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SLLNs AND CLTs FOR INFINITE PARTICLE SYSTEMS

By S. C. PorT,! C. J. STONE! AND N. A. WEISS

University of California, Los Angeles, and
Arizona State University

We consider initial point processes 4o on Z¢ where Ao(x), x € Z¢ are
independent and satisfy certain technical conditions. The particles initially
present are assumed to be translated independently according to recurrent
random walks. Various limit theorems are then proved involving Sx(B)—
the total occupation time of Bby time n, and La(B)—the number of distinct
particles in B by time n.

1. Introduction. Suppose that at time zero A4,(x) particles are placed at x € Z*
(Z? denotes the space of d-dimensional integers). The particles are then assumed
to be translated independently by random walks all with the same transition
function as a fixed random walk {£,}.

Let B denote a finite nonempty subset of Z¢, 4,(B) the number of particles in
B at time n and I,(B) the number of particles which have entered B for the first
time at time n. Then S,(B) = X7, A,(B) is the total occupation time of B by
time n of all the particles and L,(B) = Y %_, I,(B) is the number of distinct par-
ticles in B by time n. It is these two quantities which will be studied in this
paper.

Basically, the problems involved are determining a strong law of large num-
bers and central limit theorem for each of the two functionals. These problems
were solved by Port (1966, 1967) in case the 4(x) are independent and identically
distributed Poisson variables. Weiss (1971) considered these problems in the
case where the Poisson assumption is dropped and the random walks are transient.
The results here were stated for d = 1 but the same arguments give the theorems
for arbitrary d.

A crucial result in obtaining the desired limit theorems in the above papers
concerns the determination of the asymptotic variance of the functionals S,(B)
and L,(B). An interesting and somewhat surprising result obtained in Weiss
(1971) is that although results in Stone (1968) indicate that the asymptotic vari-
ance in the non-Poisson case should be the same as that in the Poisson case,
this is not the situation when d = 1 and E|§,| < co. However, the asymptotic
variance is as expected in all other (transient) cases.

The purpose of this paper is to analyze the functionals S,(B) and L,(B) without
the Poisson assumption in the recurrent case (d = 1 or 2). As in the transient
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case, we show that when d = 2 the asymptotic variance remains unchanged from
the Poisson case. However, when d = 1 it is indicated that in general there
will be no asymptotic variance and in several cases where there is (i.e., the
domain of attraction of a stable law), this asymptotic variance differs from that
when the particles are put down according to a Poisson process.

Specifically, we assume that 4y(x), x € Z¢ are independent random variables
with finite sixth moments and that there are constants 2 > 0, v and M such that

(1) p(x)—> 2 as |x| > oo
(1.1) (i)  py(x) > v as |x| - oo
(111) ﬂj(X)éM, 1§]§6: erd’

where p;(x) = E[Ay(x)(Ay(x) — 1) - - - (4y(x) — j + 1)]. Note that (1.1) is satis-
fied whenever A(x), x € Z* are independent and identically distributed random
variables with finite sixth moments.

2. Preliminaries and notation. Let P,(x, y) denote the n-step transition func-
tion of the random walk {£,} governing the motion of the particles. We define

Gn(x’ )= 2ia Pk(x’ »)
and set g, = G,(0, 0). Also, we denote the hitting time of B by V. That is,
Vg=min{n = 1: &, e B}.
Moreover, we set g, = Py(V,,, > n). To continue, we define
N(B) = X1 15(55)
where 1; denotes the indicator function of B. Finally, Z* denotes the space of
d-dimensional integers, R? the space of d-dimensional reals and |B| the cardinality
of B.

3. Statement of results. Suppose that at time zero we distribute particles in
Z* according to a point process 4,, satisfying the conditions stated in Section 1.
The particles are then translated independently according to recurrent random
walks with transition function P(x, y). Throughout we assume that B is a finite

nonempty subset of Z¢.
Our first results handle the case when d = 2. In this situation we have the
following theorems.

THEOREM 1. Let d = 2 and S,(B) denote the total occupation time of B by time
n. Then

(3.1) ES,(B) ~ A|B|n,

(3.2) Var S,(B) ~ 24|B[ng, ,

(3.3) P(lim, .. S,(B)jn = 2|B) = 1,

and for each t € R,

(3.4) lim, ., P (M < t> — (),
[Var S.(B)]

where @ is the standard normal distribution function.
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THEOREM 2. Let d = 2 and L,(B) denote the number of distinct particlesin B by
time n. Then

(3'5) ELn(B) ~ ann ’
(3.6) Var L,(B) ~ ing, ,
(3.7) P(lim, .., L(B)/EL,(B) = 1) =1,
and for each t € R,
i L,(B) — EL.(B) -
(3.8) lim, ., P( LB S t) = ().

