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POISSON CONVERGENCE AND FAMILY TREES
By A. R. MoNCAYO

Universidad Nacional Auténoma de México

Cells of certain variety live a random length of time and then split into
twonew cells. Lett; < f; < #3 < .-+, be an increasing sequence of positive
numbers such that any given cell has probability i/n with 2 > 0, that its
life span be at least ¢, units of time. Starting with one cell, the nth gener-
ation will have 2~ cells and for each one we count the number of its ances-
tors and itself whose life span was at least ¢, units of time. These numbers
determine an empirical distribution (the nth empirical distribution). It is
shown that for almost all cell cultives (starting each time with one cell) the
sequence of these empirical distributions converges to the Poisson distri-
bution with parameter 2.

1. Introduction. Consider an age-dependent binary tree with vertices labelled
* (in the Oth generation) and by the 2* binary sequences g, - - - 0, (each ¢, = 0
or 1) for the kth generation vertices. The ancestors of ¢ =0, - .- 0, are *,
Oy +++5 0, -+ 0,_;. Associate with the generic vertex o the random variable
(rv) Y(o), and assume Y(*), ¥(0), Y(1), ¥(00), -- -, Y(0), - - - to be independent
identically distributed (i.i.d.) rv’s with continuous distribution function on some
probability space (Q, .57, P). Y(o0) is interpreted as the lifetime of the cell at the
vertex o: if the initial cell at * is born at time 0, then the cell at ¢ is born at time
Y(*) + Y(o,) + -+ + Y(o, - - - 0,_,) and splits (and dies) at time Y(*) + --- +
Y(oy - - o).

Fix 2 > 0, and for each n > 2, let the reals 7, be such that P{Y(s) > 1,} = A/n
sothatt, <t,,,. Then the indicator rv’s X*(¢) = X*(s, w), defined by X*(s) = 1
if Y(s) > t,, = 0 otherwise, distinguish cells with lifetimes exceeding ¢, from
those with smaller lifetimes. Write

$'(0) = X(*) + X'(0) + o+ Xoy - 0)),
7(J> @) = 27" 31, Uy($™(9)) .
where U,(i) = 1 if j = i, = 0 otherwise, and Y, denotes summation over the
2" binary sequences o, --- g, of length n. Then 7,(j, ») is the proportion of

paths in the tree from the Oth to the nth generations inclusive such that at most
J (0 £ j < n 4 1) of the lifetimes on the path exceed ¢,. Finally write

B, @;n, 1) =277 3, Uy(S™(9)) ,

so that ,(j, ) = f(j, w; n, n).
The aim of this note is to prove the

THEOREM. Plwe Q: 7,(j, ®) > Y i e *2'[i! (n — o) for all j} = 1.
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This result describes a somewhat different aspect from the limit theorems given
in [2] where further references to these family tree models may be found.

2. Proof of the theorem. Our proof is mostly based on two lemmas, of which
the first may be found in [1] but is here given with an alternative proof more
akin to standard branching process techniques.

LemMA 1. For sequences X(*), X(v,), - -+ of i.i.d. rv’s defined on a binary tree
with characteristic function (ch.f.) ¢(t), define for each binary o, - - - g, of length k

Sy - o) = X(*) + X(@) 4 -+ + X(0, -+ 0})
and the sample path ch.f.
Di(t, @) = 27F 30, exp(itS(o, - - - 0,5 )) .
Then provided that 2|¢(t)|* > 1,
E|gu(t) — EQ ()] = 275 + 2(1 — [¢(O)P)/2le() — 1) -

OUTLINE PROOF. Omit the argument ¢ for convenience. Observe that E¢), =
#*+1, and that E|¢,|* = 1. The joint distributions of X(s}), - - -, X(s, - - - ¢,) and
X(*), +++,X(0,- - -0,,_,) are the same, and if ¢,’ + ¢,, then X(a/’), - - -, X(a,' - - - 6}))
is independent of X(o,), - -+, X(o, - - - 6,). Using a backwards decomposition,

E|gy|* = 27Y¢"* + 27'E| i |*

= 27 B 2 4 2,
whence the assertion.

CoROLLARY. If P{X(*) = 1} = A/r = 1 — P{X(*) = O}, then for r > 164,
E|lp, — EQ* < 27F + 162/r (all t).
Proor. For X(*) just described, |¢(¢)|> = 1 — 2(2/r)(1 — A/r)(1 — cost), so
1 — |¢(0)]* < 44/r for all t and all r > 164, and thus 2|¢(¢)|* — 1 > § for all ¢.
LEMMA 2.
PloeQ: B(j, w; n?, (n + 1)*) - Y i_,e *2ii! (n — oo0) for all j}
= PlweQ: B(j, ; (n + 1)}, n*) > Yi_ e *2'[il (n — o0) forall j} =1.
ProoF. Let W, (f, @) = 2-*+D2 57 2 exp(itS™(0y -+ + 04125 @)) denote the
empirical ch.f. of 8(j, w; n?, (n + 1)?). Applying the corollary with k = (n 4 1)
and r = n?, we have
E¥, — EV, > < 2=+ 4 162/n’ n* > 164, all 1.

By Tchebycheff’s inequality, for any given ¢ > 0, all ¢, and all n* > 164,
PloeQ: [¥,(1, 0) — E¥, ()] > ¢} < E|¥, — EV, /e’

< (27D 4 162/n%) /et .
Hence by the Borel-Cantelli lemma,

PloeQ: |¥ (t,0) — E¥, (1)) > 0} =1 all ¢.
EW, (1) = [1 4 A(e* — 1)[m]™ 1 S exp(A(e — 1)) = f(f) n— oo,
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so
PloeQ: ¥, (t,0) > f(t) (n—> o)} =1 all ¢.

Now consider the subset of R x Q
A= {(t 0): ¥t 0)»f(t) (n— o)},

which is certainly measurable with respect to P x m where m(+) denotes Lebesgue
measure. Let A4, and A4, be respectively the ¢ and » sections of A4, and write
1,(t, ) for the indicator function. We have just shown that {,7,(¢, w) dP =
P(A,) = 0, and therefore

0= _o Vit I(t, w)dPdm = \g ;1 ,(t, ) dm dP
= {qm(A,) dP .

It follows now that outside a P-null set, ¥ (¢, ) — f(f) (n — o) for m-almost
all te R, and thus the convergence holds for all  (see e.g. page 190 of Loéve
(1960)). Consequently the first assertion of the lemma is proved, and the other
is proved likewise.

PROOF OF THE THEOREM. For m < k < r observe that
S™a, - 0,) Z S0y -+ 0,) 2 SKo, -+ o)
=870y -0 0,) Z87(0, - 0p),s
SO
B(j, 03 m, 1) < mi(j, @) < B(j, @3 7, m).
Putting m = n* and r = (n 4 1)’ so that n* < k < (n + 1)}, we apply Lemma 2,
and the theorem is proved.
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