WHICH FUNCTIONS OF STOPPING TIMES ARE STOPPING TIMES?¹

BY LESTER E. DUBINS

University of California, Berkeley

Some functions of stopping times are necessarily stopping times, but others need not be. For example, the sum $\tau_1 + \tau_2$ of two stopping times is, while for stochastic processes in continuous time, the product $\tau_1 \cdot \tau_2$ need not be. Determined here for each positive integer n are those functions ϕ for which $\phi(\tau)$ is a stopping time for all n-triples of stopping times $\tau = \tau_1, \dots, \tau_n$.

1. Introduction. If τ is a stop rule and ϕ maps the set T of positive reals into itself, then $\phi(\tau)$ may or may not be a stop rule. Which are the (measurable) ϕ that transform all stop rules into stop rules? Among them are certainly those for which $\phi(t) \geq t$ for all t. The only others are those which, for some c, satisfy

(1)
$$\phi(t) \ge t \quad \text{for} \quad t \le c,$$

$$= c \quad \text{for} \quad t > c.$$

With the convention that c can be ∞ , (1) characterizes the (measurable) ϕ that carry stop rules into stop rules. What positive-valued (measurable) functions ϕ of two positive variables carry each pair of stop rules into stop rules? Just those ϕ for which $\phi(s, t)$ satisfies Condition (1) in s for each t and in t for each s. The principle extends immediately from two to any finite or infinite number of arguments.

This characterization of the ϕ 's that transform stop rules for discrete-time stochastic processes into stop rules was jointly reported in [1] (Section 2.9). This note reports that the same characterization holds for strict stop rules when the processes have a time-parameter that is continuous. Slight variants of the characterization hold when wide-sense stop rules are admitted.

2. Notation. $\mathscr{F}^* = [\mathscr{F}_t, 0 \le t < \infty]$ is an increasing family of σ -fields of subsets of a set U, and τ is a *stop rule* for \mathscr{F}^* , that is, a map of U into the nonnegative reals such that $(\tau \le t) \in \mathscr{F}_t$ for each $t \ge 0$.

LEMMA 1. For each $t \ge 0$, each Borel subset B of the closed interval [0, t], and each stop rule τ for $[\mathscr{F}_t, 0 \le t < \infty]$,

$$\tau^{-1}(B) \in \mathscr{F}_t.$$

Key words and phrases. Stopping times, stop rules, stochastic processes.

Received June 15, 1972.

¹ Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, USAF, under Grant No. AFOSR-71-2100. The United States Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation hereon.

AMS 1970 subject classifications. Primary 60G40; Secondary 60J25.

PROOF. Verify: (i) If B = [0, s] for an $s \le t$, then (2) holds; (ii) The set of B for which (2) holds is closed under countable unions; and (iii) If (2) holds for $B \subset [0, t]$, then it holds for the complement of B in [0, t]. This implies that (2) holds for all Borel $B \subset [0, t]$.

THEOREM 1. A necessary and sufficient condition on a Borel-measurable, real-valued function ϕ of a nonnegative real variable that, for every increasing family of sigma fields, $\mathscr{F}^* = [\mathscr{F}_t \colon 0 \leq t < \infty]$, and every stop rule τ for \mathscr{F}^* , $\phi \circ \tau$ is a stop rule for \mathscr{F}^* is that, for some positive c, possibly infinite, ϕ satisfies Condition (1).

PROOF. For the sufficiency, what must be verified is that, for each t,

$$(\phi \circ \tau \leq t) \in \mathscr{F}_t.$$

The left-hand side of (3) is $\tau^{-1}(B)$ where $B = \phi^{-1}[0, t]$ is plainly a Borel set. Suppose first that t < c. Then $B \subset [0, t]$, and Lemma 1 yields the desired conclusion. If $t \ge c$, then $B \supset (c, \infty)$, which implies that

$$(4) B=B^*\cup (c,\infty),$$

where B^* , being $B \cap [0, c]$, satisfies

$$(5) B^* \subset [0, t].$$

In view of (4), $\tau^{-1}(B)$ is the union of $\tau^{-1}(B^*)$ with $(\tau > c)$. Since $\tau^{-1}(B^*)$ is in \mathcal{F}_t , according to (5) and Lemma 1, and $(\tau > c)$, being in \mathcal{F}_c , is certainly in \mathcal{F}_t , so is their union, namely $\tau^{-1}(B)$.

If ϕ does not satisfy the condition, then there is a stop rule τ for a $\mathscr{F}^* = [\mathscr{F}_t \colon 0 \leq t < \infty]$ where each \mathscr{F}_t is either the trivial field or else the field of all subsets of a two-element set U, that is, a set of cardinality 2. For if ϕ does not satisfy the condition, then there exist t_0 , t_1 such that $\phi(t_0) < t_0$, $\phi(t_1) \neq \phi(t_0)$ and $t_1 > \phi(t_0)$. For U, one may take, for example, two paths w_0 and w_1 which agree until time $\phi(t_0)$, but not thereafter, and for \mathscr{F}_t the trivial, or the universal, field according as $t \leq \phi(t_0)$ or $t > \phi(t_0)$. As is easily verified, if $\tau(w_i) = t_i$, then τ is a stop rule for \mathscr{F}^* , but $\phi(\tau)$ is not.

Turn now to the problem of determining those positive-value measurable functions ψ of two positive variables that carry each pair of stop rules into a stop rule. For a necessary condition on ψ let $\tau_1 \equiv s$ be a constant stop rule. Then $\varphi(s,\tau)$ must be a stop rule for each stop rule τ . Hence, according to Theorem (1), for each s, $\varphi(s,t)$ must satisfy (1) in t. Similarly, for each t, $\varphi(s,t)$ satisfies (1) in s. To see that this condition is sufficient, two preliminary lemmas are needed.

