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E-OPTIMAL DESIGNS FOR RATIONAL MODELS

By Lorens A. Imhof1 and William J. Studden2

Stanford University and Purdue University

E-optimal and standardized-E-optimal designs for various types of
rational regression models are determined. In most cases, optimal designs
are found for every parameter subsystem. The design points and weights
are given explicitly in terms of Bernstein-Szegő polynomials. The analysis
is based on a general theorem onE-optimal designs for Chebyshev systems.

1. Introduction. Rational functions have appealing approximation prop-
erties and are widely used in regression models; see Petrushev and Popov
(1987) for an extensive review of rational approximation and Ratkowsky (1990)
for a discussion from a more applied point of view. However, it is only recently
that optimal designs for rational models have been found. Haines (1992) de-
termined D-optimal designs for an inverse quadratic model and He, Studden
and Sun (1996) and Dette, Haines and Imhof (1999) investigated D-optimal
designs for more general rational models. This paper is concerned with the
construction of E-optimal designs for several types of rational models. They
include

E�Y�x�� = θ0 +
θ1

x− α1
+ · · · + θn

x− αn
� x ∈ �−1�1	�(1.1)

where α1� 	 	 	 � αn ∈ � \ �−1�1	; and
E�Y�x�� = θ−mx−m + · · · + θnxn� x ∈ �−b�−a	 ∪ �a� b	�(1.2)

where 0 < a < b and m�n ≥ 0. Here Y�x� is the response to the controlled
variable x and the θj are unknown parameters.

In Section 2 we prove a general theorem on E-optimal designs for linear re-
gression models. The theorem extends results of Studden (1968) on c-optimal
designs. It gives a complete solution to the E-optimal design problem for pa-
rameter subsystems provided that the underlying regression functions and
certain subsets of these functions form Chebyshev systems. For example, ev-
ery Descartes system is covered. TheE-optimal designs are expressed in terms
of the Chebyshev polynomial of the regression system. In addition to the or-
dinary E-optimal designs, the theorem provides also standardized-E-optimal
designs [Dette (1997a,b)]. The standardization takes into account that the
sizes of the variances and covariances of the least-squares estimator may be
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very different. In Sections 3 and 4 the results of Section 2 are applied to sev-
eral rational models. Here we use Bernstein-Szegő orthogonal polynomials to
obtain explicit representations of the corresponding Chebyshev polynomials.

For model (1.1), we obtain the E-optimal and standardized-E-optimal de-
signs for any given parameter subset. We obtain also a complete solution for
two other rational models on a compact interval. For model (1.2), our findings
are less complete. Here the parameter subset has to satisfy some condition
and the design space must not be too large. These restrictions should not
come as a surprise in view of what is known about E-optimal designs for
polynomial models [Dette (1993), Heiligers (1994, 1996), Pukelsheim (1993)
and Pukelsheim and Studden (1993)]. On the other hand, the E-optimal de-
signs derived in this paper have some properties that E-optimal designs for
polynomial regression on an interval do not share. For example, the choice of
the regression interval for model (1.1) is merely a matter of convenience; all
arguments used are easily extended to arbitrary intervals �a� b	 provided that
α1� 	 	 	 � αn 
∈ �a� b	. A similar remark applies to the other rational models con-
sidered in Section 3. Recall that E-optimal designs for polynomial regression
depend critically on the regression interval: the well-known results for �−1�1	
do not carry over to arbitrary intervals and even symmetric intervals require
in general a different approach; see Melas (2000). Moreover, depending on m
and n, the number of support points of the E-optimal designs for model (1.2)
can be smaller or larger than the number of parameters, and the E-optimal
designs are not always unique.

Notation. Let f = �f0� 	 	 	 � fn�T be a vector of linearly independent con-
tinuous functions on a compact set � . Suppose that for each x ∈ � a random
variable Y�x� can be observed with expectation

E�Y�x�� = θTf�x�(1.3)

and variance σ2 not depending on x. Here θ = �θ0� 	 	 	 � θn�T is a vector of un-
known parameters. An approximate design ξ is a probability measure on � .
If ξ has finite support �x0� 	 	 	 � xk�, then the observations on Y�x� are made at
x0� 	 	 	 � xk with frequencies approximately proportional to ξ�x0�� 	 	 	 � ξ�xk�. All
observations are assumed to be uncorrelated. For every design ξ, let M�ξ� =∫

f�x�fT�x�dξ�x�. Suppose that KTθ is the parameter system of interest,
where K = �k1� 	 	 	 �ks	 ∈ ��n+1�×s and rank�K� = s. A design ξ is feasible
for KTθ if range�K� ⊂ range�M�ξ�� or, equivalently, if K = M�ξ�M+�ξ�K,
whereM+�ξ� is the Moore-Penrose inverse ofM�ξ�. For every feasible design
ξ, the information matrix for KTθ is

CK�ξ� = CK�M�ξ�� = �KTM+�ξ�K�−1	
A design ξ is E-optimal for KTθ if it maximizes λmin�CK�ξ��, the minimum
eigenvalue of CK�ξ�. Let ξ∗j be the optimal design for estimating the linear
combination kTj θ, that is, ξ

∗
j minimizes kTjM

+�ξ�kj among all feasible designs
for kTj θ. Let � be the s × s diagonal matrix with entries �kTjM+�ξ∗j�kj�−1/2,
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j = 1� 	 	 	 � s. Then the standardized information matrix forKTθ as introduced
by Dette (1997a,b) is defined by

ĈK�ξ� = ĈK�M�ξ�� = ��KTM+�ξ�K��−1	

A standardized-E-optimal design for KTθ maximizes λmin�ĈK�ξ��. Note that
the standardized-E-optimal design for KTθ is invariant with respect to mul-
tiplication of the columns of K by non-zero numbers [Dette (1997b), Theorem
3.2].

A set of continuous functions f0� 	 	 	 � fn � �a� b	 → � is a weak Chebyshev
system if there is an ε ∈ �+1�−1� such that

εdet



f0�x0� · · · f0�xn�
			

			
fn�x0� · · · fn�xn�


 ≥ 0(1.4)

for all b ≥ x0 > · · · > xn ≥ a. If inequality (1.4) is always strict, then
�f0� 	 	 	 � fn� is a Chebyshev system. For every Chebyshev system �f0� 	 	 	 � fn�,
there is a unique polynomial

∑n
j=0 cjfj�x� = cTf�x� such that:

(i) �cTf�x�� ≤ 1 for all x and
(ii) there are n + 1 points s0 > · · · > sn such that cTf�sk� = �−1�k for

k = 0� 	 	 	 � n;
see Karlin and Studden (1966), Theorem II.10.2. The polynomial cTf�x� is
called the Chebyshev polynomial and s0� 	 	 	 � sn are the Chebyshev points.
They need not be unique. They are unique if 1 ∈ span �f0� 	 	 	 � fn� and n ≥ 1.
In this case s0 = b and sn = a.

