A NOTE ON THE PROOF OF THE ZERO-ONE LAW OF BLUM AND PATHAK

By Wolfgang Sendler

University of Dortmund

Let $\{(\Omega, \mathscr{N}, \mu_n), n \geq 1\}$ be a sequence of probability spaces. Blum and Pathak [Ann. Math. Statist. 43 (1972) 1008-1009] proved a zero-one law for permutation invariant sets $A \in \mathscr{N}^{\infty}$; which includes the zero-one laws of Hewitt and Savage [Trans. Amer. Math. Soc. 80 (1955) 470-501] and Horn and Schach [Ann. Math. Statist. 41 (1970) 2130-2131] as special cases. The proper reason for this is shown to be the fact that the set of measures admitting the zero-one law of Blum and Pathak coincides with the set of all strong limit points of measures admitting the zero-one law of Horn and Schach.

Consider the product-probability space $(\Omega^{\infty}, \mathcal{N}^{\infty} \bigotimes_{n=1}^{\infty} \mu_n \equiv \mu)$ of the probability spaces $(\Omega, \mathcal{N}, \mu_n)$, $n=1,2,\cdots$. In [1] the following proposition is proved: Let $A \in \mathcal{N}^{\infty}$ be a set which is invariant under all permutations of finitely many coordinates $(\pi$ -invariant set); then $\mu(A) = 0$ or 1, provided the following condition is satisfied:

(B) for each $\varepsilon > 0$, $k \ge 1$ and $m \ge 1$ there is an $n \ge m$ such that $||\mu_k - \mu_n|| < \varepsilon$.

The purpose of this paper is to show that this result of [1] is the consequence of a result (Theorem 2.1) whose proof is trivial. The point which needs some consideration is to establish the equivalence between condition (B) and a special case of the conditions of Theorem 2.1 (Theorem 2.2). Some remarks on the role played by the property of recurrence (see Definition 2.2 and [2]) are added.

To establish some notation we start with

DEFINITION 2.1. Let (R, \mathcal{F}) be an arbitrary measurable space, $\mathcal{D} \subset \mathcal{F}$ an arbitrary subfamily of measurable sets. A probability measure μ on (R, \mathcal{F}) is said to be zero-one on \mathcal{D} , if $\mu(A) = 0$ or 1 for each $A \in \mathcal{D}$. A family Z of probability measures is said to be zero-one on \mathcal{D} (or also \mathcal{D} -zero-one) if each $\mu \in Z$ is zero-one on \mathcal{D} .

THEOREM 2.1. Let Z be a \mathcal{D} -zero-one family of probability measures on (R, \mathcal{F}) ; then the norm-topology-closure \bar{Z} of Z is also \mathcal{D} -zero-one.

PROOF. For $\mu \in \overline{Z}$ there exists a sequence $\mu^{(n)} \in Z$ with $\mu = s \lim_{n \to \infty} \mu^{(n)}$, where s lim denotes the limit in the norm topology; especially we have $\mu^{(n)}(A) \to \mu(A)$ for each $A \in \mathcal{D}$, whence $\mu(A) = 0$ or 1.

The following considerations serve to show that Theorem (1.1) of [1] is included in Theorem 2.1 and that the simple device of Theorem 2.1 provides a

1055

Received March 21, 1975.

AMS 1970 classification. Primary 60F20.

Key words and phrases. Hewitt-Savage zero-one law, Horn-Schach zero-one law.

www.jstor.org

slightly more general class of probability measures being zero-one on the π -invariant sets than the Blum-Pathak zero-one law (Theorem 2.4 and Remark 2.2). From now on we restrict ourselves to the space $(\Omega^{\infty}, \mathscr{N}^{\infty})$.

LEMMA 2.1. Let $\{\mu_k, \nu_k, k \geq 1\}$ be probability measures and suppose for some real numbers $\varepsilon_k, k \geq 1$, that $||\mu_k - \nu_k|| < \varepsilon_k$. Then $||\bigotimes_{k=1}^n \mu_k - \bigotimes_{k=1}^n \nu_k|| < \sum_{k=1}^n \varepsilon_k$.