LEMMA 2. Let $\tau=(\tau_1,\tau_2)$ be a pair of stop rules for an increasing family of sigma fields, $[\mathscr{F}_s:0\leq s<\infty]$, t a positive number, I the closed interval [0,t], and B a Borel subset of the square $I\times I$. Then

$$\tau^{-1}(B) \in \mathscr{F}_t.$$

PROOF. According to Lemma 1, if B is the Cartesian product of two Borel subsets B_i of I, then

(7)
$$\tau^{-1}(B) = \tau_1^{-1}(B_1) \cap \tau_2^{-1}(B_2) \in \mathscr{F}_t;$$

and since the set of B for which (6) holds is a σ -field, the proof is evident.

LEMMA 3. Let φ satisfy (1) in s for each t and in t for each s, and let r be a positive number. Let $A = [(s, t) : \varphi(s, t) \le r]$ and

(8)
$$A_1 = A \cap [s \le r \text{ and } t \le r];$$
 $A_2 = A \cap [s \le r < t];$ $A_3 = A \cap [t \le r < s];$ $A_4 = A \cap [r < s \text{ and } r < t].$

Then $A = A_1 \cup A_2 \cup A_3 \cup A_4$, and: (i) A_1 is a subset of $I \times I$ where I = [0, r]; (ii) $A_2 = \alpha \times (r, \infty)$ for some subset α of [0, r]; (iii) $A_3 = (r, \infty) \times \alpha$ for some subset α of [0, r]; (iv) A_4 is either empty or equal to $(r, \infty) \times (r, \infty)$. Moreover, if φ is Borel, so is each A_4 and α .

PROOF. Plainly, (i) is trivial. Suppose that (s, t) is in A_2 . To verify (ii), it is only necessary to check that for the same s and t' > r, (s, t') is in A_2 . By hypothesis, $\varphi(s, t) \le r$, $s \le r < t$. Since for this s, φ satisfies (1) in t, $\varphi(s, t) = c = \varphi(s, t')$ for all t' > c, and a fortiori, for all t' > r. Hence, $\varphi(s, t') = c \le r$ for all t' > r, which implies that each such (s, t') is in A_2 . The proof of (iii) is obtained from the proof of (ii) by interchanging the roles of s and t. Since the proof of (iv) is quite similar, it need not be given. It is trivial that each A_i is Borel if φ is Borel. To see that each α is Borel, recall that the measurability of a rectangle implies the measurability of each of its sides (e.g., see [2] Section 32, Problem 4).

LEMMA 4. The condition that φ satisfy (1) in s for each t and in t for each s is sufficient for $\varphi \circ \tau$ to be a stop rule whenever $\tau = (\tau_1, \tau_2)$ is a pair of stop rules.

PROOF. What must be seen is that for each positive r, $[\varphi \circ \tau \leq r] = \tau^{-1}(A) \in \mathscr{F}_r$, where A is as in Lemma 3. In the notation of Lemma 3, $\tau^{-1}(A) = \bigcup \tau^{-1}(A_i)$. Hence, it is only necessary to show that for each $i, \tau^{-1}(A_i) \in \mathscr{F}_r$. Since, A_1 is a Borel subset of the square $[0, r] \times [0, r]$, Lemma (2) applies. Since, by Lemma 3, $A_2 = \alpha \times (r, \infty)$, where α is a Borel subset of [0, r], $\tau^{-1}(A_2) = \tau_1^{-1}(\alpha) \cap \tau_2^{-1}(r, \infty)$. As Lemma (1) implies that $\tau_1^{-1}(\alpha) \in \mathscr{F}_r$, and since $\tau_2^{-1}(r, \infty) \in \mathscr{F}_r$ for any stop rule τ_2 , their intersection, namely $\tau^{-1}(A_2)$, is in \mathscr{F}_r . The proofs that $\tau^{-1}(A_3)$ and $\tau^{-1}(A_4)$ are in \mathscr{F}_r are quite analogous.

As is easily checked, the argument given for functions φ of two variables applies to functions of any finite or denumerable number of variables.

3. A variation. A very similar query to the one answered by Theorem 1 is to ask which Borel ϕ transform all wide-sense stop rules into (strict sense) stop rules? As usual, τ is a wide sense stop rule for $[\mathcal{F}_t: 0 \le t < \infty]$ if, for each t, $(\tau \le t)$ is in \mathcal{F}_{t+} where $\mathcal{F}_{t+} = \bigcap_{s>t} \mathcal{F}_s$. Among these ϕ are certainly those for which $\phi(t) > t$ for all t. Now the only others are those which, for

some c, satisfy

(9)
$$\phi(t) > t \quad \text{for } t < c$$

$$= c \quad \text{for } t \ge c.$$

Plainly, if there is a critical finite c, then $\phi(c)$ must be c. This contrasts with Condition (1) where $\phi(c)$ could exceed c.

As before, a Borel function of n variables, where n may be the smallest infinite cardinal, transforms every n-tuple of wide-sense stop rules into a stop rule if, and only if, φ satisfies Condition (9) in each variable separately. There is no need to give the arguments, for they are but slight variants of those given above.

REFERENCES

- [1] Dubins, L. E. and Savage L. J. (1965). How to Gamble if You Must. McGraw-Hill, New York.
- [2] HALMOS, P. R. (1950). Measure Theory. Van Nostrand, Princeton.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720