2. E-optimal designs for Chebyshev systems. Theorem 2.1 shows for
a wide class of Chebyshev systems that the E-optimal designs are supported
by Chebyshev points and gives an explicit expression for the weights. Thus
in applications one still has to determine the Chebyshev points, which can
be done numerically with the Remez algorithm; cf. Studden and Tsay (1976),
DeVore and Lorentz [(1993), Section 3.8] and Heiligers (1996).

Theorem 2.1. Consider model �1	3�	 Suppose �f0� 	 	 	 � fn� is a Chebyshev
system on � = �a� b	 and every subsystem that consists of n of these functions
is a weak Chebyshev system. Let cTf�x� be the Chebyshev polynomial with
Chebyshev points s0 > · · · > sn. Suppose the Chebyshev points are unique. Set
F = �fj�sk��njk=0 and J = diag �1�−1� 	 	 	 � �−1�n�.

(a) For every weighted parameter subsystem KTθ = �kj1θj1� 	 	 	 � kjsθjs�T,
there is a unique E-optimal design ξ; the design is concentrated on the Cheby-
shev points, the weights are given by

�ξ�s0�� 	 	 	 � ξ�sn��T =
1

�KTc�2JF
−1KKTc�(2.1)
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and λmin�CK�M�ξ��� = �KTc�−2. If ξjµ denotes the optimal design for estimat-
ing the single coefficient θjµ , µ = 1� 	 	 	 � s, then

ξ = 1
�KTc�2

s∑
µ=1

k2jµc
2
jµ
ξjµ	(2.2)

(b) For every parameter subsystem �θj1� 	 	 	 � θjs�T, there is a unique stan-
dardized-E-optimal design ξ′; the design is equal to the E-optimal design for
�c−1j1 θj1� 	 	 	 � c−1js θjs�T, and

ξ′ = 1
s

s∑
µ=1

ξjµ	

Proof of Theorem 2.1. (a) Suppose that detF > 0 and let ε0� 	 	 	 � εn ∈
�−1�+1� be such that

εk det



f0�x0� · · · fk−1�x0� fk+1�x0� · · · fn�x0�
			

			
			

			
f0�xn−1� · · · fk−1�xn−1� fk+1�xn−1� · · · fn�xn−1�


 ≥ 0

for all b ≥ x0 > · · · > xn−1 ≥ a and k = 0� 	 	 	 � n. Then the sign of the element
in position �j� k� of F−1 is �−1�j+kεk or zero. Thus

JF−1JS ≥ 0�(2.3)

whereS = diag �ε0� 	 	 	 � εn�. Here and in what follows inequality signs between
matrices or vectors apply componentwise. Let 1 = �1� 	 	 	 �1�T ∈ �n+1. Since
cTF = 1TJ and since every column of F−1 must have at least one non-zero
entry, it follows from (2.3) that

cTJS = 1TJF−1JS > 0	(2.4)

Let ξ be defined by (2.1) and ξ��a� b	\�s0� 	 	 	 � sn�� = 0. Note that ξ is indeed
a probability measure:

n∑
j=0
ξ�sj� =

1
�KTc�21TJF−1KKTc = cTKKTc

�KTc�2 = 1�

and by (2.3) and (2.4),

�ξ�s0�� 	 	 	 � ξ�sn��T =
1

�KTc�2JF
−1JSKKTSJc ≥ 0	

If ξ�sj� = 0, then the jth row of JF−1JSK must vanish, so that the jth row
of F−1K must vanish, too. Thus M�ξ�M+�ξ�K = FWW+F−1K = K, where
W = diag �ξ�s0�� 	 	 	 � ξ�sn��. That is, ξ is feasible for KTθ. Moreover, by (2.1),
WJ1 = �KTc�−2F−1KKTc, and so

KTc =KTM+�ξ�M�ξ�c =KTM+�ξ�FWFTc =KTM+�ξ�FWJ1

= 1
�KTc�2K

TM+�ξ�KKTc = 1
�KTc�2C

−1
K �ξ�KTc	

(2.5)
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Let U be the s× s diagonal matrix with diagonal entries ±1 such that UKT =
KTSJ. It then follows from (2.5) that UKTc is an eigenvector of UC−1K �ξ�U
corresponding to the eigenvalue �KTc�2. Assume without loss of generality
that K ≥ 0. Then, by (2.3),

UC−1K �ξ�U =KTSJ�FT�−1JW+JF−1JSK ≥ 0�

and by (2.4), UKTc =KTSJc > 0. It therefore follows from Lemma 2.1 below
that �KTc�2 = λmax�UC−1K �ξ�U� = λmax�C−1K �ξ��.

Now let η be any feasible design for KTθ. Then K =M1/2�η��M+�η��1/2K,
and so, by Cauchy’s inequality,

�cTKKTc�2 ≤ cTM�η�c · cTKKTM+�η�KKTc

=
∫
�cTf�x��2 dη�x� · cTKC−1K �η�KTc

≤ 1 · λmax�C−1K �η��cTKKTc	

Hence

λmax�C−1K �η�� ≥ �KTc�2 = λmax�C−1K �ξ��	(2.6)

That is, ξ is anE-optimal design. To show uniqueness, suppose λmax�C−1K �η�� =
�KTc�2. Then supp �η� ⊂ �s0� 	 	 	 � sn�, and M1/2�η�c and �M+�η��1/2KKTc
must be proportional. ThusMc = Fdiag �η�s0�� 	 	 	 � η�sn��FTc is proportional
to KKTc. This determines the weights of η uniquely.

To prove the representation (2.2) note that

�ξjµ�s0�� 	 	 	 � ξjµ�sn��T =
1

c2jµ
JF−1ejµe

T
jµ

c�

where ejµ denotes the jµth unit vector in �n+1. Hence

�ξ�s0�� 	 	 	 � ξ�sn��T =
1

�KTc�2JF
−1KKTc

= 1
�KTc�2

s∑
µ=1

k2jµc
2
jµ
�ξjµ�s0�� 	 	 	 � ξjµ�sn��T	

(b) By (a), eTjµM
+�ξjµ�ejµ = c2jµ . Thus for K = �ej1� 	 	 	 �ejs	, the standard-

ized information matrix ĈK is equal to the non-standardized information ma-
trix CK̃, where K̃ = ��cj1 �−1ej1� 	 	 	 � �cjs �−1ejs	. ✷

Lemma 2.1. A positive eigenvector of an elementwise non-negative symmet-
ric matrix corresponds to the maximum eigenvalue.