We next consider the case d = 1. It can be shown that in general Var S,(B)
and Var L,(B) will not have any asymptotic behavior as in the two-dimensional
case. Therefore, we consider random walks in the domain of attraction of a
stable law. To be specific, we assume that the random walk is aperiodic and is
in the domain of attraction of a stable law, V,, with density f, (1 < & < 2). Of
course, if the random walk has finite nonzero variance then this will be the case
witha =2 and V = O.

THEOREM 3. Let d = 1 and the assumptions be as above. Then
(3.9) ES,(B) ~ A|B|n

and there is a slowly varying function L(+) such that

(3.10) lim, ... n’;f’l’/) Var S,(B) = |BFQAr, + (v — 2)s,) ,
where

(3.11) ro = f(O)[(2 — a7)(1 — a™)] 7,

and

(3.12) 5o = 5353 8% (G ) e (i) w7 e de sy
Moreover,

(3.13) P(lim,_.. S,(B)jn = A|B)) = 1,

and for each t € R,

(3.14) lim,_., P <%%r:sf__g)n]@ < t) — ().

THEOREM 4. Let d = 1 and the assumptions be as above. Then there is a slowly
varying function L(+) such that

(3.15) EL,(B) ~ At ,n'*L(n),
where

(3.16) te = [fOT(1 — a)T(1 + a )]
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Also,
(3.17) Var L,(B) ~ (At, + (v — At a~u)n**L(n) ,
where
a=1- a=1-
@18 u, = G5 ) (=) = xl,j;},; D" " drdxdy.
Moreover,
(3.19) P(lim,,_, L, (B)/JEL,(B)=1) =1,
and for each t ¢ R,
(3.20) lim, .. P(Lvi(\’,?rz j;j)n](f) < t> — ().

4. Proofs. We first obtain an expression for the characteristic function of
S.(B).

LeMMA 1. With the notation as above we have
4.1 E(exp (i0S,(B))) = I1. E(E.(exp (i0N,(B)))*= .
ProoF. Let {1} be independent random walks with the same transition func-
tion as {£,} and with &% = x. Then,
Su(B) = 2. 119 Xt 1s(6)
and hence
E(exp (i0S,(B)) | A) = I1. E.(exp (i0N,(B)))**,

and thus (4.1) holds.
Using (4.1) and standard characteristic function arguments we obtain the
following facts:

(42) ES%(B) = 2 ‘ul(x)Ean(B) ’
(4.3)  Var§,(B) = 3, m(0)E,N(B)* + T, (#a(%) — u(x))[E, N, (B)I*.

REMARK. In the Poisson case p,(x) = g,(x)* and so the second term on the
right hand side of (4.3) does not arise.

We now commence with the proof of Theorem 1. To obtain (3.1) we use
(4.2). Note that 3} #(x)E,N,(B) = 3,5 2oz 2 ta(X)Pi(x, ) and so (1.1) and
a standard summability argument establishes formula (3.1).

Next we prove (3.2). First of all some computations show that

(“-4) 2. E-NJ(B) = n|B| + 2 3,5 2115 Gy, B) -

By the weak ratio ergodic theorem (see Spitzer (1964), page 10), the result that
9, is slowly varying (see Kesten and Spitzer (1963)) and the fact that g, ~ 1/q,
we deduce

(4.5) 2. E.No(B)* ~ 2|Bf’ng,, .



INFINITE PARTICLE SYSTEMS 757

To continue we prove that

(46) Zx [E'n]v'rt(B)]2 = o(ngn) *

Since B is finite we can assume without loss of generality that B = {0}. Let ¢(0)
denote the characteristic function of the random walk and C the square in R?
with center at the origin and sides of length 2z. Then by standard harmonic
analysis techniques we obtain the relations

(4.7) 2260, X)) = (27)7* {4 | Kio $°(O)[ 4O
S @m)7t Ll So 9@ db .
Now, (see Spitzer (1964), page 73), there is a constant K > 0 such that
(27)7* o [#(O)[" 0 = K]i iz1,
and this fact along with (4.7) implies that the term on the left hand side of (4.7)
is O(n). Using g, T co now yields (4.6). Taking (1.1), (4.5) and (4.6) into ac-
count we get (3.2).

In order to prove (3.3) and (3.4) we will need the following estimates which
can be obtained from the facts that G,(x, B) = O(g,), uniformly in x, and (4.5).

