A CENTRAL LIMIT THEOREM FOR m-DEPENDENT RANDOM VARIABLES WITH UNBOUNDED m

BY KENNETH N. BERK

Illinois State University

For each $k=1,2,\cdots$ let n=n(k), let m=m(k), and suppose $y_1{}^k,\cdots,y_n{}^k$ is an *m*-dependent sequence of random variables. We assume the random variables have $(2+\delta)$ th moments, that $m^{2+2/\delta}/n \to 0$, and other regularity conditions, and prove that $n^{-\frac{1}{2}}(y_1{}^k+\cdots+y_n{}^k)$ is asymptotically normal. An example showing sharpness is given.

Central limit theorems for m-dependent variables (m fixed) have been proved by Hoeffding and Robbins [3], Diananda [2], Orey [5], and Bergstrom [1].

In this paper we prove the following theorem and give an example demonstrating its sharpness.

THEOREM. For each $k = 1, 2, \dots$ let n = n(k) and m = m(k) be specified and suppose y_1^k, \dots, y_n^k is an m-dependent sequence of random variables with zero means. Assume the following:

- (i) For some $\delta > 0$, $E|y_i^k|^{2+\delta} \leq M$ for all i and k.
- (ii) $\operatorname{Var}(y_{i+1}^k + \cdots + y_j^k) \leq (j-i)K \text{ for all } i, j, \text{ and } k.$
- (iii) $\lim_{k\to\infty} n^{-1} \operatorname{Var} (y_1^k + \cdots + y_n^k)$ exists and is nonzero. Call the limit v.
- (iv) $\lim_{k\to\infty} m^{2+2/\delta}/n = 0$.

Then $n^{-\frac{1}{2}}(y_1^k + \cdots + y_n^k)$ is asymptotically normal with mean 0 and variance v.

PROOF. For each k we choose an integer p = p(k) > 2m so that

(1)
$$\lim_{k\to\infty} m/p = 0$$
, $\lim_{k\to\infty} p^{2+2/\delta}/n = 0$.

This can be done, for example, by choosing p to be the least integer greater than $m^{\frac{1}{2}}n^{\frac{3}{2}/(4+4\delta)}$ and greater than 2m. Define t = t(k) and r = r(k) by n = pt + r, $0 \le r < p$. Then let

$$u_{1}^{k} = y_{1}^{k} + \cdots + y_{p-m}^{k}, \qquad x_{1}^{k} = y_{p-m+1}^{k} + \cdots + y_{p}^{k},
u_{2}^{k} = y_{p+1}^{k} + \cdots + y_{2p-m}^{k}, \qquad x_{2}^{k} = y_{2p-m+1}^{k} + \cdots + y_{p}^{k},
\dots
u_{t}^{k} = y_{(t-1)p+1}^{k} + \cdots + y_{tp-m}^{k}, \qquad x_{t}^{k} = y_{tp-m+1}^{k} + \cdots + y_{tp}^{k},
R^{k} = y_{tp+1}^{k} + \cdots + y_{n}^{k}.$$

Since the y_i^k are *m*-dependent and p > 2m, $\{x_i^k\}$ and $\{u_i^k\}$ are each independent sequences.

It is easily seen that the difference between $n^{-\frac{1}{2}}(y_1^k + \cdots + y_n^k)$ and

Received November 17, 1971; revised April 18, 1972.

Key words and phrases: Central limit theorem, m-dependent random variables.

 $n^{-\frac{1}{2}}(u_1^k + \cdots + u_t^k)$ has variance approaching zero so that the asymptotic distributions of these two quantities will be the same, and that

(3)
$$\lim_{k\to\infty} \operatorname{Var} n^{-\frac{1}{2}}(u_1^k + \cdots + u_t^k) = v.$$

