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LIMIT THEOREMS FOR A GI//G/co QUEUE!

By NorMAN KAPLAN
University of California, Berkeley

The GI/G/oo queue is studied. For the stable case (v = expected service
time < oo), necessary and sufficient conditions are given for the process to
to have a legitimate regeneration point. In the unstable case (v = o),
several limit theorems are established. Let X(#) equal the number of servers
busy at time ¢. It is proven that when v = o,

i) o
2(0)

and

1

X(0) — A
0]
where A(¢) is a deterministic function. (= means convergence in distribu-

tion). A Poisson type limit result is also proved when the arrival of a
customer is a rare event.

ii) = NO, 1)

1. Introduction. In this paper we study a queueing model in which customers
arrive at the epochs of a renewal process, and are served immediately upon
arrival by one of an infinite number of servers. Let X(f) equal the number of
servers busy at time ¢, t > 0. This is the well-known GI/G/co queue.

The above model appears in many contexts other than queueing theory. One
example is the number of colonies still in existence at time ¢ in a branching
process with immigration [11]. Another is the number of particles still alive in
an immigration-death process. More generally, one can consider a renewal
point process, where each point undergoes an independent translation forward
in time. The number of points, at time ¢, still undergoing translation, has the
same distribution as X(). In this paper we choose to adopt the queueing ter-
minology, since many of our results have direct analogs for ‘GI/G/s queues
(1= s5< 00).

The basic data for this process in a sequence of independent identically dis-
tributed random vectors, {(4,, v,)},»1, defined on some underlying probability
space (Q, &%, P). For n = 2, the variable u, represents the interarrival time
between the (n — 1)th and nth customer, and v, represents the service time of
the nth customer. The variable u, is the time until the first customer arrives
(after + = 0), and v, is its service time. Unless stated otherwise, the {#;},,, and
{v1};21 are assumed to be independent.
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It is convenient at this point to introduce some notation. We set

F(x) = P{u, < x}, H(x) = P{v, < x} x=0
p=Ew), v=Ep}
D(s, 1) = E{s*D}, t=0, 5= 1.

We assume throughout the paper that F is nonlattice, F(0+) = 0, and ¢ < oo.

When F(x) = 1 — e=#7' (1 > 0), we have the well studied M/G/co queue [1],
[2], [4], [10]. Itis instructive to briefly consider this process since it will serve
to motivate many of our results for the more general model. Bartlett [1] has
shown in this case that the probability generating function (p.g.f.) of X(7),
D(s, 1), satisfies the relation,

(1.1) D(s, 1) = exp[—A(1 — 5) {¢ (1 — H(x))dx, t=>0.
Thus X(z) is Poisson with parameter 2 {;(1 — H(x))dx. It follows from (1.1)
that as t — o,
if v< oo, then X(r) hasa legitimate limiting distribu-
(1.2) tion and
if v=o00, then X(f)= co (= means convergence in
distribution).
It has recently been shown [11] that (1.2) also holds for the GI/G/oo queue. We
state this as our first result.
THEOREM 0. Suppose pp < oo and F is nonlattice. Then, lim,_, D(s, t) = D(s),
Is| < 1, exists. If
(i) v = oo, then ®(s) = 0, and if
(ii) v < oo, then ®(s) is a legitimate p.g.f. with
(1.3) D)y =1 — p {5 O, H[1 — O(s, 1)] dt,
where
O(s, 1) = H(f) + (1 — H(¥))s .

The proof of Theorem 0 is given in [11]. We call the {X(r)} process “stable”
if v < oo and “unstable” if vy = oo.

In Section 2 we consider the stable case. A detailed study of this subject for
the GI/G/s queue has recently been given by Iglehart (s = 1) [7] and Whitt
(s > 1) [14]. The key to their analysis was the fact that the queue returns to
the idle state infinitely often w.p. 1, and hence the time of arrival immediately
preceding a busy period is a regeneration point. Our next result shows that
the same is true for the GI/G/co queue.

THEOREM 1. Assume v < co. Then,
(1.4) P{X(t) = O for arbitrarily large t} =1

iff
P{u; > v} >0.
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A proof of Theorem 1 and some of its consequences are indicated in Section 2.

The unstable case is studied in Section 3. Karlin and McGregor [9] have
shown for the M/G|co queue, that X(f), properly normalized, converges in dis-
tribution to a normal. The same result holds in the more general case.