Proof. Let A be a non-negative symmetric matrix and let x = �x0� 	 	 	 �
xn�T 
= 0 be such that Ax = λmax�A�x. Set y = ��x0�� 	 	 	 � �xn��T. Then

λmax�A� =
xTAx
xTx

= xTAx
yTy

≤ yTAy
yTy

≤ λmax�A�	
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It follows that y is an eigenvector of A corresponding to λmax�A�. Now let z be
a positive eigenvector ofA. Since y is non-negative, y and z are not orthogonal
and must therefore correspond to the same eigenvalue, that is, to λmax�A�. ✷

Remark 2.1. The weights of the E-optimal design ξ and the standardized-
E-optimal design ξ′ can be expressed as

ξ�sκ� =
�−1�κ∑s
µ=1 k

2
jµ
c2jµ

s∑
µ=1

l
�κ�
jµ
k2jµcjµ� ξ′�sκ� =

�−1�κ
s

s∑
µ=1

l
�κ�
jµ

cjµ
�

where the l�k�j are the coefficients of the Lagrange polynomials for the nodes

s0� 	 	 	 � sn; that is, Lk�x� =
∑n
j=0 l

�k�
j fj�x� and Lk�sk� = 1, Lk�sj� = 0 if j 
= k.

Remark 2.2. If the Chebyshev points in Theorem 2.1 are not unique, then
the designs given there are still optimal but not unique anymore. For example,
let f0�x� = 1+ x/2 and f1�x� = 2+ x/2− x2 − x3, x ∈ �−1�1	. The Chebyshev
polynomial is T�x� = f0�x� − f1�x� and T�−1� = T�0� = −1 and T�1� = 1.
So there is an E-optimal design with support �−1�1� and another one with
support �0�1�.

Theorem 2.1 is easily extended to design spaces � ⊂ � which are not
intervals. In that case, the E-optimal designs may be not unique even if 1 ∈
span �f0� 	 	 	 � fn�. Indeed, the assumption that 1 ∈ span �f0� 	 	 	 � fn� does not
ensure uniqueness of the Chebyshev points when � is not an interval. If
fj�x� = xj, j = 0�1�2, x ∈ � = �0�1	 ∪ �2�3	, then there is an E-optimal
design with support �0�1�3� and another one with support �0�2�3�.

Remark 2.3. The condition that �f0� 	 	 	 � fn� be a Chebyshev system and
every subsystem consisting of n functions be a weak Chebyshev system is
satisfied if �f0� 	 	 	 � fn� is a Descartes system [Karlin and Studden (1966),
page 25]. The condition is also satisfied if, for all x0 > · · · > xn, the matrix
�fj�xk��njk=0 is non-singular and totally non-negative. See Heiligers (2001) for
some recent results on E-optimal designs for totally non-negative regression.

But consider the functions f0�x� = 1, f1�x� = x, f2�x� = �1 − x�2, x ∈
�−1�1	. The matrix �fj�xk��2jk=0 is not totally non-negative for x0 = −1, x1 =
0, x2 = 1; and �f0� f1� f2� is not a Descartes system either. Nevertheless,
�f0� f1� f2� does satisfy the condition of Theorem 2.1.

The next lemma provides a simple means to check whether a given Cheby-
shev system satisfies the assumption of Theorem 2.1 on the subsytems.

Lemma 2.2. Let �f0� 	 	 	 � fn� be a Chebyshev system. Then the following
two conditions are equivalent�

(i) Every subsystem that consists of n of the functions f0� 	 	 	 � fn is a Cheby-
shev system.

(ii) If
∑n
j=0 ajfj�x� 
≡ 0 has n zeros, then all the coefficients a0� 	 	 	 � an are

non-zero.
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Proof. This follows from the fact that if g�x� =∑n
j=0 ajfj�x� vanishes at

x1� 	 	 	 � xn, then g�x� = ρdet�f�x1�� 	 	 	 � f�xn�� f�x�	. ✷

3. E-optimal designs for rational models on compact intervals. Let
Um�x� denote the usual Chebyshev polynomial of the second kind, thusUm�x�
= sin��m+ 1�arccosx�/

√
1− x2. Set U−1�x� = 0 and U−m�x� = −Um−2�x� for

m ≥ 2.

Theorem 3.1. Let α1� 	 	 	 � αn be distinct real numbers outside �−1�1	. Con-
sider the model

E�Y�x�� = θ0 +
θ1

x− α1
+ · · · + θn

x− αn
� x ∈ �−1�1		(3.1)

Define β1� 	 	 	 � βn ∈ �−1�1� and γ0� 	 	 	 � γ2n ∈ � by �βk + β−1k � = 2αk and

2n∑
k=0
γkx

k = �x− β1�2 · · · �x− βn�2	

Then the E-optimal design ξ and the standardized-E-optimal design ξ′ for the
weighted parameter subsystem KTθ = �kj1θj1� 	 	 	 � kjsθjs�T concentrate mass
at the zeros s0 > · · · > sn of �1−x2�∑2n

k=0 γkU−n+k−1�x�. The weights are given
by

ξ�sκ� =
�−1�κ∑s
µ=1 k

2
jµ
c2jµ

s∑
µ=1

l
�κ�
jµ
k2jµcjµ and ξ′�sκ� =

�−1�κ
s

s∑
µ=1

l
�κ�
jµ

cjµ
�(3.2)

where

c0 =
�−1�n
2

(
β1 · · ·βn + β−11 · · ·β−1n

)
�

cj = −
(
βj − β−1j

2

)2
n∏
k=1
k
=j

1− βjβk
βj − βk

� j = 1� 	 	 	 � n

and

l
�k�
0 =

∏n
ν=1�sk − αν�∏n
ν=0
ν 
=k
�sk − sν�

�

l
�k�
j = �sk − αj�

n∏
ν=1
ν 
=j

sk − αν
αj − αν

n∏
ν=0
ν 
=k

αj − sν
sk − sν

�
j = 1� 	 	 	 � n�
k = 0� 	 	 	 � n	

(3.3)

Proof. Let f0�x� = 1, and fj�x� = �x − αj�−1 for j = 1� 	 	 	 � n. It is
easily seen that �f0� 	 	 	 � fn� and all subsystems thereof are Chebyshev sys-
tems. By Proposition 4.1 of Borwein, Erdélyi and Zhang (1994), the Chebyshev
polynomial for �f0� 	 	 	 � fn� is

∑n
j=0 cjfj�x�. By Theorem A.2 in Appendix A,
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s0� 	 	 	 � sn are the Chebyshev points. Using the formula for the Cauchy de-
terminant [Achieser (1956), pages 19-20], one may verify that the inverse of
�fj�sk��njk=0 is �l

�k�
j �nkj=0. Now the assertions follow from Theorem 2.1 and Re-

mark 2.1. ✷

The next theorem describes how the E-optimal design points vary as the
poles of the regression model (3.1) vary and shows that the E-optimal designs
converge to an arcsin support design [Pukelsheim (1993), page 217] when the
poles approach ±∞.

