and asymptotic normality
results? While we have no answer to this question, the interested reader is
referred to Portnoy (1984, 1985, 1988) for some problems of a similar type,
where the number of parameters tends to infinity.

4. Numerical studies. The question remains: how accurate are statisti-
cal applications based on Theorem 2? To assess this, we shall focus attention
on 95% confidence intervals for log�uj/ui�� as described in Remark 3, for par-
ticular pairs i and j, when the log-merits log uk, k = 0�1� � � � � t� assume the
linear form c k for a fixed value of c ≥ 0.

As a practical matter, for any application of Theorem 2, it is essential that
Condition A hold with high probability [so that, with high probability, the
likelihood equations (1.2) properly define maximum likelihood estimates ûk,
k = 1� � � � � t]. This probability, which depends on the size of t and the value of
c, will be denoted by p�t� c��

We have evaluated the function p�t� c� by simulation for a variety of �t� c�
values and found that p�t� c� appears to increase in t and decrease in c. More-
over, while, by Lemma 1, p�t�0� tends to 1 as t→ ∞, it appears, based on our
limited simulation results with t ≤ 200, that for fixed c > 0, p�t� c� converges
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to something less than 1 as t→ ∞. On the other hand, it is clear for fixed t
that p�t� c� goes to 0 as c→ ∞ since the strongest team beats everyone else
with probability approaching 1.

Some sample calculations follow:

p�t�0� = 0�979 and 0.99997 for t = 10 and 20;
p�t�0�05� = 0�972 and 0.99948 for t = 10 and 20;
p�t�0�1� = 0�951, 0.9945, 0.99863, 0.99867, 0.99873 for t = 10, 20, 50, 100,

200, respectively;
p�t�0�2� = 0�847, 0.913, 0.92184, 0.92253, 0.92228 for t = 10, 20, 50, 100,

200, respectively.

Each number was generated from 100�000 simulations, yielding an ap-
proximate standard error of 0�003

√
1 − p�t� c�� Thus the standard errors are

roughly equal to 0.0009, 0.0003, 0.00009 for p�c� t�-values of about 0.9, 0.99,
0.999, respectively, and are large enough to account for the apparent lack of
monotonicity in the last two entries. These calculations suggest that it is prob-
ably acceptable to evaluate the accuracy of 95% confidence intervals, based on
Theorem 2, when c ≤ 0�1 and t ≥ 20. In Table 1, we consider the three values
t = 20, 50, 100 for the six cases c = 0�02, 0.04, 0.06, 0.08, 0.10, 0.12, with the
latter case (exceeding 0�1) thrown in for the sake of illustration.

Double entries in certain cells of Table 1 indicate that one or more fail-
ures of Condition A occurred during the simulation. The first entry, without
parentheses, is the probability that Condition A and coverage of the indicated
parameter both occur. The second entry, enclosed by parentheses, is the prob-
ability that Condition A fails or coverage occurs (the first probability plus the
probability that Condition A fails). Consequently, the “true” coverage prob-
ability lies between these two numbers (assuming an accurate simulation)
regardless of how one sets up the confidence interval when Condition A fails.

When c = 0, all merits are equal to 1, so that the choice of the index
pair �i� j� is immaterial. The corresponding coverage probabilities are 95.71
(95.71), 94.05, 94.33, 94.86 for t = 20, 50, 100, 200, respectively.

These coverage probabilities, and most of those in the table, look quite re-
spectable. Surprisingly, all are close to the targeted 95% when t = 20, even

Table 1
Coverage probabilities

t �i� j� c � 0�02 c � 0�04 c � 0�06 c � 0�08 c � 0�1 c � 0�12

20 (0, 1) 95.82 (95.82) 95.65 (95.67) 95.18 (95.28) 95.50 (95.74) 95.85 (96.44) 95.82 (96.98)
20 (0, 20) 95.80 (95.80) 95.42 (95.44) 94.97 (95.07) 94.82 (95.05) 94.62 (95.21) 94.25 (95.40)
20 (9, 10) 95.66 (95.67) 95.56 (95.58) 95.12 (95.22) 94.26 (94.49) 94.34 (94.93) 94.08 (95.24)

50 (0, 1) 95.08 95.39 95.34 (95.34) 95.48 (95.51) 95.86 (96.01) 95.83 (96.35)
50 (0, 50) 95.02 94.88 94.71 (94.71) 94.11 (94.13) 93.41 (93.56) 92.40 (92.92)
50 (24, 25) 95.32 95.00 94.97 (94.98) 94.84 (94.87) 94.86 (95.01) 94.12 (94.63)

100 (0, 1) 95.07 95.24 95.45 95.58 (95.60) 95.84 (95.98) 95.71 (96.26)
100 (0, 100) 94.97 94.66 93.80 92.36 (92.38) 89.95 (90.09) 86.03 (86.58)
100 (49, 50) 94.26 94.69 94.41 94.63 (94.65) 94.46 (94.60) 94.18 (94.72)
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when c is as large as 0�12. Of course, it could be countered that the individual
merits are close together when t = 20, with the ratio of largest to smallest
merit equal to e2�4 �= 11. Even so, these coverage probabilities are very encour-
aging, for t as small as 20.