LEMMA 2. Let the notation be as before. Then

(4.8) 2 E,IN,(B) — E,N,(B) = O(ng,”) ,
(4.9) S\ E,|N,(B) — E,N,(B)|* = O(ng,?) ,
(4.10) sup, E,|N,(B) — E,N,(B)|* = 0(g,) ,
(4.11) sup, Var, N,(B) = 0(g,?) -

Now, let S,,,(B) denote the total occupation time of B by time n of the particles
starting at x. Using the independence of the S,,(B), x € Z%, we find that
(4.12)  E[S,(B) — ES(B)]' = X E[S,.(B) — ES,.(B)]'

+ 33,.,VYar S, (B) Var S, (B) .

Using (4.9), (1.1), (3.2) and g, = o(n), we deduce from (4.12) that
(4.13) E[S,.(B) — ES,(B)]* = O(r%g,”) .
By Chebyschev’s inequality, for any ¢ > 0,
(4.14) P(IS.(B) — ES,(B)| > nt) < E[S,(B) — ES,(B)[/n't
and the term on the right is that of a convergent series because of (4.13) and the
fact that g, varies slowly. Applying the Borel-Cantelli lemma along with (3.1)
we get (3.3).

To prove (2.4) let ¢, and ¢,, denote the characteristic functions of [S,(B) —

ES,(B)]/[Var S,(B))t and [S,.(B) — ES,,(B)]/[Var S,(B)]t, respectively. Then
¢, = 1] ¢... Now, we can write '
6* Var S, (B)

(4'15) ¢nw(0) =1- ’i" Var S”‘(F)’ + Rnx(o) ’
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where

(4.16) R0 = 5L E1S,.(8) — ES,.(Bp/[Var 5,(B)]
For convenience, set A,,(6) = ¢,,(f) — 1. Then (1.1), (4.11) and (3.2) imply
that sup, [A,.()] — 0. Hence, for large n we can write log (1 + A, (0)) =
8,.(0) + A,.(0)|A,.(0)", where sup, |A, (0)] < 1. Using (1.1) and (4.8) we ob-
tain that 3 A, ,(6) — —6*/2and 3 |A,.(6)] = O(1). Hence,Ylog(l + A,,(f))—
—67/2 and so (3.4) follows from the continuity theorem. The proof of Theorem
1 is now complete.

We turn to the proof of Theorem 2. First of all results of Port (1965) imply

that

(4.17) 2. P(Vs = 1) ~ X355 g -

Computations similar to the ones above show that EL,(B) = ¥ p,(x)P,(V, < n)

and from this, (4.17), and the fact that g, is slowly varying we deduce (3.5).
To obtain (3.6) we first do some calculations to get

(4.18) Var L (B) = 23 m(x)P, (Vs = n) + 3 (ta(x) — t(X)H)[P(Vs < 0)].

The first term on the right is just EL,(B) and so we restrict our attention to the

second term on the right. Specifically, we will prove that

(4'19) Zx [Px(VB é n)]z = O(l'lq”) *

Now, a last entrance decomposition shows

(4.20)  ZL[P(Vs =) = Zuves Lism1 2. PUO, x)Py(u — v, %)
XP(Vs>n—0)P,(Vs>n—j).

Kesten and Spitzer (1963) proved that for each finite nonempty set B there is a

function Ly(-) such that for yeZ? P (V, > n)~ q,Ly(y) and moreover

2iyen Lp(y) = 1. Thus, in (4.19) we can assume B = {0}. Using harmonic

analysis techniques as before we find that

@21)  Etgm o PO OPAO s = O (B3t T2est) 401

Since g, is slowly varying and decreasing, we have for any ¢ > 0, ¢,_,/q, =
O((n/(n — i))*). We then obtain for ¢ < 1,

.m0 (- ) (- ) ()
nq,,‘ Zi,g:l l+j — ‘]n” 1,7=1 n n .n + n

= O(q”) —0 N

and hence (4.19) holds. Using (4.18) and (4.19) we obtain (3.6).

The proofs of (3.7) and (3.8) are similar to those of (3.3) and (3.4) and there-
fore will be omitted.

We now turn to the proof of Theorem 3. The proof of (3.9) is the same as
that of (3.1) and so we proceed to (3.10).
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By the local central limit theorem for stable laws (see Gnedenko and
Kolmogorov (1968)) we have

(4.22) lim, ., |B,P,0, x) — f(x/B,) =0

uniformly in x and this implies P,(0, x) ~ f,(0)B,='. Now, we can write B, =
n*eL(n) where L is slowly varying. It follows that

k=1 Gu(yy 2) ~ (1 — a™)(2 — a7 L(m)]7f(0)
and from this and (4.4) we deduce that

(4.23) L(n) 33, tts(x)E, N,(B)* ~ 24|B|’r n*/«

where r, is given by (3.1).