Theorem 3.2. Let sk = sk�α1� 	 	 	 � αn�, k = 0� 	 	 	 � n, denote the support
points of the E-optimal design ξ given in Theorem 3	1	

(a) If any one of the poles αj moves to the right and the other poles remain
fixed, then every interior design point sk, k = 1� 	 	 	 � n− 1, moves to the left.

(b) If every pole moves toward ±∞, then sk → cos�kπ/n� and ξ�sk� → 1
n

for k = 1� 	 	 	 � n − 1 and ξ�s0� → 1
2n , ξ�sn� → 1

2n . In particular, the limiting
behavior of ξ does not depend on K and is the same for the standardized-E-
optimal design.

Proof. (a) By Theorems 2.1 and A.1, s1� 	 	 	 � sn−1 are the zeros of the �n−
1�st monic orthogonal polynomial with respect to

w�x� =
√
1− x2

�x− α1�2 · · · �x− αn�2
	

For every j = 1� 	 	 	 � n,

1
w�x�

d

dαj
w�x� = 2

x− αj
is a decreasing function of x ∈ �−1�1	. The assertion follows now from
Markov’s theorem on the variation of the zeros of orthogonal polynomials
[Szegő (1975), page 115].

(b) Let βk and γk be defined as in Theorem 3.1. If �αj� → ∞ for all j =
1� 	 	 	 � n, then βk → 0 for all k, and so γk → 0 for k ≤ 2n−1 and γ2n = 1. Thus
s1� 	 	 	 � sn−1 move toward the zeros of Un−1�x�; that is, sk → xk �= cos�kπ/n�,
k = 0� 	 	 	 � n.

In view of representation (2.2) it is sufficient to prove the limit assertion
for the weights in the special case where ξ is optimal for estimating a single
parameter, say θj. Set u�x� = �1− x2�Un−1�x�. Then, from (3.3),

lim
�α1��			��αn�→∞

l
�k�
j

l
�k′�
j

=
∏
ν 
=k′ �xk′ − xν�∏
ν 
=k�xk − xν�

= u′�xk′ �
u′�xk�

� k� k′ = 0� 	 	 	 � n	

But u′�x� = −xUn−1�x� −nTn�x�, where Tn�x� = cos�narccosx�. Thus u′�xk�
= �−1�k+1n for k = 1� 	 	 	 � n − 1, and u′�xk� = �−1�k+12n for k = 0� n. It now
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Table 1

Optimal designs ξ for model �3	1� and efficiencies of the arcsin support design ξ∗. The support
points are given with the corresponding weights in parentheses

�1 �2 �3 � eff(�∗)

2 4 6 −1 (0.189) −0.228 (0.356) 0.706 (0.311) 1 (0.144) 0.518
12 14 16 −1 (0.167) −0.444 (0.334) 0.552 (0.333) 1 (0.166) 0.966
−2 4 6 −1 (0.125) −0.552 (0.304) 0.494 (0.375) 1 (0.196) 0.952
−12 14 16 −1 (0.158) −0.488 (0.325) 0.513 (0.342) 1 (0.175) 0.999

follows from (3.2) that

ξ�sk�
ξ�sk′ �

= �−1�k+k′ l
�k�
j

l
�k′�
j

→ 1� k� k′ = 1� 	 	 	 � n− 1

and
ξ�s0�
ξ�s1�

→ 1
2
�

ξ�sn�
ξ�s1�

→ 1
2
	 ✷

Theorem 3.2(b) suggests that the arcsin support design ξ∗ with
ξ∗�cos�kπ/n�� = 1

n
, k = 1� 	 	 	 � n − 1, ξ∗�−1� = ξ∗�1� = 1

2n should be a good
approximation to the E-optimal design ξ for model (3.1), provided that the
poles are far enough away from the design space. Specifically, the efficiency
of ξ∗, eff�ξ∗� = λmin�M�ξ∗��/λmin�M�ξ��, should, then, be high. The numerical
examples in Table 1 confirm this.

Remark 3.1. He, Studden and Sun (1996) observed a relation between D-
optimal designs for rational and polynomial models which is similar to that
in Theorem 3.2(b).

Theorem 3.3. Let α1 > · · · > αm > 0. Consider the model

E�Y�x�� = θ−m
x+ αm

+ · · · + θ−1
x+ α1

+ θ0 + θ1x+ · · · + θnxn� x ∈ �0�1		

The E-optimal design ξ and the standardized-E-optimal design ξ′ for the
weighted parameter subsystem KTθ = �kj1θj1� 	 	 	 � kjsθjs�T concentrate mass
at s0 = 1, sn+m = 0 and the zeros s1 > · · · > sn+m−1 of the orthogonal polyno-
mial of degree n+m− 1 with respect to√

x�1− x�dx
�x+ α1�2 · · · �x+ αm�2

� x ∈ �0�1		

The weights are given by

�ξ�s0�� 	 	 	 � ξ�sn+m��T =
1

�KTc�2JF
−1KKTc�

�ξ′�s0�� 	 	 	 � ξ′�sn+m��T =
1
s
JF−1K�KTK�−1KT�c−10 � 	 	 	 � c−1m+n�T�
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where J = diag �1�−1� 	 	 	 � �−1�m+n�, c = �FT�−1J1 and FT is the Cauchy–
Vandermonde matrix

FT =




1
s0 + αm

· · · 1
s0 + α1

1 s0 · · · sn0

			
			

			
			

			
1

sm+n + αm
· · · 1

sm+n + α1
1 sm+n · · · snm+n


 	

Proof. This follows from Theorem 2.1 and Theorem A.1 in Appendix A.
That Theorem 2.1 can be applied to the model at hand is ensured by Lemma
B.1 in Appendix B and Lemma 2.2. ✷

Theorems 3.1 and 3.3 dealt with E-optimal designs for regression func-
tions with several poles of order 1. In the next theorem, the regression func-
tion may have a pole whose order is larger than 1, but may have no other
poles. It seems to be more difficult to obtain E-optimal designs when there
are several poles whose order is larger than 1; see the discussion at the end of
Appendix B.

