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A CONDITIONAL LOCAL LIMIT THEOREM FOR
RECURRENT RANDOM WALK

By W. D. KaicH
The University of Texas at El Paso

Let Sy, n=1,2,3, .- denote the recurrent random walk formed by
the partial sums of i.i.d. lattice random variables with mean zero and finite
variance. Let Tiz) = min [n = 1|S, = x] with T = T},,. We obtain a local
limit theorem for the random walk conditioned by the event [T > n]. This
result is applied then to obtain an approximation for P[Ti; = n] and the
asymptotic distribution of Ty as x approaches infinity.

1. Introduction. Let X, X,, - .- be a sequence of i.i.d. random variables de-
fined on a probability space (Q, &, P). We assume that the X, are distributed
on the lattice of integers with EX;, = 0 and EX? = ¢ < co. For a fixed but
arbitrary integer x,, define S, = x,, S, = x, + X, + --- + X, forn=1,2, ...
The sequence {S,} is a random walk with initial state x,. We employ the notation
P for the underlying probability measure to indicate that x, = x. When x, = 0
we simply write P.

An integer x is a recurrent state if P[S, = x i.0.] = 1. It follows from the
assumption EX; = O that every integer is a recurrent state and the random walk
itself is said to be recurrent. In all that follows we assume also that the random
walk is aperiodic (see Spitzer [5] for a discussion of periodicity of random walk).

Define the stopping time 7 either to be the first n > 1 such that S, = 0 or to
be 4 co if no such # exists. In this paper we consider the chance behavior of
random walk conditioned by the event [T > n].

It is well known that T is finite with probability one and that

(1) lim,_,, niP[T > n] = (2/x)bo .
It follows from a result of Kesten [4] that
() lim, ,, niP[T = n] = o/(27)t .
Belkin [1] has shown that
3 lim, . P[S,/m < x|T > n] = (2. (|y|/20%) exp(—)*[20%) dy

Our major result is the conditional local limit theorem corresponding to (3).
We remark that in all which follows suprema will be taken over the set of
integers.

THEOREM 1. Suppose the random variables X,, X,, - - - are i.i.d. on the lattice of
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integers with EX;, = 0 and EX}? = o* < co. Then
4 lim, . sup, [n*P[S, = x|T > n] — (|x|/26°n?) exp(—x*/2nc?)| = 0.
It is readily seen that this result is a generalization of (3) just as the local central
limit theorem is a generalization of the integral version.

For any integer x define the hitting time T, either to be the first » = 1 such
that S, = x or to be 4 oo if no such # exists. We state two interesting conse-
quences of (4).

COROLLARY 1. Under the hypotheses of Theorem 1
©) lim, .. sup, [nP[T',) = n] — (|x|/ont)p(x[on?)| = O
where ¢(t) denotes the standard normal probability density function.
COROLLARY 2. Under the hypotheses of Theorem 1
PIPT /% < 2] = 2[1 — D H)]

where Q(t) denotes the standard normal distribution function.

lim

—00

2. A lemma. We adopt the notation r, = P[T > n], f, = P[T = n], u,(x) =
P[S, = x]and record the following decomposition of P[S, = x; T > n] obtained
by Belkin [1].

(6) P[S, =x; T > n]l = 252 rfty_i(x) — Uy_pa(x)] .

It will be seen that (6) provides the key to the proof of Theorem 1. To obtain
(4) we must first determine the asymptotic nature of the differences u,_,(x) —
u,_,_(x) appearing in (6).

LEMMA. Under the hypotheses of Theorem 1
(7)  lim,_g sup, |onl[u,(x) — u,_y(x)] — §[(x*/o’n) — 1]g(x/on)] = 0.

Proor. We follow the approach of Gnedenko [3] in his proof of the local
central limit theorem.

Let X, have characteristic function f. Then employing the Fourier inversion
formula and substitution we obtain

ani[u,(x) — u,y(X)] = (0/27) §253, €=/ ] flufnt) — 1]f**(u/nt) du .

Since

(1/27) \=o €% 2)e " di = (1]20)(1 — y*[o*)p(y/o)
it suffices to prove that R,(x) approaches zero uniformly in x where
®)  Ru(x) = ¥ e[l — fun)]f*~N(u/n?) du
— (2, ey Qe gy =T 4 I, + I, + I, .
L= §uca e[l — flufnd)]f*X(ujnd) — (o*2)e=""*} du
I = § agjui<ont e~ i1 — flufn¥)] f*=*(u/nt) du
Iy = Sontspusent €[ 1 — flufnd)]f*=X(un}) du
I, = — 24 €/ (0% [2)e= " du .
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Noting that lim, ., n[1 — f(u/n?)] = ¢%?*/2 uniformly on finite intervals, a veri-
fication that each of the four integrals in (8) is uniformly small for sufficiently
large n completes the proof. The essential arguments are similar to those which
appear in Gnedenko [3].

