The Annals of Probability
1975, Vol. 3, No. 6, 1055-1058

A NOTE ON THE PROOF OF THE ZERO-ONE
LAW OF BLUM AND PATHAK
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Let {(Q, % ptn), n = 1} be a sequence of probability spaces. Blum and
Pathak [Ann. Math. Statist. 43 (1972) 1008-1009] proved a zero-one law for
permutation invariant sets 4 € .9”>; which includes the zero-one laws of
Hewitt and Savage [Trans. Amer. Math. Soc. 80 (1955) 470-501] and Horn
and Schach [4nn. Math. Statist. 41 (1970) 2130-2131] as special cases. The
proper reason for this is shown to be the fact that the set of measures ad-
mitting the zero-one law of Blum and Pathak coincides with the set of all
strong limit points of measures admitting the zero-one law of Horn and
Schach.

Consider the product-probability space (Q=,. V™ Q. ¢, = p) of the proba-
bility spaces (Q,.%, u,), n=1,2,.... In [1] the following proposition is
proved: Let 4e../= be a set which is invariant under all permutations of
finitely many coordinates (z-invariant set); then p(A4) = 0 or 1, provided the
following condition is satisfied:

(B) for each ¢ >0, k =1 and m = 1 there is an n = m such that ||y, —
|l < e

The purpose of this paper is to show that this result of [1] is the consequence
of a result (Theorem 2.1) whose proof is trivial. The point which needs some
consideration is to establish the equivalence between condition (B) and a special
case of the conditions of Theorem 2.1 (Theorem 2.2). Some remarks on the
role played by the property of recurrence (see Definition 2.2 and [2]) are added.

To establish some notation we start with

DErFINITION 2.1. Let (R, ) be an arbitrary measurable space, &' C ../ an
arbitrary subfami]y of measurable sets. A probability measure # on (R, /) is
said to be zero-one on <7, if pu(4) =0 or 1 for each 4e <. A family Z of
probability measures is said to be zero-one on <7 (or also £7-zero-one) if each
e Z is zero-one on .

THEOREM 2.1. Let Z be a <7-zero-one family of probability measures on (R, 57);
then the norm-topology-closure Z of Z is also </-zero-one.

Proor. For peZ there exists a sequence px™ e Z with p = slim,__ p™,
where s lim denotes the limit in the norm topology; especially we have ‘u"”(Aj —
1(A) for each 4 ¢ &7, whence p(4) = 0 or 1.

The following considerations serve to show that Theorem (1.1) of [1] is in-
cluded in Theorem 2.1 and that the simple device of Theorem 2.1 provides a
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slightly more general class of probability measures being zero-one on the z-
invariant sets than the Blum-Pathak zero-one law (Theorem 2.4 and Remark
2.2). From now on we restrict ourselves to the space (Q=, .57).

LeMMA 2.1. Ler {p,, v, k = 1} be probability measures and suppose for some
real numbers ¢,, k = 1, that ||y, — v,|| < e Then||Q%oy e — RpcyVil| < 251 &

PRrooF (cf. [1], Lemma (1.3)). For n =1 it is clear; suppose the lemma is
true for some n > 1; let f,, g,, k = 1 be the densities of y,, v,, k = 1 with re-
spect to a dominating measure 4, then use Fubini’s Theorem and the formula

ITiti f(wr) — 101 gu(@) = (ITk=1fe(@))(frs1(@nt1) — Jnir(@nin))
+ Gnii(@n ) (TT ko1 fi(@i) — TTk=1 G(@1)
to obtain:

[ e — Q3E1 vl

=3 (o Yo Il ful@)) — TT1E5 gu(@))| dA(@,) - - - dA(@,,,)

< 3 Yo lfarr(@ng1) = Gnis(@ni)] dA(@, 1)

+ % 50 - Yo [ITkoife(@n) — TTkor 9(@))| dA(@y) - - - dA(w,)
= |[ttns1 = Varal| + ||Q%=1 e — Qs vil| < s + 2hmr e -

DEFINITION 2.2. A product probability measure ¢ = Q5, ¢, is called recur-
ring, if for each i > 1 there is some j > i with g, = p,.

THEOREM 2.2. p is in the norm closure of a family of recurring probability meas-
ures iff it satisfies condition (B).

Proor. 1) Suppose (B) holds and let 6 >0, ¢, >0, k =1,2, ..., be real
numbers with 317, ¢, < 0. We choose a sequence .47 = {n;(1), j = 1} of natu-
ral numbers with the properties m(1) = 1, n;,5(1) > n,(1), ||ty — ta,0|| < /29,
Jj = 1. Due to (B) such a choice is possible.