Theorem 3.4. Let α > 0. Consider the model

E�Y�x�� = θ−m
�x+ α�m + · · · + θ−1

�x+ α�1 + θ0 + θ1x+ · · · + θnx
n� x ∈ �0�1		

The E-optimal design ξ and the standardized-E-optimal design ξ′ for the
weighted parameter subsystem KTθ = �kj1θj1� 	 	 	 � kjsθjs�T concentrate mass
at s0 = 1, sn+m = 0 and the zeros s1 > · · · > sn+m−1 of the orthogonal polyno-
mial of degree n+m− 1 with respect to√

x�1− x�dx
�x+ α�2m � x ∈ �0�1		

The weights are given by

�ξ�s0�� 	 	 	 � ξ�sn+m��T =
1

�KTc�2JF
−1KKTc�

�ξ′�s0�� 	 	 	 � ξ′�sn+m��T =
1
s
JF−1K�KTK�−1KT�c−10 � 	 	 	 � c−1m+n�T�

where J = diag �1�−1� 	 	 	 � �−1�m+n�, c = �FT�−1J1 and FT is the Cauchy–
Vandermonde matrix

FT =




1
�s0 + α�m

· · · 1
s0 + α

1 s0 · · · sn0

			
			

			
			

			
1

�sm+n + α�m
· · · 1

sm+n + α
1 sm+n · · · snm+n


 	
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Proof. Theorems 2.1, A.1 and Lemmas B.3 and 2.2. ✷

Explicit representations of the inverse matrices F−1 in Theorems 3.3 and
3.4 can be derived from the formulas in Mühlbach (1996).

4. E-optimal designs for a rational model on two disjoint intervals.
This section addresses the problem of determining the E-optimal designs for
the model

E�Y�x�� = θ−mx−m + · · · + θnxn� x ∈ �−b�−a	 ∪ �a� b	�(4.1)

where 0 < a < b and m�n ≥ 0. A complete solution for the case where in-
terest is in coefficients of odd powers only or of even powers only is given in
Theorem 4.1. Theorem 4.2 treats more general parameter subsystems under
the assumption that b ≤ 1. It turns out that the E-optimal designs are not al-
ways unique and the number of their support points may be larger or smaller
than the number of parameters. This is different from corresponding results
for ordinary polynomial regression on a compact interval. Indeed, E-optimal
designs for homoscedastic polynomial regression on �−1�1	 are always unique
and the number of support points is never larger than the number of pa-
rameters; see Studden (1968), Pukelsheim and Studden (1993) and Heiligers
(1994). On the other hand, Chang and Heiligers (1996) give an example where
E-optimal designs for a heteroscedastic polynomial regression model are not
unique.

Theorem 4.1. Consider model �4	1�. Let KTθ = �kj1θj1� 	 	 	 � kjsθjs�T and
suppose that either every index jµ is even or every jµ is odd. If the jµ are even,
let

m0 = max�j � j even� j ≤m�� n0 = max�j � j even� j ≤ n�	
If the jµ are odd, let

m0 = max�j � j odd� j ≤m�� n0 = max�j � j odd� j ≤ n�	
Suppose that m0 ≥ 0, n0 ≥ 0 and m0 + n0 > 0. Let t�x� = ∑n0

j=−m0
cjx

j+m0 be
the orthogonal polynomial of degree m0 + n0 with respect to

dx

�x�2m0−1
√�x2 − a2��b2 − x2� � x ∈ �−b�−a	 ∪ �a� b	�(4.2)

normalized so that t�b� = bm0 . Let s0 > · · · > sm0+n0+1 denote the points in
�−b�−a	 ∪ �a� b	 where �t�x�/xm0 � = 1. Let

F =



s−m0 · · · s−mm0+n0+1
			

			
sn0 · · · snm0+n0+1


 and J = diag

(
t�s0�
s
m0
0

� 	 	 	 �
t�sm0+n0+1�
s
m0
m0+n0+1

)
	

Let c = �c−m� 	 	 	 � cn�T, where c−m = 0 if m > m0 and cn = 0 if n > n0.
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(a) If m+ n > m0 + n0, then there is a unique E-optimal design ξ for KTθ,
it is supported on the points s0� 	 	 	 � sm0+n0+1, and the weights are given by the
unique solution of

�KTc�2FJ�ξ�s0�� 	 	 	 � ξ�sm0+n0+1��T =KKTc	(4.3)

(b) If m + n = m0 + n0, then every E-optimal design for KTθ is supported
on s0� 	 	 	 � sm0+n0+1 and the weights satisfy (4.3). Moreover, there is a unique
symmetric E-optimal design.

(c) A design is standardized-E-optimal for �θj1� 	 	 	 � θjs�T if and only if it is
E-optimal for �c−1j1 θj1� 	 	 	 � c−1js θjs�T.

This theorem is proved by first deriving optimal designs for a simpler model,
a model that contains only powers of the same parity. These designs are then
shown to be optimal for the original model. This second step relies on the
following lemma, which is an immediate consequence of Theorem 1 of Imhof
and Krafft (1999).

Lemma 4.1. Consider the initial model

E�Y�x�� = θTf�x� +ϑTg�x�� x ∈ � �

and the reduced model

E�Y0�x�� = θTf�x�� x ∈ � 	

Let ξ be an E-optimal design for estimating KT
0 θ in the reduced model. Set

KT =
[
KT

0 �K
T
0

(∫
f�x�fT�x�dξ�x�

)+ (∫
f�x�gT�x�dξ�x�

)]
	

Then ξ is also E-optimal for estimating KT
[
θ
ϑ

]
in the initial model and the

optimal information matrices of ξ for the two models coincide. Moreover, every
E-optimal design for KT

[
θ
ϑ

]
is E-optimal for KT

0 θ as well.