3. Proof of Theorem 1. Using (1) it follows that the assertion of the theorem
is equivalent to the statement

%) lim,_, sup, |nP[S, = x; T > n] — (|x|/ont)¢(x/on?)] = 0.

We proceed to verify (9). From (1) and (2) it follows that there exist positive
real numbers B, and B, such that

(10) r, < Bnt for n=1,2,...
and
(11) fu < Byn~t for n=1,2,-.-.

The local version of the central limit theorem gives
(12) lim, _,, sup, [on*P[S, = x] — ¢(x/ont)| = 0.

Observing that each of the sequences ¢(x/ont) and i(x*/o*n — 1)¢(x/ont) is uni-
formly bounded in x, and employing (12) and (7) we are guaranteed the existence
of positive real numbers B; and B, such that

(13) sup, #,(x) < Bynt for n=1,2, ...
and
(14) sup, |u,(x) — u, (x)| < Bnt  for n=1,2,....

Let A be any real number satisfying 0 < A < 4. Using (6) and then summa-
tion by parts we obtain for every x = 0 (if x =0, P[S, = x; T > n] = 0 and
there is nothing to prove)

nP[Sn = X; T > n] = n[un(x) - un—l(x)] + n Zﬁfl rk[un—k(x) - un—k—l(x)]
(15) + 1 TR T Nl taoi(%) — #pmpa(¥)]
+ 1rpaon Uan(X) — 1 25T ny s fetlaoi(X) -
Define ' (A, n, x) and I(A, n, x) by
(A, 1, %) = Dl (/)i (kfny (L — kfn) it
1 x? x
16 —_—— 1 S A
(16) 8 2 I:azrt(l — k/n) ]¢ (an%(l - k/n)*)

= n D1 0r)pkH(n — k)I(1/20)

x* x
% l:az(n — k) - 1:| ¢ <a(n — k)i>‘
(17) I(A, n, x) = §572 2[m)it~3(1 — 1)~}

% L = = 19 G =) @
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From (15), (16), (17) and the triangle inequality we obtain
InP[S, = x; T > n] — (|xl/on®)d(x[ont)|
= nfun(x) — u,_y(x)|
A R Tl (%) — U (X)) 1 RN sy 1 S i (%)
(18) 1w ny Uan(X) — (27 [A(L — A)]~2g(x/a(nA)b)|
+ 11 DR (%) — tya(0)] — X (A, 1, x)|
+ 12 (A, n, %) — KA, n, x)|
o A, 1, %) + (2[x)[A — D)]Eg(x/o(nd)})
— (|x|/on)p(x[on?)| .
We now consider the asymptotic behavior of each term in (18).
From (14) we obtain

19) lim,_, sup, nlu,(x) — u,_(x)| =0.
Applying (10) and (14) with the fact that 124, k= < 2(nA)t gives
(20) lim sup, ., sup, n FI AT ryfu, _4(X) — #,_,_y(x)| < 2B,B,A¥1 — A)-t,
Similarly we obtain from (11) and (13)
(21) lim sup, ., SUp, 7 313200 u)41fela_i(X) < 2B, By A¥(1 — A)-H,
Applying (13) and then (1) and (12) will show that
(22)  Limsup, . Sup, [,y k() — (2/m)A(L — A)]-g(x/a(nA))] = 0.
Using the inequality
sup, |1 SR8~ ity (%) — s (x)] — 33 (A, n, )
= n ZRE0T ki, — (2[m)tek~t sup, |u,_(x) — u,_p_y(x)|
+ 1 DT 2[m) kT (n — k)~ sup, [o(n — k)Hu, 4 (x) — U, y()]
— 3[xo*(n — k) — 1]g(x[o(n — k)})]
it follows from (1) and (7) that
(23) lim sup, .. sup, [n F 58t ryfu, _u(x) — w,_,_(x)] — X (A, n, x)| = 0.
Since the function f: [A, 1 — A] X R — R defined by
it y) = @Imbi( — 0 Yy Yol — 1) — 1g(yo(1 — 1))
is uniformly continuous, it follows that
(24) lim sup, ., sup, | X (A, n, x) — I(A, n, x)| =0 .