Defining %, = {n: p, = p,} and _#Z = 4] U ZZ, we have either .7 = N
(the set of all natural numbers), or N — _# contains infinitely many elements.
Indeed, assume N — _Z has only finitely many elements and let re N — _/7;
from the definition of _#Z we have ||z, — p|| > 0, and the assumption implies
for arbitrary » > 0 the existence of an N(») so that ||xz, — p,|| < 7y for all m >
N(7), whence taking » = %||¢, — ,]| we obtain

(2.1) e — ttall = [lltr — mll = Ml — alll = 3l — 21l > 0
v m = N(y)
which is impossible in view of (B).
If N — _#{ has infinitely many elements, choose a sequence ./, = {n;(2),
J = 1} with the properties ./, C N — 7, n,(2) = min (N — _7Z), n;,,(2) >
n;(2), ”‘unl(z) - l’ln]-(2)” < &2, j= 1.
Using again an argument analogous to (2.1) such a choice is possible due to

(B).
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Defining 52, = {n: n¢ A, pt, = . »} and 7, = ./, U <%, we have .7 n
_#y = @, and, due to the same reasons as before, either 7 U _Z, = N or
N — _#Z U _#, consists of infinitely many elements.

We proceed now by induction: let _ be defined and suppose N — UJi_, 7
consists of infinitely many elements. By the same argument as before it is, due
to (B), possible to choose .47, = {n;(k + 1), j = 1} with

Sin CN = Ubaats mylk + 1) = min (N — Uk, -7) ,

Motk + 1) >tk + 15 s = faull <22, j21
so that, defining <2, = {n: pt, = pty sy 1€ Uty A4} and 2, = S, U
Fyyr, We obtain _#Z,,, N (UL, #) = ¢. We thus have constructed a par-
tition of N into (finitely or countable infinitely many) sets _#,. Therefore, for
each n e N there is exactly one k(n) with ne _#,,,.

Define now v, = £, gmy> n = 1,2, -+ -, then v = @7, v, is a recurring prob-
ability measure with |y — || < 2d. To show this, let 4 e .9 be arbitrary
fixed; there is a sequence 4, € %™ of cylinder-sets with 4(4 A 4,) — 0, where
A dominates z and v, therefore p(4 A A4,) — 0, v(4 A A,) — 0 (with the same
sequence {4,}), whence for 6 > 0 there is an N(d) such that

max (|p(4) — p(4,)]s [(A) — v(4,)]) < /2 for n = N(@).

From Lemma 2.1 and the definition of v we have ||, ¢, — R, vil| < /2,
so that from (4,) = (®r, 11:)(4a)s Y(4,) = (R, v:)(4,) (where 4, is the ‘basis’
of A4,) we obtain

l1(A) — v(A)] = |(A) — (4a)] + |1(As) — w(A4,)] + [(A,) — w(4)] < 39/2,

whence || — v|| < 2d. (v depends on d, of course). Since d was arbitrary we
have thus proved that p is a cluster point of recurring probability measures.

2) Lety™ = @, v, be a sequence of recurring probability measures with
p=slim, ,v™. Let ¢ > 0 be given, let n be fixed and so large that |[x —
v™|| < ¢/2. Consider an arbitrary index k; due to recurrence there is for each
mz=1,ap>=mwithy,™ =y ™. Butsince ||p; — v;™|| < ||t — v™||, Vj = 1,
this implies ||z2; — p,|| < |lg; — v;™|| + |]v,™ — p,l| < e, whence (B) is estab-
lished for p.

With the aid of Theorem 2.2 the proof of Theorem (1.1) of [1] is now simple:

THEOREM 2.3. (Theorem (1.1) of [1]). Suppose the product probability measure
¢ satisfies condition (B); then p is zero-one on the w-invariant sets.

Proor. Due to Theorem 2.2, p is element of the strong closure of the family
of recurring measures, the latter being zero-one on the z-invariant sets due to
the Horn-Schach zero-one law [2].

REMARK 2.1. The arguments leading to Theorem 2.2 are of course used im-
plicitly (in a slightly weaker form) in the proof of Theorem (1.1) of [1], so that
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from that point of view the present method does not provide a real simplification
of that proof; however, it seems to give a better insight into the structure of
the problem.

THEOREM 2.4. Let R be the class of all product probability measures which are
dominated by a recurring measure; then the strong closure R is zero-one on the 7-
invariant sets.

Proof. If p is /-zero-one for some family <7, then v € p implies that v is
also “7/-zero-one.

REMARK 2.2. The zero-one family obtained by Theorem 2.4 is strictly wider
than the class characterized by condition (B). Indeed it is easy to see that p
can be dominated by a recurring v without satisfying (B). Moreover, R also
contains elements which are not product probability measures.

REMARK 2.3. The question arises if some kind of “nearby-recurrence” in
the sense of Theorem 2.4 could provide a necessary condition for a measure to
be zero-one on the r-invariant sets. The answer is in general negative as shown
by the following (however trivial) example: let Q = [0, 1], .o the Borel-sets of
[0, 1], g, = 6y, (Dirac measure on 1/n); then p = @), v, is concentrated at
the point (1, 3, 4, - - -) and is therefore trivially zero-one on _/=; on the other
hand, ¢ is roughly spoken of “as nonrecurrent as possible.”
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