Proof of Theorem 4.1. (a) and (b) Let fj�x� = xj for j = −m� 	 	 	 � n,
and let � = �−m0�−m0 + 2� 	 	 	 � n0�. The system �fj�j∈� and all its subsys-
tems are Chebyshev systems on �a� b	; see DeVore and Lorentz [(1993), page
69]. Since the weight (4.2) is even, t�x� is even as well, so that t�x�/xm0 =∑
j∈� cjfj�x�. That

∑
j∈� cjfj�x� is the Chebyshev polynomial for �fj�x��j∈� ,

x ∈ �a� b	, follows from Theorem A.3. The Chebyshev points are s0 > · · · >
s�m0+n0�/2. LetK0 be the matrix obtained fromK by deleting every second row
beginning with the first or second row according as m > m0 or m = m0. It
now follows from Theorem 2.1 that there is a unique E-optimal design ξ0 for
estimating KT

0 �θ−m0
� θ−m0+2� 	 	 	 � θn0�T in the model

E�Z�x�� = ∑
j∈�

θjfj�x�� x ∈ �a� b		
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The support points of ξ0 are s0� 	 	 	 � s�m0+n0�/2 and λmax�C−1K0
�M0�ξ0���

= �KTc�2. Here M0�ξ� =
(∫
xj+k dξ�x�)

j�k∈� . This matrix contains only even
moments of ξ. Therefore, a design ξ on �−b�−a	 ∪ �a� b	 is E-optimal for esti-
mating KT

0 �θ−m0
� θ−m0+2� 	 	 	 � θn0�T in the model

E�Y0�x�� =
∑
j∈�

θjfj�x�� x ∈ �−b�−a	 ∪ �a� b	�

if and only if ξ�x�+ξ�−x� = ξ0�x� for all x ∈ �a� b	. In particular, the symmetric
design ξ1�x� = ξ0��x��/2 is optimal. Clearly,

∫
fj�x�fk�x�dξ1�x� = 0 for all j ∈

� and k ∈ �−m� 	 	 	 � n� \� . It therefore follows by Lemma 4.1 that ξ1 is also
E-optimal forKTθ in the initial model (4.1) and λmax�C−1K �M�ξ1��� = �KTc�2.
Moreover, if ξ is E-optimal for KTθ in (4.1), then ξ�x� + ξ�−x� = ξ0�x� for all
x ∈ �a� b	. Thus the support of ξ must be contained in �s0� 	 	 	 � sm0+n0+1�, so
that cTM�ξ�c = ∫ �cTf�x��2 dξ�x� = 1. It now follows from Cauchy’s inequality
that

�KTc�2 = λmax�C−1K �M�ξ��� ≥
cTKKTM+�ξ�KKTc

�KTc�2 ≥ cTKKTc
cTM�ξ�c = �K

Tc�2	

Thus M�ξ�c and KKTc must be proportional. This is equivalent to (4.3). If
m+ n > m0 + n0, then (4.3) has exactly one solution.

(c) If ξj is an optimal design for θj = eTj θ, j ∈ � , then, by (a) and (b),
eTjM

+�ξj�ej = c2j. ✷

The following example shows that there may be infinitely many E-optimal
designs for model (4.1) and that not every design whose weights satisfy (4.3)
must be E-optimal.

Example 4.1. Consider the model

E�Y�x�� = θ−1
x
+ θ0 + θ1x� x ∈ �−1�−1/2	 ∪ �1/2�1		

LetKT =
[ 1 0 0
0 0 1/2

]
. Then, with the notation from Theorem 4.1,m = n =m0 =

n0 = 1, t�x� = −1+ 2x2, c = �−1�0�2�T, s0 = 1, s1 = 1/2, s2 = −1/2, s3 = −1,
and condition (4.3) means that

ξ�s0� = 1
4 − ρ� ξ�s1� = 1

4 − ρ� ξ�s2� = 1
4 + ρ� ξ�s3� = 1

4 + ρ�

where −1/4 ≤ ρ ≤ 1/4. For these ξ, the eigenvalues of CK�ξ� are 1/2 and
9/2�1 − 16ρ2�. That is, if �ρ� ≤ 1/�3√2� ≈ 0	236, then λmin�CK�ξ�� = 1/2 and
ξ is E-optimal for KTθ. If �ρ� > 1/�3√2�, then λmin�CK�ξ�� < 1/2.

On the other hand, if KT = �0�0�1�, then every design which satisfies (4.3)
is optimal for KTθ.
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The next theorem extends Theorem 4.1 to parameter subsystems that sat-
isfy a certain neighborhood condition similar to those in Pukelsheim and Stud-
den (1993) and Heiligers (1994).

Theorem 4.2. Consider model �4	1�. Suppose that 0 < a < b ≤ 1. Let
KTθ = �θj1� 	 	 	 � θjs�T, −m ≤ j1 < · · · < js ≤ n, and suppose that for every
µ = 1� 	 	 	 � s− 1,

if js − jµ is odd, then jµ+1 = jµ + 1	

LetK0 be the matrix obtained fromK = �ej1� 	 	 	 �ejs	 by deleting those columns
ejµ for which js − jµ is odd. Let ξ∗ be the unique �symmetric� E-optimal de-

sign for KT
0 θ as given in Theorem 4	1. Then ξ∗ is also E-optimal for KTθ. If

n+m+ 1 ≥ �supp �ξ∗��, then ξ∗ is the only E-optimal design for KTθ.

Proof. Let ξ be a feasible design forKTθ. Then ξ is also feasible forKT
0 θ

and

λmax�C−1K0
�M�ξ∗��� ≤ λmax�C−1K0

�M�ξ���	
If n + m + 1 ≥ �supp �ξ∗��, then the inequality is strict unless ξ = ξ∗; see
Theorem 4.1. Let K1 denote the matrix that consists of those columns of K
which are not in K0 and let x be a normalized eigenvector of C−1K0

�M�ξ��
corresponding to the maximum eigenvalue. Then

λmax�C−1K0
�M�ξ��� = �xT�0T	

[
KT

0
KT

1

]
M+�ξ��K0�K1	

[
x
0

]

≤ λmax�C−1K �M�ξ���	
(4.4)

The proof is now complete by showing that there is equality in (4.4) if ξ = ξ∗.
This can be done by arguments similar to those in Pukelsheim and Studden
[(1993), pages 410–411] or Heiligers [(1994), pages 922–923]. We omit the
details. ✷

APPENDIX A:
CHEBYSHEV POLYNOMIALS FOR RATIONAL SYSTEMS

The next three theorems provide explicit expressions for the Chebyshev
polynomial of a Chebyshev system �f0� 	 	 	 � fn� whose span satisfies

span �f0�x�� 	 	 	 � fn�x�� =
{
q�x�√
p�x� � q�x� ∈ �n

}
	(A.1)

Here �n denotes the set of all algebraic polynomials of degree less than or
equal to n and p�x� is a fixed polynomial. The Chebyshev polynomial and the
Chebyshev points will be expressed in terms of Bernstein-Szegő orthogonal
polynomials [Szegő (1975), Section 2.6].