However, it will be observed that for each fixed c > 0, the quality of the
approximation deteriorates with increasing t� thereby appearing to contradict
the central limit theorem. But this is not so. For the ratio of largest to smallest
merit grows exponentially fast with t when c is fixed. For instance, the ratios
for c = 0�1 are e2 �= 7�4, e5 �= 148 and e10 �= 22�000 for t = 20, 50 and 100,
respectively. Since Theorem 2 does not even accommodate a linear growth rate
in t, an exponential growth rate is definitely excessive.

More meaningful comparisons can be made by letting c depend on t, with
the product c t fixed. For instance, a one-to-one comparison between corre-
sponding entries for �c� t� = �0�1�20� and �c� t� = �0�04�50�, with c t = 2,
shows modest but noticeable improvements.

Not surprisingly, the worst coverage probabilities occur when �i� j� = �0� t�
with t = 50 and 100, where two entries fall slightly below 90%. As a more
extreme example, the corresponding coverage probability is only about 54%
when �c� t� = �0�1�200�.

In order to gain additional insight from the numbers in Table 1, we have
added a second table. Two empirically determined numbers are provided for
each cell in Table 2. The first (leftmost) examines those cases when Condi-
tion A occurs and the 95% interval estimate fails to cover the true parameter
[log�uj/ui�]; we record the percentage of time this failure occurs with the true
parameter falling to the left of the confidence interval. The smallest such per-
centage, 44�6%, occurs when t = 20; it is only slightly smaller than (the ideal)
50%. Most of these percentages exceed 50%, a few by a significant amount
when �i� j� = �0� t�.

The second (rightmost) numbers in Table 2, within parentheses, record the
corresponding biases of the maximum likelihood estimators for the parame-
ters in question divided by the estimated standard deviation. These are then
multiplied by 100 and rounded to the nearest whole number. Thus the entries
describe the “normalized bias” measured in units of 1/100. When computing
these normalized biases, we have chosen to ignore failures of Condition A.
Thus, the entries should properly be viewed as indicative of the size of the
normalized bias conditional on Condition A holding. We could conceive of no
satisfactory way of including the (usually relatively few) failures of Condi-
tion A in our computations.

Each entry in Table 2 is based on 100�000 simulations with the exception
of the parenthetical entries for t = 100, which are based on 50�000.

Observe that none of the normalized biases is negative. It seems that the
maximum likelihood estimator systematically gives rise, on average, to overes-
timation of log�uj/ui� whenever uj > ui, sometimes a slight overestimation,
and sometimes a substantial overestimation. In this regard, the many exam-
ples of near unbiasedness, seem fairly remarkable, with every entry in Table 2
for �i� j� 	= �0� t� assuming one of the four values 0−3. In sharp contrast, most
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Table 2
Percent of noncoverage probability in left tail

t �i� j� c � 0�02 c � 0�04 c � 0�06 c � 0�08 c � 0�1 c � 0�12

20 (0, 1) 51.7 (0) 53.3 (1) 46.7 (1) 44.6 (2) 49.2 (2) 51.4 (1)
20 (0, 20) 52.4 (7) 58.9 (13) 61.0 (19) 60.5 (24) 62.4 (29) 64.1 (35)
20 (9, 10) 54.4 (0) 56.0 (1) 51.9 (1) 46.0 (0) 49.2 (1) 52.1 (2)

50 (0, 1) 53.4 (0) 50.7 (0) 49.9 (1) 48.9 (1) 50.1 (1) 47.4 (2)
50 (0,50) 53.7 (10) 61.7 (19) 67.3 (28) 72.1 (36) 78.3 (44) 83.7 (52)
50 (24,25) 45.6 (0) 54.2 (1) 54.5 (1) 46.0 (1) 56.1 (1) 46.6 (1)

100 (0, 1) 49.9 (0) 49.5 (0) 50.1 (0) 49.4 (1) 49.4 (1) 47.5 (3)
100 (0, 100) 57.8 (13) 68.2 (26) 77.6 (38) 85.9 (51) 90.8 (64) 95.0 (80)
100 (49, 50) 49.8 (0) 54.6 (0) 49.0 (0) 50.0 (0) 50.6 (0) 51.8 (2)

of the normalized biases for �i� j� = �0� t� are quite large, with a normalized
bias of 80/100 arising when �c� t� = �0�12�100�.

