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A SIMPLER EXPRESSION FOR KTH NEAREST NEIGHBOR
COINCIDENCE PROBABILITIES

By RaymonD J. HUNTINGTON! AND JosepH I. NAUS
A.T. & T., Long Lines Business Research and Rutgers University

Given N points distributed at random on [0, 1), let p, be the size of the
smallest interval that contains n points. Previous work finds Pr (p» < p)
for all n, N, and rational p. The present note derives a new and consider-
ably simplified formula for Pr (p, < p) for all n, N, and p.

1. Introduction. Given N(= 2) points distributed independently and uni-
formly on [0, 1), let p, denote the size of the smallest interval containing n(< N)
points. Wallenstein and Naus [5] gave an expression for Pr (p, < p) forall n, N,
and rational p. The aim of this note is to give another expression for Pr (p, < p)
that is computationally simpler. This enables us to give a simpler expression
also for Pr (W, , < T) where W, , denotes the waiting time until the first occur-
rence within an interval of length ¢ of n points of a Poisson process on (0, co).
The distribution-of W, , is of interest in certain models of neurone discharge;
this and other applications are mentioned in [5] and [6]. Naus [4] shows how
to adapt the proofs for Pr(p, < p) to solving a discrete generalized birthday
problem. The proofs here similarly easily adapt; tables for both probabilities
are given in Huntington [1].

2. A new formula for Pr (p, < p). For given integersn and N (2 < n < N)
and for given p in (0, 1) define L = [p~!], the largest integer in p~*, and b =
1 — pL = the fractional part of p~*. The points ip and b + ip (i =0, -+, L)
partition [0, 1) into 2L + 1 disjoint half-open intervals I, -- -, I,,, say, the
L + 1 odd-numbered intervals being of length » and the other L intervals of
length p — b. (Theorem 1 in Naus [3] gives an expression for the case p = 1/L;
setting b = 0 here together with other simple modifications yield that case and
result.) Define n, to be the number of points in 7,.

THEOREM. Given n, N integers,2 < n < N,and0< p< 1,
O] Pr(p, =p)=1— ZoRdet|l/h;] det [1/L;!]
where the summation extends over the set Q of all partitions of N into 2L + 1 inte-
gers n; satisfying
Constraint C: n,+n.,<n i=1,...,2L,
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R = N! b"(p — b)"=" with M = 3i_o Ny.1, and in the determinants of size (L +
1) X (L + 1) and L X L respectively, 1/v! = 0ifv < 0or > N, with

hij=Yigam—@G—jn  L+lzizjzl,
= —Xiin+ (G —in l<i<j<sL+1,
L= Yiim — (i — j)n Lzizj=1,
= —2ihGiam +(—in 1<i<j<L.

Proor. Observe first thatif n < 1 + N/([p~* — 0] + 1), Pr(p, < p) = 1, and
that (as it ought) Q is vacuous. To establish (1) otherwise, let y, be the number
of points in [y, y 4+ p). Let n, = sup,.,«;—, {y,}- Observe that Pr (p, < p) =
Pr(n, = n). Let S, = Uil Sy = Ui L, and write m, = sup,.s, {y,}
(k = 1, 2), so that n, = max (m,, m,). Given {n;}, m; and m, are independent,
and to derive the conditional distribution of m, (that of m, is found analogously),
write y,;,,(¢) to denote the number of points in [ip, ip 4 t). Then m, < n provided
constraint C is satisfied and further that forall0 < t < bandeachi =1, ..., L,

Ny g — Yaia(t) + Yara(t) < 1 — 1y .

Apply Barton and Mallows’ [1, page 243] corollary as in Naus [3, proof of
Theorem 1], to find Pr (m; < n|{n}) = det|1/h,;!| []75} n,,_,!. (In Barton and
Mallows’ corollary substitute y,,_,(¢) for A4,(m), n,,_, for a;, and n,,_;, — (n — n,,)
fora,,, — a,, or summing, &,; for a, + a, — a,, in their equations (18) and (19).)
To complete the proof average []%_, Pr (m; < n|{n}) over the multinomial dis-
tribution of {n;}: Pr ({n;}) = R/TI3%:{* n,!.

By using the displayed expression in Section 1 of [6] with equation (1) we have:

COROLLARY. Given a Poisson process with rate A(> 0),
(2) Pr(W,,<T)=1— }, R*det|1/h;!]| det |1/l !]

where p = t|T, Q* is the set of all 2L + 1 nonnegative integers n; satisfying Con-
straint C and R* = Re~*?A"[N!.

ReEMARK. Comparison of the derivation of equation (1) with that of the result
in Wallenstein and Naus [5] shows that the present result is both logically and
computationally simpler. Both results involve the summation of many terms
and require computer calculation. The new formula sums over a simpler set of
partitions (dramatically simpler for cases such as p = 0.333, n and N large).
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