The first theorem is a consequence of Theorem 2.6 in Szegő (1975) and the
argument principle; see also Achieser [(1956), pages 58–60, 249–251], Karlin
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and Studden [(1966), pages 287–289] and Krein and Nudel’man [(1977), pages
373–374].

Theorem A.1. Let p ∈ �ν be positive on �a� b	. Let �f0� 	 	 	 � fn�, n ≥ ν/2,
be a Chebyshev system on �a� b	 satisfying (A.1). Let t�x� ∈ �n be the nth
Bernstein-Szegő orthogonal polynomial with respect to dx/�p�x�√�x− a��b− x�� normalized so that t�b� = √

p�b� and let u�x� ∈ �n−1 be
the �n − 1�st monic Bernstein-Szegő orthogonal polynomial with respect to√�x− a��b− x�dx/p�x�. Then the Chebyshev polynomial for �f0� 	 	 	 � fn� is
given by t�x�/√p�x� and the Chebyshev points are the zeros of �x − a��b −
x�u�x�. Moreover, p(x) has the representation

p�x� = t2�x� + c�x− a��b− x�u2�x��

where c > 0.

If the zeros of p are known and �a� b	 = �−1�1	, then the Bernstein-Szegő
polynomials have a simple representation as linear combinations of the ordi-
nary Chebyshev polynomials of the first and second kind, Tm�x� =
cos�marccosx�, Um�x� = sin��m+ 1�arccosx�/

√
1− x2.

Theorem A.2. Let p be an algebraic polynomial of degree ν ≥ 1 which
is positive on �−1�1	. Let α1� 	 	 	 � αν denote the zeros of p. Let �f0� 	 	 	 � fn�,
n ≥ ν/2, be a Chebyshev system on �−1�1	 satisfying (A.1). Define β1� 	 	 	 � βν ∈
�z ∈ � � �z� < 1� by

1
2

(
βk +

1
βk

)
= αk�

and define γ0� 	 	 	 � γν ∈ � by

ν∑
k=0
γkx

k = �x− β1� · · · �x− βν�	

Then the Chebyshev polynomial for �f0� 	 	 	 � fn� is a multiple of∑ν
k=0 γkT�n−ν+k��x�√

p�x� �

and the Chebyshev points are the zeros of

�1− x2�
ν∑
k=0
γkUn−ν+k−1�x�	

Here U−1�x� = 0 and U−m�x� = −Um−2�x� for m ≥ 2.
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Proof. Set h�z� = ∑ν
k=0 γkz

k. For x ∈ �−1�1	, let z = z�x� = eiθ, where
θ = arccosx ∈ �0� π	 and i = √−1. Consider

t�x� �=  �zn−νh�z�� =
ν∑
k=0
γk 

{
zn−ν+k

}
=

ν∑
k=0
γkT�n−ν+k��x��

u�x� �= ! �zn−νh�z��√
1− x2

=
ν∑
k=0
γkUn−ν+k−1�x�	

Obviously

t2�x� + �1− x2�u2�x� = �h�z��2 =
ν∏
k=1
�z− βk��z− βk�	

Now the non-real βk occur in pairs of complex conjugate numbers and zz = 1
and z+ z = 2x. Therefore,

ν∏
k=1
�z− βk��z− βk� =

ν∏
k=1

2βk�αk − x� = c2p�x��

for some c > 0. Hence �t�x�/√p�x�� ≤ c for all x ∈ �−1�1	. By the argument
principle applied to zn−νh�z�, there exist n + 1 zeros s0 > · · · > sn of �1 −
x2�1/2u�x� and t�sk� = �−1�kc

√
p�sk�. ✷

The next theorem gives the Chebyshev polynomials for rational systems on
two disjoint intervals.

Theorem A.3. Let p be an even algebraic polynomial of degree ν which is
positive on � = �−b�−a	 ∪ �a� b	, 0 < a < b. Let f0� 	 	 	 � fn, n ≥ max�ν/2�2�,
be continuous functions on � that satisfy (A.1). If n is odd, suppose also that
p�0� = 0. Let t�x� ∈ �n be the nth orthogonal polynomial with respect to

�x�dx
p�x�√�x2 − a2��b2 − x2� � x ∈ � �

normalized so that t�b� = √
p�b�. Let u�x� ∈ �n−2 be the �n − 2�nd monic

orthogonal polynomial with respect to

�x�√�x2 − a2��b2 − x2�dx
p�x� � x ∈ � 	

Set T�x� = t�x�/√p�x�. Then T ∈ span �f0� 	 	 	 � fn�, �T�x�� ≤ 1 for all x ∈ � ,
and

(a) if n is odd, then �x2 − a2��b2 − x2�u�x� has n + 1 zeros s0 > · · · > sn in
� , sk = −sn−k and T�sk� = �−1�k for k = 0� 	 	 	 � n;

(b) if n is even, then �x2−a2��b2−x2�u�x� has n+2 zeros s0 > · · · > sn+1 in
� , sk = −sn+1−k and T�sk� = �−1�k for k = 0� 	 	 	 � n/2 and T�sk� = �−1�k+1
for k = n/2+ 1� 	 	 	 � n+ 1.
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Moreover, p�x� has the representation

p�x� = t2�x� + c�x2 − a2��b2 − x2�u2�x��

where c > 0.

Proof. This follows from Theorem A.1 applied to the interval �a2� b2	 and
the weight p�√x� if n is even and p�√x�/x if n is odd. ✷

Remark A.1. The condition that p�0� = 0 if n is odd is not superfluous.
If n = 5, � = �−1�−1/2	 ∪ �1/2�1	 and p�x� ≡ 1, then �t�x�� < 1 for all
x ∈ � \ �±1�. However, t�1/2� ≈ 0	99 and t�s1� ≈ −0	99, where s1 is the
positive zero of u�x�.

The Chebyshev polynomial for �1� x� 	 	 	 � xn�, x ∈ �−1�−a	∪ �a�1	, n odd, is
given in terms of elliptic functions in Achieser [(1956), page 287]. Peherstorfer
(1995) investigated the case where the two intervals have different lengths.

Remark A.2. Spruill (1987) calculates optimal interpolation designs for
polynomial regression models with design spaces that consist of two intervals.
The designs are based on Chebyshev points, too. Theorem A.3 can be used to
extend the results to rational systems.