PROOF (cf. [1], Lemma (1.3)). For n = 1 it is clear; suppose the lemma is true for some $n \ge 1$; let f_k , g_k , $k \ge 1$ be the densities of μ_k , ν_k , $k \ge 1$ with respect to a dominating measure λ , then use Fubini's Theorem and the formula

$$\prod_{k=1}^{n+1} f_k(\omega_k) - \prod_{k=1}^{n+1} g_k(\omega_k) = (\prod_{k=1}^n f_k(\omega_k))(f_{n+1}(\omega_{n+1}) - g_{n+1}(\omega_{n+1})) + g_{n+1}(\omega_{n+1})(\prod_{k=1}^n f_k(\omega_k) - \prod_{k=1}^n g_k(\omega_k))$$

to obtain:

$$\begin{split} || \bigotimes_{k=1}^{n+1} \mu_{k} - \bigotimes_{k=1}^{n+1} \nu_{k} || \\ &= \frac{1}{2} \int_{\Omega} \cdots \int_{\Omega} |\prod_{k=1}^{n+1} f_{k}(\omega_{k}) - \prod_{k=1}^{n+1} g_{k}(\omega_{k}) | d\lambda(\omega_{1}) \cdots d\lambda(\omega_{n+1}) \\ &\leq \frac{1}{2} \int_{\Omega} |f_{n+1}(\omega_{n+1}) - g_{n+1}(\omega_{n+1}) | d\lambda(\omega_{n+1}) \\ &+ \frac{1}{2} \int_{\Omega} \cdots \int_{\Omega} |\prod_{k=1}^{n} f_{k}(\omega_{k}) - \prod_{k=1}^{n} g_{k}(\omega_{k}) | d\lambda(\omega_{1}) \cdots d\lambda(\omega_{n}) \\ &= ||\mu_{n+1} - \nu_{n+1}|| + ||\bigotimes_{k=1}^{n} \mu_{k} - \bigotimes_{k=1}^{n} \nu_{k}|| < \varepsilon_{n+1} + \sum_{k=1}^{n} \varepsilon_{k}. \end{split}$$

Definition 2.2. A product probability measure $\mu = \bigotimes_{i=1}^{\infty} \mu_i$ is called recurring, if for each $i \ge 1$ there is some j > i with $\mu_i = \mu_j$.

THEOREM 2.2. μ is in the norm closure of a family of recurring probability measures iff it satisfies condition (B).

PROOF. 1) Suppose (B) holds and let $\delta > 0$, $\varepsilon_k > 0$, $k = 1, 2, \dots$, be real numbers with $\sum_{k=1}^{\infty} \varepsilon_k \leq \delta$. We choose a sequence $\mathscr{N}_1 \equiv \{n_j(1), j \geq 1\}$ of natural numbers with the properties $n_1(1) = 1$, $n_{j+1}(1) > n_j(1)$, $||\mu_1 - \mu_{n_j(1)}|| < \varepsilon_1/2^j$, $j \geq 1$. Due to (B) such a choice is possible.

Defining $\mathscr{R}_1 \equiv \{n : \mu_n = \mu_1\}$ and $\mathscr{M}_1 \equiv \mathscr{N}_1 \cup \mathscr{R}_1$ we have either $\mathscr{M}_1 = \mathbb{N}$ (the set of all natural numbers), or $\mathbb{N} - \mathscr{M}_1$ contains infinitely many elements. Indeed, assume $\mathbb{N} - \mathscr{M}_1$ has only finitely many elements and let $r \in \mathbb{N} - \mathscr{M}_1$; from the definition of \mathscr{M}_1 we have $||\mu_r - \mu_1|| > 0$, and the assumption implies for arbitrary $\eta > 0$ the existence of an $N(\eta)$ so that $||\mu_1 - \mu_m|| < \eta$ for all $m \ge N(\eta)$, whence taking $\eta = \frac{1}{2}||\mu_r - \mu_1||$ we obtain

$$(2.1) ||\mu_r - \mu_m|| \ge |||\mu_r - \mu_1|| - ||\mu_1 - \mu_m||| \ge \frac{1}{2}||\mu_r - \mu_1|| > 0$$

$$\forall m \ge N(\eta)$$

which is impossible in view of (B).