Letting $(B^k)^2 = \text{Var}(u_1^k + \cdots + u_t^k)$ and using the Lyapounov theorem ([4] page 275) to prove the present theorem, it suffices to show that

$$\lim_{k\to\infty} \sum_{i=1}^t E|u_i^k|^{2+\delta}/(B^k)^{2+\delta} = 0.$$

By (i), (2), and the Minkowski inequality,

$$E|u_i^k|^{2+\delta} \leq (p-m)^{2+\delta}M^{2+\delta}.$$

Furthermore, (3) implies that for k sufficiently large, $(B^k)^2 = \text{Var}(u_1^k + \cdots + u_t^k) \ge vn/2$, so that

$$\sum_{i=1}^t E|u_i^k|^{2+\delta}/(B^k)^{2+\delta} \leq \operatorname{const} \frac{(p-m)^{1+\delta}}{n^{\delta/2}}.$$

But (1) implies that $\lim_{k\to\infty} (p-m)^{1+\delta} n^{-\delta/2} = 0$, and this completes the proof.

If assumption (iv), about the rate at which n increases with m, is simplified to require $n \sim m^{\alpha}$, then the assumption is that $\alpha > 2 + 2/\delta$. If y_i^k has unbounded moments of all orders, then the assumption is that $\alpha > 2$.

To show that condition (iv) cannot be relaxed, and that n must increase at a sufficient rate so that $m^{2+2/\delta}/n \to 0$, we give an example for which the other conditions are satisfied, but $m^{2+2/\delta}/n \to 1$, and there is no asymptotic normality.

For $k = 1, 2, \dots$, let z_1^k, z_2^k, \dots be a sequence of independent identically distributed random variables each with distribution

$$P(z_i^k = 0) = 1 - k^{-1-2/\delta}$$
, $P(z_i^k = \pm k^{1/\delta}) = (\frac{1}{2})k^{-1-2/\delta}$,

and let

$$y_1^k = \cdots = y_k^k = z_1^k y_{k+1}^k = \cdots = y_{2k}^k = z_2^k \cdots y_{n-k+1}^k = \cdots = y_n^k = z_t^k,$$

where *n* is the largest multiple of *k* less than $k^{2+2/\delta}$ and t = n/k. The sequence y_1^k, \dots, y_n^k is *m*-dependent with m = k. Assumptions (i), (ii), and (iii) of the theorem are readily verified with M = 1, K = 1, v = 1; however, the limit in (iv) is one, not zero.

We consider

(4)
$$n^{-\frac{1}{2}}(y_1^k + \cdots + y_n^k) = (k/t)^{\frac{1}{2}}(z_1^k + \cdots + z_t^k)$$

with mean zero and variance one. Letting $w_i^k = (k/t)^{\frac{1}{2}} z_i^k$, $i = 1, \dots, t$ and letting F^k be the probability distribution function of w_i^k , we apply the Lindeberg criterion ([4] page 280): because $\lim_{k\to\infty} \operatorname{Var} w_i^k = 0$, expression (4) is asymptotically normal only if for all $\varepsilon > 0$

$$\lim_{k\to\infty}\sum_{i=1}^t\int_{|w|>\varepsilon}w^2\,dF^k(w)=0$$
.

But for ε less than $k^{\frac{1}{2}+1/\delta}t^{-\frac{1}{2}}$, which has limit one,

$$\sum_{i=1}^t \int_{|w|>\varepsilon} w^2 \, dF^k(w) = \sum_{i=1}^t k^{1+2/\delta} t^{-1} k^{-1-2/\delta} = 1$$
 ,

so (4) is not asymptotically normal.

REFERENCES

- Bergstrom, H. (1970). A comparison method for distribution functions of sums of independent and dependent random variables. Theor. Probability Appl. 15 430-457.
- [2] DIANANDA, P. H. (1955). The central limit theorem for m-dependent variables. *Proc. Comb. Phil. Soc.* 51 92-95.
- [3] HOEFFDING, W. and ROBBINS, H. (1948). The central limit theorem for dependent random variables. Duke Math. J. 15 773-780.
- [4] Loève, M. (1960). Probability Theory, (2nd ed.). Van Nostrand, Princeton.
- [5] OREY, S. A. (1958). Central limit theorem for m-dependent random variables. Duke Math. J. 25 543-546.

MATHEMATICS DEPARTMENT ILLINOIS STATE UNIVERSITY NORMAL, ILLINOIS 61761