From Tables 1 and 2, it appears, for the configurations of the merits con-
sidered in our simulation study, that the central limit theorem described in
Theorem 2 performs very well (for our present need) for most values of t when-
ever ui and uj are relatively close, that is, whenever the parameter log�uj/ui�
is small (even when Mt, appearing in Theorem 2, is large), and it performs
poorly whenever they are far apart. However, in general, the actual size of the
parameter log�uj/ui� being estimated is not the only main factor influencing
the quality of the normal approximation. The accuracy of the approximation
seems to depend on the configuration of all the merits in some complicated
way. Our Theorem 2 is just a first attempt in this regard.

A relatively simple pattern in the sizes of the normalized bias is discernible
in Table 2: for fixed t and for �i� j� = �0� t� (t = 20� 50� 100), they grow nearly
linearly in c, at least for smaller values of c. Beyond this, numerical evidence
reveals, for each fixed �c� t�, a roughly linear growth in the sequence of nor-
malized biases of the maximum likelihood estimates of log ui, i = 1�2� � � � � t.
Of course, such patterns depend on the present configurations of the merits
under investigation.

5. Proofs of lemmas.

Proof of Lemma 1. Let Pt denote the probability that Condition A
fails, depending on the merits u1� � � � � ut �t = 1�2� � � ��� Since Mt �=
max0≤i� j≤t ui/uj ≥ 1� it follows from (1.1) that

max
0≤i� j≤t

pi� j = max
0≤i� j≤t

ui
ui + uj

≤ Mt

Mt + 1
= 1

1 + 1/Mt

≤
(

1
2

)1/Mt

�

So the probability that a particular nonempty subset S of the t+1 teams loses
no game to a team not in S is bounded above by( 1

2

)n �S� �t+1−�S��/Mt�
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where �S� denotes the cardinality of S� Consequently, Condition A fails to occur
with probability

Pt ≤
t∑
r=1

(
t+ 1

r

) ( 1
2

)nr �t+1−r�/Mt �

The task is to show that this sum converges to zero as t→ ∞ whenMt satisfies
(1.6). Observe that the latter summands are symmetric about �t+1�/2� so that

Pt
2

≤
�t/2�∑
r=1

(
t+ 1

r

)(
1
2

)nr �t+1−r�/Mt

≤
�t/2�∑
r=1

(
t+ 1

r

)(
1
2

)nr �t+1�/2Mt

≤
(

1 +
[

1
2

]n �t+1�/2Mt
)t+1

− 1�

This does go to zero as t → ∞ when Mt satisfies assumption (1.6), since (as
is easily checked) �1/2�n �t+1�/2Mt = o�1/t� as t→ ∞� ✷

Proof of Lemma 2. Since ai �=
∑t
j=0� j 	=i ai� j is a sum of n t independent

Bernoulli random variables, Hoeffding’s (1963) inequality yields

P��ai −E�ai�� ≥ x� ≤ 2 exp�−2x2/n t�� x > 0 �i = 0� � � � � t��
Consequently,

P
(

max
i=0�����t

�ai −E�ai�� ≥
√
n t log�t+ 1�

)

≤ �t+ 1� · 2 exp�−2n t �log�t+ 1��/nt� ≤ 2
t+ 1

�

which is equivalent to (2.1). ✷

Proof of Lemma 3. Let a� b ∈ �0� � � � � t� be such that

α �= max
j=0�����t

ûj

uj
= ûa
ua

≥ û0

u0
= 1 and β �= min

j=0�����t

ûj

uj
= ûb
ub

≤ û0

u0
= 1

and observe that, for j = 0� � � � � t�

ûa
ûa + ûj

− ua
ua + uj

= ua uj �ûa/ua − ûj/uj��ûa + ûj��ua + uj�

= ûa/ua − ûj/uj
��ûa/ua� + �uj/ua��ûj/uj����ua/uj� + 1�
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≥ α− ûj/uj
α�1 + uj/ua��ua/uj + 1�

≥ �α− ûj/uj�Mt

α �Mt + 1�2
�

in view of the definition ofMt in (1.5), and since ��1+1/x��x+1��−1 = x/�x+1�2

is decreasing on the range of Mt (x ≥ 1). Consequently,

�5�1�
t∑
j=0

(
ûa

ûa + ûj
− ua
ua + uj

)
≥ Mt

�Mt + 1�2

t∑
j=0

(
α− ûj/uj

α

)
�

Likewise, we have

ub
ub + uj

− ûb
ûb + ûj

= ub uj �ûj/uj − ûb/ub��ûb + ûj��ub + uj�

= ûj/uj − ûb/ub
��ûb/ub� + �uj/ub��ûj/uj���ub/uj + 1�

≥ ûj/uj − β
α�1 + uj/ub��ub/uj + 1�

≥ �ûj/uj − β�Mt

α �Mt + 1�2

and, consequently,

�5�2�
t∑
j=0

(
ub

ub + uj
− ûb
ûb + ûj

)
≥ Mt

�Mt + 1�2

t∑
j=0

(
ûj/uj − β

α

)
�

Combining (2.2), (5.1) and (5.2) yields

2

√
t log�t+ 1�

n
> 2 max

i=0�����t

∣∣∣∣
t∑
j=0

{
ûi

ûi + ûj
− ui
ui + uj

}∣∣∣∣
≥ Mt

�Mt + 1�2

t∑
j=0

(
α

α
− β
α

)

≥ tMt

�Mt + 1�2

(
1 − β

α

)
�

Thus (since Mt ≥ 1),

1 − β
α
< 2Mt

�Mt + 1�2

Mt
2

√
log�t+ 1�
n t

≤ 8Mt

√
log�t+ 1�
n t

= δt

and, consequently,

max
0≤i� j≤t

��ui − �uj� = max
0≤i� j≤t

∣∣∣∣ ûiui −
ûj

uj

∣∣∣∣ = �α− β� ≤ α− β
β

<
δt

1 − δt
�

as required. ✷
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Proof of Lemma 4. Simons and Yao (1998) provide a bound for �Wt � of
the form C�m�M�/t2� where C�m�M� = �1+M/m�M/m2� and where, for the
present context, m and M must satisfy the bounding inequalities

m ≤ nui uj

�ui + uj�2
≤M� i = 1� � � � � t� j = 0�1� � � � � t� j 	= i�

We want to express these in terms ofMt, defined in (1.5), independently of any
particular choice of u1� � � � � ut satisfying (1.5). Thus one is led to set M = n/4
and m = nMt/�Mt + 1�2, from which one obtains the coefficient C�m�M� of
1/t2 appearing to the right of the first inequality in (3.5). The second inequality
is just algebra together with the fact that Mt ≥ 1. ✷

Proof of Lemma 5. Clearly B = I−A (where I is the identity matrix of
the same dimension asA) has only nonnegative elements. Observe that λ is an
eigenvalue ofA if and only if 1−λ is an eigenvalue ofB. The Perron–Frobenius
theory asserts that B has a positively valued eigenvalue µ which is at least
as large as the modulus of any other of its eigenvalues. Necessarily, µ < 1
since the eigenvalues of A are strictly positive. Consequently, the smallest
eigenvalue of B is greater than −1� and it follows that the largest eigenvalue
of A is less than 1 − �−1� = 2� ✷

Proof of Lemma 6. Since the covariance matrix of a is Vt� we find that

Rt =WtVtWt = �Vt−1 −St�Vt �Vt−1 −St� = �St Vt St −St� + �Vt−1 −St��
By direct calculation, the �i� j�th element of St Vt St −St is

�5�3�

nui
�1 + ui�2 vi� i v0�0

+ nuj

�1 + uj�2 vj�j v0�0

− n�1 − δi� j�ui uj
�ui + uj�2 vi� i vj� j

� i� j = 1� � � � � t�

By using the bounds in (3.1) and observing that 0 < uiuj/�ui + uj�2 ≤ 1/4� it
is easy to bound each of the terms in (5.3) by 4Mt

2/nt2� Hence,

�St Vt St −St � ≤ 8Mt
2/nt2�

Moreover, as described in Lemma 4,

�Vt−1 −St � ≤ 4�1 +Mt�Mt
2

n t2
�

This establishes (3.12). ✷

Proof of Lemma 7. Let At be the event that Condition A is satisfied, so
that, from (1.2) and (1.3),

�5�4� ai −E�ai� = n
t∑

j=0� j 	=i

{
ûi

ûi + ûj
− ui
ui + uj

}
� i = 1� � � � � t
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and let Bt be the event that [cf. (1.7) and (2.3)]

�5�5� max
i=0�����t

��ui� ≤ max
0≤i� j≤t

��ui − �uj� <
δt

1 − δt
�

where δt is defined, in terms of Mt� in (1.5). It follows from Lemmas 1–3 that
P�At ∩Bt� → 1 as t→ ∞ provided Mt satisfies (1.6), which is less stringent
than what we are assuming here.