If $\mathbb{N}-\mathscr{M}_1$ has infinitely many elements, choose a sequence $\mathscr{N}_2 \equiv \{n_j(2), j \geq 1\}$ with the properties $\mathscr{N}_2 \subset \mathbb{N}-\mathscr{M}_1$, $n_1(2)=\min{(\mathbb{N}-\mathscr{M}_1)}$, $n_{j+1}(2)>n_j(2)$, $||\mu_{n_1(2)}-\mu_{n_j(2)}||<\varepsilon_2/2^j$, $j\geq 1$.

Using again an argument analogous to (2.1) such a choice is possible due to (B).

Defining $\mathscr{R}_2 \equiv \{n \colon n \notin \mathscr{M}_1, \, \mu_n = \mu_{n_1(2)} \}$ and $\mathscr{M}_2 \equiv \mathscr{N}_2 \cup \mathscr{R}_2$, we have $\mathscr{M}_1 \cap \mathscr{M}_2 = \emptyset$, and, due to the same reasons as before, either $\mathscr{M}_1 \cup \mathscr{M}_2 = \mathbb{N}$ or $\mathbb{N} - \mathscr{M}_1 \cup \mathscr{M}_2$ consists of infinitely many elements.

We proceed now by induction: let \mathscr{M}_k be defined and suppose $\mathbb{N} - \bigcup_{i=1}^k \mathscr{M}_i$ consists of infinitely many elements. By the same argument as before it is, due to (B), possible to choose $\mathscr{N}_{k+1} \equiv \{n_j(k+1), j \geq 1\}$ with

$$\begin{split} \mathscr{N}_{k+1} \subset \mathbb{N} - \bigcup_{i=1}^k \mathscr{M}_i \,, & \quad n_1(k+1) = \min \left(\mathbb{N} - \bigcup_{i=1}^k \mathscr{M}_i \right) \,, \\ n_{j+1}(k+1) > n_j(k+1) \,, & \quad ||\mu_{n_1(k+1)} - \mu_{n_j(k+1)}|| < \frac{\varepsilon_{k+1}}{2^j} \,, \qquad j \ge 1 \end{split}$$

so that, defining $\mathscr{R}_{k+1} \equiv \{n : \mu_n = \mu_{n_1(k+1)}, n \notin \bigcup_{i=1}^k \mathscr{M}_i\}$ and $\mathscr{M}_{k+1} \equiv \mathscr{N}_{k+1} \cup \mathscr{R}_{k+1}$, we obtain $\mathscr{M}_{k+1} \cap (\bigcup_{i=1}^k \mathscr{M}_i) = \emptyset$. We thus have constructed a partition of \mathbb{N} into (finitely or countable infinitely many) sets \mathscr{M}_k . Therefore, for each $n \in \mathbb{N}$ there is exactly one k(n) with $n \in \mathscr{M}_{k(n)}$.

Define now $\nu_n \equiv \mu_{n_1(k(n))}$, $n=1,2,\cdots$, then $\nu=\bigotimes_{n=1}^{\infty}\nu_n$ is a recurring probability measure with $||\nu-\mu||<2\delta$. To show this, let $A\in\mathscr{N}^{\infty}$ be arbitrary fixed; there is a sequence $A_n\in\mathscr{N}^n$ of cylinder-sets with $\lambda(A\bigtriangleup A_n)\to 0$, where λ dominates μ and ν , therefore $\mu(A\bigtriangleup A_n)\to 0$, $\nu(A\bigtriangleup A_n)\to 0$ (with the same sequence $\{A_n\}$), whence for $\delta>0$ there is an $N(\delta)$ such that

$$\max (|\mu(A) - \mu(A_n)|, |\nu(A) - \nu(A_n)|) < \delta/2 \quad \text{for} \quad n \ge N(\delta).$$