We consider now the final term in (18). The substitution » = (x*/a*n)[(1 —
1)t — 1] followed by integration by parts gives

I(A, n, x) = (1/27)¥)(|x|Jon?)p(x[ont) S’L‘g u—te=*?dy _
(25) + @/m)H[A/(L — B)]g(x[a(n(l — A))})
— [(1 — B)/AJtp(x/a(nd)H)} .
where L, = x?A/o’n(1 — A) and L, = x*(1 — A)/o’nA.
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From (25) we obtain the inequality
(A, 1, x) + 2/x)[A)(1 — A)7Hg(x[a(nd)}) — (|x|/ont)¢(x[ont)]
(26) = (Ixlfont)yp(xfont)|(1/(27)*) S22 ute " du — 1
+ @/mIA[1 = d))E.
Combining (18), (19), (20), (21), (22), (23), (24) and (26) we have that for all
x and A¢(0, 1)
lim sup, ., [#P[S, = x; T > n] — (|x|/ont)d(x[an?)|
27) < 2(B,B, + B,By)A(1 — Ayt 4 (2/m)[A/(1 — M)
+ lim sup, _.. (|x|jont)g(xfont)|(1/2m)t) {2 u=te=*2 du — 1] .
We prove (9) by contradiction. If the assertion is false, then for some ¢ > 0
there exist both an increasing sequence of integers {r,} and a sequence of integers
{x;} such that
(28)  |niP[S,; = x5 T > nj] — (|xl/o(n;)t)p(x;/a(n)t)| = o
for j=1,2,....
Without loss of generality we assume that lim;_, |x,|/o(n;)} exists (possibly
infinite).
First suppose lim;_, |x;|/o(n;)} = 0 or +oco. For every n, x, and A¢(0, 4) we
have

0 < (1/2n)t) Spzutedu < (1/(2n)t) P ute=du = 1.
Then |(1/(27)) (2 u~te=**du — 1] < 1 and (27) and (28) give
0 <0 < limsup, o [n;P[S,, = x;3 T > n;] — (|x;]/o(n;)})d(x;/0(n;)?)|
< 2(B,B, + B;B)A¥(1 — A)~% + (2/m)[A/(1 — D))
+ lim sup; .. (|x;]/0(n;)?)¢(x;/a(n;)t)
= 2(B,B, + B,B,)A¥(1 — A~ 4 (2/m)[A/(1 — A)]E.
Allowing A to approach zero we obtain a contradiction.
Now suppose lim,_., |x,|/o(n;)} = a where 0 < a < co. Employing the sub-
stitution ¢ = a’uo’n;[2x;* we have
(1/2m)}) Vi umte ™ du = (1/(2m)}) {2l ats) umie " du
= (1/z¥) (@ ;][0 (n;)?) Vaaiatlls tdeted® = dt
— (1)) (i rhetdr as j—o oo,
From (27) and (28)
0 < < limsup,_., |n; P[S,, = x;; T > n;] — (|x;|/o(n;)})d(x;/o(n;)?)|
< 2(B,B, + B,By)AY1 — A)7} + (2/m)[A/(1 — A)P?
+ lim sup; .. (|x;l/o(n;)t)p(|x;l/o(n;)H)(1/(27)*) § 72 u=te=*" du — 1]
= 2(B,B, + B,B)AY1 — 8)~F + (2/m)[A/(1 — D)}
+ ag(a)|(1/at) §aizaaa) e tde — 1] .
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Again allowing A to approach zero we obtain a contradiction. Hence,
lim, ., sup, [nP[S, = x; T > n] — (|x|/on?)¢(x[ont)| = Q
and the proof is complete.

4. Proof of Corollary 1. For k =0, 1, ..., n define S,* = S, — S,_,. The
P distribution of the random vector (S,*, S;*, ---, S,*) is the same as that of
(Ses Sy + =5 S,)-

Then

P[T, =nl=P[S=0,8+#x,--,85_#x5S, =x]
=P[S*=0,8%+0,...,8%,+0,8,* = x]
=P[S, =x; T > n]
and the assertion follows from Theorem 1.

5. Proof of Corollary 2. The proof involves an application of Theorem 7.8
of [2].

Suppose y is any real number and that the sequence {y,} varies with x in such
a way that y, — y as x — oo (each of the terms'y, must be of the form o%/x*
where k is an integer). It follows from Corollary 1 that

lim,_, (x*/o*) P[0T, /x* = y,] = y~ip(y~*)
and hence that

lim, ., P[o°T,)/x* < 2] = (5 y~ig(y~H) dy = 2[1 — @(z7H)] .
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