THEOREM 2. Assume v = oo and E{u;?} < co. Let A(f) = p~ {i (1 — H(x))dx.
Then,

i) & =1,
A(%)
and
" X(1) — A1) _
ii) OO N, 1).

Our final result treats the case when the arrival rate of customers (the
reciprocal of the expected interarrival time) is very low. For n > 1 define
F™(x) = F(x/n), and let {X"(1)},5, be the corresponding GI/G/co queue. The
arrival rate for the nth process is (¢n)~*. The limit theorem, which we now
state, can be viewed as an approximation to a GI/G/co queue with a very low
arrival rate.

THEOREM 3. Assume v = oo. For a fixed 2, > 0 define {t,} so that
~1
lim, _.. [f‘_ Jir (1 — H(x)) dx:l — 2.
n

Then, X™(t,) = P(2,), a Poisson random variable with parameter 1,.
This result is proved in Section 4.

2. The stable case. In this section we prove Theorem 1 and indicate some
of its implications.

One direction of the theorem is clear. If P{u, > v,} = 0, then w.p. 1, X(¢) = 0
for all #+ > u,. Hence

P{X(f) = 0 for arbitrarily large t} =0.

For the other direction, we first extend the {(,, v,)},», sequence, using standard
arguments, to a doubly infinite sequence of independent vectors. Define

T, = .k u, k=1,
= -3 _.u kZ0.
To prove (1.4) it suffices to show since X('t) is integer valued that,
2.1 P{lim inf,_, X(r,—) =0} = 1.
However,

X(m—) = 2t I(r,;+71i>rk) = Xl I{r,;+'vi>rk) =X,
So to prove (2.1) it is enough to have

2.2) Pliminf, X, =0} = 1.
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In view of our construction, {X,} is a stationary ergodic sequence. Stationa-
rity is clear and ergodicity can be proved using a method similar to that in 4,
pages 149-151]. Thus, (2.2) will follow providing P{X, = 0} > 0. But

P{X, = 0} = E{][}--w H(z, — 7,)} .

It suffices therefore, to prove that [[°__. H(r, — 7,) is positive with positive
probability. Since P{u, > v,} > 0, we can find a set A of positive measure such
that on 4, H(zr;) > 0.

It remains only to show that on A, the infinite product does not converge to
zero. This follows at once if we prove that

(2.3) % w(l —H( —t)) < oo wp.l.

Let 0 < ¢ < p. By the ergodic theorem, there exists a random variable I such
that |i| = I implies that

=1, > (e —e)(il +2) w.p.l.
Hence,
Zi=r (= H(zy — 7)) < 3o, (1 — H(p — e)(Ji| + 2))
S(e—e)t S?::—:)(I+1) (1 — H(u)) du .

The last integral is finite since E{v,} < co. (2.3) now follows.

REmMARKS. (1) It is clear from the proof of Theorem 1 that the assumption
that the {u;} be i.i.d. is much more than needed. It is enough to assume tnat
the {u;} be stationary ergodic.

(2) In the i.i.d. case, an alternative proof to Theorem 1 can be given using
the fact that the {X(r)} process has a regeneration point.

(3) Define

T,=inf{tr: ¢t>u and X(¢r) = 0},
T,=inf{t: ¢+ >T, and X(¢r) = 1}.

In queueing language T, is the length of a busy period, T, — T is the length
of an idle period and 7, is the length of a busy cycle. Theorem 1 implies that
the length of a busy cycle is finite w.p. 1. One can now proceed as in [7] to
exploit this fact to obtain results for {§ X(s) ds.

3. The unstable case. The proof of Theorem 2 will be developed in a series
of lemmas. Throughout this section we assume E{#,}} < co.

Let F equal the o-field generated by the {z,} process. The first step in the proof
of Theorem 2 is to analyze the behavior of E{X(r)| F}. It is not difficult to see
that

E{X(0) | F} = M(r) = 200 p(t — 7)) = §§ p(r — u)N(du)
where
Py = 1 — H(o)

and N(¢) is the renewal function, i.e. N(r) = k iff 7, < 1 < 744,
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LEmMmA 3.1.
3.1) O(s, 1) = E{e"®} = (¢ e~ri=»@(s, t — u)F(du) .