From Lemma 2.1 and the definition of ν we have $\|\bigotimes_{i=1}^n \mu_i - \bigotimes_{i=1}^n \nu_i\| < \delta/2$, so that from $\mu(A_n) = (\bigotimes_{i=1}^n \mu_i)(\hat{A}_n)$, $\nu(A_n) = (\bigotimes_{i=1}^n \nu_i)(\hat{A}_n)$ (where \hat{A}_n is the 'basis' of A_n) we obtain

$$|\mu(A) - \nu(A)| \le |\mu(A) - \mu(A_n)| + |\mu(A_n) - \nu(A_n)| + |\nu(A_n) - \nu(A)| < 3\delta/2$$
,
whence $|\mu - \nu| < 2\delta$. (ν depends on δ , of course). Since δ was arbitrary we

whence $||\mu - \nu|| < 2\delta$. (ν depends on δ , of course). Since δ was arbitrary we have thus proved that μ is a cluster point of recurring probability measures.

2) Let $\nu^{(n)} = \bigotimes_{i=1}^{\infty} \nu_i^{(n)}$ be a sequence of recurring probability measures with $\mu = s \lim_{n \to \infty} \nu^{(n)}$. Let $\varepsilon > 0$ be given, let n be fixed and so large that $||\mu - \nu^{(n)}|| < \varepsilon/2$. Consider an arbitrary index k; due to recurrence there is for each $m \ge 1$, a $p \ge m$ with $\nu_k^{(n)} = \nu_p^{(n)}$. But since $||\mu_j - \nu_j^{(n)}|| \le ||\mu - \nu^{(n)}||$, $\forall j \ge 1$, this implies $||\mu_j - \mu_p|| \le ||\mu_j - \nu_j^{(n)}|| + ||\nu_p^{(n)} - \mu_p|| < \varepsilon$, whence (B) is established for μ .

With the aid of Theorem 2.2 the proof of Theorem (1.1) of [1] is now simple:

THEOREM 2.3. (Theorem (1.1) of [1]). Suppose the product probability measure μ satisfies condition (B); then μ is zero-one on the π -invariant sets.

PROOF. Due to Theorem 2.2, μ is element of the strong closure of the family of recurring measures, the latter being zero-one on the π -invariant sets due to the Horn-Schach zero-one law [2].

REMARK 2.1. The arguments leading to Theorem 2.2 are of course used implicitly (in a slightly weaker form) in the proof of Theorem (1.1) of [1], so that

from that point of view the present method does not provide a real simplification of that proof; however, it seems to give a better insight into the structure of the problem.

Theorem 2.4. Let R be the class of all product probability measures which are dominated by a recurring measure; then the strong closure \bar{R} is zero-one on the π -invariant sets.

PROOF. If μ is \mathscr{D} -zero-one for some family \mathscr{D} , then $\nu \ll \mu$ implies that ν is also \mathscr{D} -zero-one.

REMARK 2.2. The zero-one family obtained by Theorem 2.4 is strictly wider than the class characterized by condition (B). Indeed it is easy to see that μ can be dominated by a recurring ν without satisfying (B). Moreover, R also contains elements which are not product probability measures.

REMARK 2.3. The question arises if some kind of "nearby-recurrence" in the sense of Theorem 2.4 could provide a necessary condition for a measure to be zero-one on the π -invariant sets. The answer is in general negative as shown by the following (however trivial) example: let $\Omega = [0, 1]$, \mathscr{A} the Borel-sets of [0, 1], $\mu_n = \delta_{1/n}$ (Dirac measure on 1/n); then $\mu = \bigotimes_{n=1}^{\infty} \mu_n$ is concentrated at the point $(1, \frac{1}{2}, \frac{1}{3}, \cdots)$ and is therefore trivially zero-one on \mathscr{A}^{∞} ; on the other hand, μ is roughly spoken of "as nonrecurrent as possible."

REFERENCES

- [1] Blum, J. R. and Pathak, P. K. (1972). A note on the zero-one law. Ann. Math. Statist. 43 1008-1009.
- [2] HORN, S. and SCHACH, S. (1970). An extension of the Hewitt-Savage zero-one law. Ann. Math. Statist. 41 2130-2131.

DEPARTMENT OF STATISTICS UNIVERSITY OF DORTMUND 46 DORTMUND-HOMBRUCH, POSTF. 500 WEST GERMANY