Derivations in what follows are on the event At ∩Bt� By simple algebra,

n

{
ûi

ûi + ûj
− ui
ui + uj

}
= nuiuj��ui − �uj��ui + uj�2

× ui + uj
ûi + ûj

= αi�j + βi�j�

where

αi�j =
nuiuj��ui − �uj�

�ui + uj�2
� βi� j = αi�j × γi� j�

and

γi� j =
ui + uj
ûi + ûj

− 1 = −�ui�ui + uj�uj�/�ui + uj�
1 + �ui�ui + uj�uj�/�ui + uj�

�

for j = 0�1� � � � � t and i = 1� � � � � t� Inserting this into the summation on the
right side of (5.4) produces a Taylor series expansion of the functions (of the
variables û1� � � � � ût� on the right side of (5.4) about the point �û1� � � � � ût� =
�u1� � � � � ut� up to linear terms αi with nonstandard but convenient remainder
terms βi,

�5�6� ai −E�ai� = αi + βi� i = 1� � � � � t�

where

αi =
t∑

j=0� j 	=i
αi� j and βi =

t∑
j=0� j 	=i

βi� j�

Observe that ��ui − �uj� ≤ δt/1 − δt [cf. (5.5)], and, moreover, �γi� j� ≤
δt/�1 − 2δt� since the function g�x� = x/�1 + x� is nondecreasing and
��ui�ui + uj�uj�/�ui + uj�� ≤ δt/�1 − δt� [cf. (5.5)]. Consequently,

�βi�j� =
nuiuj

�ui + uj�2
× ��ui − �uj� × �γi� j�

≤ nuiuj

�ui + uj�2
× δt

2

�1 − δt��1 − 2δt�
� i = 1� � � � � t� j = 0� � � � � t�

and, hence [see (1.8)], for i = 1� � � � � t�

�5�7�
�βi� ≤

t∑
j=0� j 	=i

�βi�j� ≤
t∑

j=0� j	=i

nuiuj

�ui + uj�2
× δt

2

�1 − δt��1 − 2δt�

= vi� i δt
2

�1 − δt��1 − 2δt�
�
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Further, βi�j + βj� i = 0 for i� j ≥ 1� so that

t∑
i=1

βi =
t∑
i=1

t∑
j=0� j 	=i

βi� j =
t∑
i=1

βi�0�

and, consequently [see (1.8)],

�5�8�

∣∣∣∣
t∑
i=1

βi

∣∣∣∣ ≤
t∑
i=1

�βi�0� ≤
t∑
i=1

nui
�1 + ui�2

× δt
2

�1 − δt��1 − 2δt�

= v0�0 δt
2

�1 − δt��1 − 2δt�
�

Now express (5.6) in matrix notation,

a −E�a� = � + ��

where � = �α1� � � � � αt�′ and � = �β1� � � � � βt�′� By direct calculation, one finds
that � can be expressed as Vt�u� where �u = ��u1� � � � � �ut�′� Consequently,

�u = Vt−1�a −E�a�� −Vt−1� = Vt−1�a −E�a�� − �Wt +St���
So it remains to show �Wt ��i = op�t−1/2� and �St ��i = op�t−1/2� as t → ∞
for each fixed i�

In view of (3.1), (3.5) and (5.7), we see that

��Wt ��i� ≤
4�1 +Mt�Mt

2

n t2
× δt

2

�1 − δt��1 − 2δt�
×

t∑
j=1

vj�j

≤ �1 +Mt�Mt
2 × δt

2

�1 − δt��1 − 2δt�
= O

(
Mt

5 log t
t

)
�

which equals op�t−1/2� when Mt = o�t1/10/�log t�1/5� as t→ ∞�
In view of (1.9), (5.7) and (5.8),

��St ��i� ≤
1
vi� i

�βi� +
1
v0�0

∣∣∣∣
t∑
j=1

βj

∣∣∣∣ ≤ 2 δt
2

�1 − δt��1 − 2δt�
= O�Mt

2 log t
t

��

which equals op�t−1/2� when Mt = o�t1/4/�log t�1/2� as t→ ∞� ✷
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