APPENDIX B: AUXILIARY RESULTS

Lemma B.1. Let α1 > · · · > αm > 0 and let

f−j�x� =
1

x+ αj
� j = 1� 	 	 	 �m�

fj�x� = xj� j = 0� 	 	 	 � n	

If f = ∑n
j=−m ajfj 
≡ 0 has m + n zeros in �0�∞�, then ajaj+1 < 0 for j =

−m� 	 	 	 � n− 1.

The proof of Lemma B.1 uses a subsidiary result on symmetric functions.
Let σk denote the kth elementary symmetric function of α = �α1� 	 	 	 � αm�, that
is,

σk = σk�α� =
∑

1≤j1<···<jk≤m
αj1 · · ·αjk� k = 1� 	 	 	 �m�

σ0 = 1, and σk = 0 for k > m and for k < 0. Moreover, let

σ̄k = σ̄k�α� =
∑

1≤j1≤···≤jk≤m
αj1 · · ·αjk� k = 1�2� 	 	 	 �

and σ̄0 = 1.
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Lemma B.2. For every n ∈ �,

σ0 σ1 σ2 · · · σn
0 σ0 σ1 · · · σn−1
· · · · · · ·
0 0 0 · · · σ0



−1

=



σ̄0 −σ̄1 σ̄2 · · · �−1�nσ̄n
0 σ̄0 −σ̄1 · · · �−1�n−1σ̄n−1
· · · · · · ·
0 0 0 · · · σ̄0


 	

This follows from Stanley ��1999�� equation �7	13�� page 296		

Proof of Lemma B.1. Suppose that f = ∑n
j=−m ajfj has m + n non-

negative zeros. Write ω�x� = �x + α1� · · · �x + αm� and define b0� 	 	 	 � bm+n
by ω�x�f�x� =∑m+n

k=0 bkx
k. Then, by Descartes’ rule of signs,

�B	1� b0b1 ≤ 0 and bkbk+1 < 0 for k = 1� 	 	 	 �m+ n− 1	

Suppose that b1 < 0. Then, for j = 1� 	 	 	 �m,

0 <
m+n∑
k=0

bk�−αj�k = a−j�α1 − αj� · · · �αj−1 − αj��αj+1 − αj� · · · �αm − αj��

and so �−1�m−ja−j > 0. To determine the signs of a0� 	 	 	 � an observe that for
k =m� 	 	 	 �m+ n,

k!bk =
dk

dxk

m+n∑
j=0

bjx
j

∣∣∣∣∣
x=0

= dk

dxk
ω�x�f�x�

∣∣∣∣
x=0

=
min�k�n�∑
j=0

(
k

j

)
ω�k−j��0�j!aj	

As ω�l��0� = l!σm−l�α1� 	 	 	 � αm� = l!σm−l for l ≥ 0, and σl = 0 for l > m, one
obtains the equations

bm=σ0a0 + σ1a1 + · · · + σnan�
bm+1=σ0a1 + · · · + σn−1an�
	 	 	 	 	 	 	 	 	 	 	 	
bm+n=σ0an	

According to Lemma B.2, this system of equations is equivalent to the system

a0= σ̄0bm − σ̄1bm+1 ± · · · + �−1�nσ̄nbm+n�
a1= σ̄0bm+1 ∓ · · · + �−1�n−1σ̄n−1bm+n�
	 	 	 	 	 	 	 	 	 	 	 	
an= σ̄0bm+n	

Since σ̄l > 0 for every l, it therefore follows by inequalities (B.1) that
�−1�m+jaj > 0 for j = 0� 	 	 	 � n. ✷

Lemma B.3. Let α > 0,

f−j�x� =
1

�x+ α�j � j = 1� 	 	 	 �m�

fj�x� = xj� j = 0� 	 	 	 � n	

If f = ∑n
j=−m ajfj 
≡ 0 has m + n zeros in �0�∞�, then ajaj+1 < 0 for j =

−m� 	 	 	 � n− 1.
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Proof. Suppose for simplicity that α = 1. Let b0� 	 	 	 � bm+n be such that
�x+ 1�mf�x� =∑m+n

k=0 bkx
k. If f has m+n zeros in �0�∞�, then, by Descartes’

rule of signs,

�B	2� b0b1 ≤ 0 and bkbk+1 < 0 for k = 1� 	 	 	 �m+ n− 1	

To express the aj in terms of the bk note first that

�A�B	



a−m
			
an


 =




b0
			

bm+n


 �

where

A =
[(
k
j

)]m+n� m−1
j=0� k=0

and B =
[(

m
j− k

)]m+n� n
j=0� k=0

	

The inverse of �A�B	 is given by
[
C
D

]
with

C =
[
�−1�j+k

(
k
j

)]m−1� m+n
j=0� k=0

and D =
[
�−1�j+k+m

(
k− j− 1
k− j−m

)]n� m+n
j=0� k=0

	

This is seen by verifying that
[
C
D

]
�A�B	 = I. Since

[
C
D

]
and �A�B	 are up-

per triangular matrices, DA = 0. Furthermore, it follows from Feller [(1968),
equation (12.15), page 65] that, for j = 1� 	 	 	 �m− 1 and k = 0� 	 	 	 � n,

�CB�jk =
∑
l

�−1�j+l
(
l
j

)(
m
l− k

)
= �−1�j+k+m

(
k

m+ k− j
)
= 0	

That �CB�0k = 0 follows from Feller [(1968), equation (12.14)]. Thus CB = 0.
Similarly, CA = Im and DB = In+1. Hence


a−m
			
an


 =

[
C
D

]
b0
			

bm+n


 	

In view of the sign pattern of C and D the assertion now follows from (B.2). ✷

It is not possible to extend Lemmas B.1 and B.3 to cover Chebyshev systems
of the form

1
x+ α1

� 	 	 	 �
1

�x+ α1�n1
�

1
x+ α2

� 	 	 	 �
1

�x+ α2�n2
� 	 	 	 �1� x� 	 	 	 � xn	

Consider, for example, the system

f−3�x� =
1

x+ 1
� f−2�x� =

1
x+ 3

� f−1�x� =
1

�x+ 3�2 � f0�x� = 1�

where x ∈ � = �1�7	. Then f = 1f−3 + 0f−2 − 7f−1 − 1
18f0 has three zeros

in � even though one of the coefficients is zero. In particular, Theorem 2.1
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cannot be applied to �f−3� 	 	 	 � f0� as the subsystem �f−3� f−1� f0� is not a
weak Chebyshev system.
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