Proor. The above relation is found by conditioning on the time of arrival
of the first customer.

Differentiating (3.1) successively, with respect to s, and setting s = 1, we
obtain renewal equations for E{M(t)} and E{M*{)}. Indeed,
(3.2) E{M(0)} = §§ p(t — u)F(du) + §§ E{M(t — u)}F(du)
and
(3.3)  E{M0)} = §pX(t — u)F(du) + 2 §§ p(t — w)}E{M(t — u)}F(du)

+ J4 E(MX(t — u)}F(du) .

V(t) = 2 Fk(t)

where F, is the kth-fold convolution of F with itself. Standard renewal argu-
ments yield

(3:4) E{M(1)} = i p(t — u)¥(du)

and

(3.5  E(MX0)} = §p(t — u)V(du) + 2 Vp(t — u)E{M(t — u)}¥(du) .
Our next lemma deals with the behavior of E{M(¢)}.

Put

LEMMA 3.2. Assume E{u’} < co. Let L > 0. Then,

(i) there exists a constant D independent of L such that for all t > L,
1§52 p(t — W)V(du) — 9= §47% p(t — u) du| < Dp(L) ;

(i) lim, ., Vi p(t — w)V(du) — p~ Yl p(t — W) du] = 0.

Proor. We first prove (i). Define:

pi(u) = p(t — u) for 0Zux<t,

= p(0) uz=t.
Note that ¢, is increasing in u for ¢ fixed. Integrating by parts, we obtain
(3.6) o )V (du) 4 §57* V()pdu) = V(t — L)p(L) .
Similarly,
(3.7) p ST p() du 7§57 up(du) = 7t — L)p(L) -

Combining (3.6) and (3.7),
1§67 plu)V(du) — p7* §57° pu(u) du|
= §07F V() — ptulpdu) + p(L)V(t — L) — p7}(t — L)] -
It is well-known [6, page 357], that E{u,’} < co implies
(3.8) lim_ . [V() —p ]l = < 0.
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Thus,
(3.9) SUP,s V(1) — 7| = g < .
Hence,

[§6~F po(u)V(du) — p=* §i~* p(u) du| < Dp(L) .

This proves (i). To prove (ii) we appeal to the key renewal theorem [6, page
349]. The details are omitted.

We recall that A(f) = p=* {} p(u) du. As an immediate consequence of Lemma
3.2 we have:

CororLARY 3.1. lim,_, |E{M(t)} — A(¢)| = 0.
The proof of the next result is omitted.
LeEMMA 3.3. E{M*(t)} = E{M(1)} + o(A(?)).

REMARKs. (1) Itfollowsimmediately from Lemma 3.3 that o*(M(?)) = o(4(?))-
(2) A result similar to Lemma 3.3 can be found in [12].

We are now ready to prove Theorem 2. The details will be carried out in the
next two lemmas.

LEMMA 3.4. X(H)A~'(f) = 1.

Proor. Let

B(s, 1) = E{e"*" | F}
= IBY P —e)e + 1 —pt—=)], 1> 0,5 real.

To prove the result it suffices to show
(3.10) B(sA7Y(1), t) = €™ .
Once (3.10) is proved, dominated convergence can be used to obtain the lemma.
It is proved in [1] that for any complex z, |z| < §
(3.11) log (1 + z) = z(1 + &(2))

where |e(z)| < |z|. For fixed s, and ¢ sufficiently large, we can use (3.11) to
obtain

log B(sA(1), 1) = 3 p(t — 7)(€70 — D1 + «(p(t — 7,)(e*7" — 1))]
_ s )
=30 M(t) + R(t)
where i
IR(1)] = i,% + DI [p(r — )T = DF.
The result now follows since M(#)/A(f) = 1 and |R(?)| = 0.