To complete the proof of (3.10) it is necessary to establish the following result.
(4.24) L(n) 23521 5a PO, X)P(y, x) ~ n*7Ves,
where s, is given by (3.12).

The following lemma shows that we can without loss of generality assume
L(n) is a constant, say a. The result follows from the fact that if L is slowly

varying then L(yx) ~ L(x) as x — oo, uniformly in 7, for y bounded away from
0 and co.

LemMA 3. Let L be a slowly varying function andlet 6 > 0. Then for eache > 0
there is an N such that n > N and on < i, j < n implies |L(j)/L(i) — 1] < .

Now, some computations show that we can take y = 0 in (4.24). The idea
of the proof of (4.24) is to use (4.22). To use this in estimating the left hand
side of (4.24) it is necessary to decompose the sum into three parts in the fol-
lowing manner:

(4.25) X% 2. PO, X)P(0, x)
= Dti=on Dmspn, L 1+ Dlizon e, [ 1+ 28=1 2.0 1+
Here 8 and § are fixed (but arbitrary) positive constants.

The first term on the right hand side of (4.25) can be handled by using the
local limit theorem, whereas the second two terms on the right can be shown
to be negligible with respect to the first. We indicate briefly how this is done.

To handle the second term on the right we use the fact that P,(0, x) = O(B,™)
uniformly in x (see (4.22)), along with some computations to get

Dtimon Diaspn, [ 1= O(X1 jm0n By P65 > 2By(B — 1))

~o(ei-n (i) e (54,

and this last term can be made small relative to n*-¥= by choosing 3 large. The
third term on the right is easily dispensed with since some computations indicate
that it is O(n*~>/%5"-) and this can be made small relative to n*~*/* by taking o
small.
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We now consider the first term on the right hand side of (4.25). Using the
local limit theorem we get

(4.26) Ditgmom Dmspn, [ 1~ Dlicen Diaisss, fa( )fa( ) 1

BB

Using the mean value theorem and the boundedness of f,’ it can be shown that
the sum 37,5 on the right of (4.26) can be replaced by the integral §,, <45, -
A Riemann sum approximation shows that

Etsen 17 1e(5) 1 () 55,

n2—1/

588§ Lo () e (i ) e i sy

and the integral on the right can be made arbitrarily close to s, by making ¢
sufficiently small. The proof of (4.24) is completed by verifying that

Btsess Swmna o () o () 5, = OO Susipunf o) )

which can be made small relative to n*~*/* by choosing 8 large. Using (4.23)
and (4.24) it follows that (3.10) holds.

The proofs of (3.13) and (3.14) were given in Weiss (1972) under the assump-
tion that the random walks are in the domain of normal attraction of a stable
law and that lim inf Var S,(B)/n*** > 0. In view of (3.10) this latter assump-
tion is valid and in fact the limit exists and is given explicitly by the right hand
side of (3.10).

Finally, we prove Theorem 4. First recall from (4.22) that

(4.27) L(n)P,(0, 0) ~ f,(O)n~V= .

For convenience set p, = P,(0,0) and let Q(f) = X7, 9.t" P(t) = 1o, p.t"
for 0 <t < 1. Note that Q(f) = [(1 — #)P(#)]"*. From (4.27) and Karamata’s
Tauberian theorem (see Feller (1966), page 243), P(t) ~ (1 — 0)* '*H((1 — ©)7Y),
ast— 1-, where H(s) = f(0)['(1 — a=*)/L(s). Thus, we conclude thatas¢— 1-,

(1) ~ (1 —™*L((1 — N[ fOT (1 — a™h]™,

and using the converse part of the above Tauberian theorem we deduce that

(4.28) iz g ~ L[ fO)F(1 — a)I(1 + a7)]™,
and in fact since ¢, is monotone
(4.29) G ~ 1V L[ fo(O)T(1 — a)I(a)] .

In view of (4.17) this establishes (3.15).

To prove (3.17) we use similar techniques as in the proof of (3.10). We will
not give the details here but will point out that the crucial facts needed in the
verification (other than those needed to verify (3.10)) are (i) for each ye Z,
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P, (Vy > n) ~ a='t, Ly(y)L(n)nV*-*, which follows from the aforementioned result
of Kesten and Spitzer along with (4.29); and (ii) the fact that ] ., Ly(y) = 1.

The proofs of (3.19) and (3.20) are omitted since they are similar to those of
(3.3) and (3.4).

(1
(2]
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