LemMA 3.5.
X(1) — A1)

Gy O D
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ProoF. Arguing as in Lemma 3.4, it suffices to show

(3.12) —i(A(t)s + log B(sa=¥(1), 1) — _521 .
If ¢ is sufficiently large, we can use (3.11) to obtain
log B(sa~4(1), ) = M(t) (7> Gor T 3 2(t)) + ()
where
IS = M(t) —— 62( 00 + DI [p(t — T — P
Since
(3.12) MO =X o ana MO _gq,

(A0 A(1)
will follow providing |S(f)] = 0. To prove that |[S(f)] = 0 we argue as follows.
Let e > 0 and choose L so large that 4p(L)s* < ¢/3. Using the simple inequality
le? — 1] < 26| for |#] small, it is not hard to check that for ¢ large (necessarily
greater than L)

M@ s 4s°p(L) y-1) . :I-i? . .
SO = 50 o + Ty B = ) + 5 (V) = NG = 1)

My s o
= A0 (6(2(1‘))’-’ + ) (f) (N(t) M= L) -
Thus
lim sup,_... P{|S(t)| > ¢} < lim sup, ... P {];4((:)) (6(;( it 8) > %}
+ lim sup,_., P {76 (N(t) — N(t — L)) > }

Since M(t)/A(f) = 1, the first term on the right is zero. To handle the second
term, we use Chebychev’s Inequality and the renewal theorem.

4. Proof of Theorem 3. In this section we prove Theorem 3. For the readers’
benefit we recall the setup. Define: X"(f) = number of servers busy at time ¢
when the interarrival times have distribution function F*(x) = F(x/n) (n = 1).
{r,"}:z1 denote the times customers arrive in the nth process. N"(r) is the associ-
ated renewal function and U™(¢) is the associated renewal measure, i.e. U(f) =
Do FiM(t). Note that U™(¢) = U(t/r) where U(t) is the renewal measure associ-
ated with F. Let {r,} be a sequence of numbers chosen so that

limn_,wﬁ;_l (i [1 — H(u)]du = 2,> 0.

The {t,} are well-defined since (¢ [1 — H(u)] du = oo.
To prove Theorem 3 we need a Poisson convergence theorem. Arguing as
in the classical case [5, pages 263-264], it is not difficult to prove that the next
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two conditions are sufficient to imply the result.

(4.1) SUPigrsymit, P(tn — Ti") =0
and
(4.2) DLW p(t, — 1) = Ay

The remainder of this section is used to prove (4.1) and (4.2).
We first consider (4.1). By monotonicity,
(4.3) SUPigrgne, P(tn — T") = P(tn — Thna,) -

Let { > 0. A simple renewal argument yields,
P{t, — i, < ¢ = Sirc U(du)(1 — F*(t, — u))
= it ) (1= F (2 — ).
” n

Assuming that ¢,/n — oo, we can apply the key renewal theorem to find,
4.4) lim, ., (t, — Thne,)) = 0 -
Since p(#) — 0 as u — oo, (4.3) and (4.4) imply (4.1).

It still remains to prove that

(4.5) lim, ' = oo .

n—oo T
n
Suppose not. Then there exists a subsequence {t, } such that,

lim inf,__ (_’_,,_> —B< .
n

' Since p decreases to zero, there exists a f, such that t > t, = p(f) < 4,/2B. Thus

for 1, > t,

o el e = - [ pla) di -+ §13pl) di]

1 A L
< (bop(u)du + L Tk
_nkSOP() +ZB n,
and so

4, = lim inf, <_1_ §o™ p(u) du> = 4
n, 2

which is a contradiction. Therefore (4.5) holds.
Let A, = ¥t p(t, — t,), n = 1. To prove (4.2) it is enough to prove:

(4.6) lim, ., E{A,} = 4,
and
4.7) lim,_, o%A,) =0.

The proofs of (4.6) and (4.7) are identical to those of Lemmas 3.3 and 3.4,
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providing we can prove that for any L > 0
(4.8) lim, ., §i»_, p(t, — u)dV*(u) =0,
where

Vi) = e Fe) = V(L)

In Section 3, we proved (4.8) by appealing to the key renewal theorem. Since
the measure now depends on n, this argument does not work.

Proor oF (4.8). Integrating by parts,

Stg-0 20t — 0 (V@) = 1 ) 55 (Vi) — o ) p )

n
_ n -1 tn m, -1 tn - ‘L)
= PO) (V) — 22 ) — p(y (e, — £y — o2
=0,.
Using (3.8), it is not hard to show

tim, o §izo (V@) — 17 ) p ) = tim, oSty (V () = ) p ()

= «[p(0) — p(L)] -
Similarly, lim, . ©, = £[p(0) — p(L)]. Hence,

limn—m sz—L P(tn - H)V”(dll) = limn—wo Ei Siﬁ—L P(tn - ll) du=0.
n

This proves (4.8).
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