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ON THE PATH ABSOLUTE CONTINUITY
OF SECOND ORDER PROCESSES!

By StAMATIS CAMBANIS
" University of North Carolina

Necessary and sufficient conditions are given for almost all paths of a
Gaussian process to be absolutely continuous (with derivative in Lp). Also
sufficient conditions for almost sure path absolute continuity of second
order processes are derived, slightly generalizing those previously known.

Sufficient conditions for a stochastic process to have absolutely continuous
paths with probability one were first derived for weakly stationary processes in
[6, pages 536-537] and were later generalized to second order processes in [7,
pages 186-187]. For a Gaussian process it is known that its paths are absolutely
continuous with probability zero or one [4], but necessary and sufficient con-
ditions for the two alternatives were known only for stationary processes [2, 10],
and thus also for processes with stationary increments, and for harmonizable
processes [2]. Here we give several equivalent necessary and sufficient conditions
for the paths of a Gaussian process to be absolutely continuous with probability
one. These conditions, which are slightly more general than those of [7], are
shown to be sufficient for almost sure path absolute continuity of a second order

process. The results extend to the case where almost all paths have n — 1 con--

tinuous derivatives with the (n — 1)th derivative absolutely continuous.

In the following T = [a, b] is a finite interval and & = {§(¢, ), t € T} a real
stochastic process of second order on the probability space (Q, .~, P) with cor-
relation function R(z, 5) = E(£,&,). &(+, w) denotes the path of the process &
corresponding to w € Q and &, denotes the random variable of the process cor-
responding to t € T. #(R) denotes the reproducing kernel Hilbert space of the
nonnegative definite function R. We will relate the absolute continuity of the
paths of & on T with the absolute continuity of its correlation function R on
T x T. Recall that R is absolutely continuous on 7 x T if and only if there is
a Lebesgue integrable function r on T X T such that for all 1, 1,5, 5,€ 7,
A Az R = (2§ r(u, v) dudv, where ApA2ZR = R(t;, 5,) — R(1y, 51) — R(1y, 52) +
R(t,, ;) [9, Section 493]. Also the map T — Ly(Q) = Ly(Q, ., P) defined by
t — &, is absolutely continuous if and only if it belongs to W, [T, Ly(Q)] [1,
Appendice]. W, [T, L(Q)], 1 < p < oo, is the set of all functions f: T — Ly(Q)
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ABSOLUTE CONTINUITY OF PATHS 1051

of the form f(r) = f(a) + ! g(u) du for some g € L,[T, Ly(Q)], i.e., g: T — Ly(Q)
is measurable and §; ||g(u)||?,q, du < oo.

THEOREM. If § = {§(t, w), t€ T = [a, b]} is a real separable stochastic process
of second order on the probability space (Q, .5, P) with correlation function
R(t, s) = E(§,, &,), the following are equivalent.

(i) With probability one the paths of & are absolutely continuous and there is a
measurable second order process 7 = {y(t, w), t € T} such that

M Vi {E()}H dr < o0
and
2) §(t, w) = &(a, w) + §Lyp(u, w)du  forall teT

with probability one.

(if) The map T — L,(Q) defined by t — &, is absolutely continuous.

(iii) There is a measurable nonnegative definite function r on T X T with S2(r)
separable and

(3) §8 {r(u, w)}t du < oo
such that for all t,, t,, s,, s,e T,

4 AARR = {2 §2r(u, v)dudy .

t1 78
(iv) R(t, +) is absolutely continuous on T for every fixed te T, (R is absolutely
continuous on T X T) and there is a measurable subset T, of T with Lebesgue measure
zero such that 3*R(t, )0t Os exists for all t, se T — T, and satisfies

() HEED

dt 0s
When & is Gaussian each of (ii), (iii) and (iv) is necessary and sufficient for almost
sure path absolute continuity.

)5 du < oo .
t=8s=u

In general, (i) is stronger than the absolute continuity of the paths of £ with
probability one (the Gaussian case being an exception), and (iii) and (iv) are
stronger than the absolute continuity of R on T x T (the stationary case is an
exception here). Condition (iv) may in some cases be easier to verify than
condition (iii). Trivial examples show that the presence of the zero Lebesgue
measure set T in (iv) is necessary. Also (iv) implies that for each te T — T,,
0R(t, +)/0t is absolutely continuous on 7.

When ¢ is harmonizable or weakly stationary with (two- and one-dimensional
respectively) spectral distribution F, then condition (iv) is equivalent to
§§% |40 dF(2, 1) < oo and (=, 2 dF(2) < oo respectively; that (iv) implies (i)
was shown in [6, pages 536-537; 7, pages 186-187] and the equivalence of al-
most sure path absolute continuity to (iv) in the Gaussian case was shown in
[2, 10]. In the stationary case (iv) is also equivalent to the absolute continuity
of R as a function of two variables on T x T.
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The relationship between the almost sure path absolute continuity of ¢ and
the absolute continuity of the map ¢ — &, has also been considered in [11] where,
under certain conditions (not applicable here), it is shown that the former im-
plies the latter.

When ¢ is Gaussian and 1 < p < oo, the statement “almost all paths of £ are
absolutely continuous with derivative in L, is equivalent to (i) to (iv) with p/2
replacing % is (1), (3) and (5) and the map in (ii) belonging to W, [T, Ly(Q)].
Also all results extend in a straightforward way to give necessary and sufficient
conditions for almost all paths of £ to have (n — 1) continuous derivatives with
&1 satisfying (i).

PROOF. (iv) implies (iii). If we define r by r(t, s) = 3*R(t, 5)/dt ds for ¢, s€
T — T, and r(t, s) = O elsewhere, everything in (iii) is obvious except perhaps
that 2(r) is separable, which is shown as follows. Since 3°R(t, 5)/0t ds exists
for t = se T — T,, the mean square derivative & of & exists on T — T,. Define
the process { by {, = E,teT —T,and §, = 0,re T, Then E(,L,) = r(t,5),
t, se T and H({) ¢ H(¢) where H({) is the closure in L,(Q) of the linear space
generated by {¢,, t € T} and similarly for H(§). Now SZ(R) and H(¢) are isomor-
phic, and so are &2(r) and H((), and thus the separability of S2(R) implies that
of Z2(r).

(iii) implies (ii). There exists a separable Hilbert space H and a function
f: T — H such that {f(u), f(v))y = r(4, v) and {f(¢), t € T} is complete in H; for
instance take H = Z2(r) and f(r) = r(t, ). Every h e H is the limit of a sequence
of linear combinations from {f(¢), € T}: h = lim,h,, h, = Yima,, f(t,,). Thus
for all te T, (h, f(t)>y = lim, ¥i™ a, ,r(t,, 1) and since r is measurable, f is
weakly measurable and also measurable since H is separable. Then (3) implies
that fe L,[T, L,(Q)] and from (4) we have that for all ¢, se T,

e — €u & — &y = Ve f(w) du, §G f(v) dV)y -

It follows that there is an isomorphism 4 between the closure in H of the linear
space generated by {{% f(u) du, t € T} and the closure in L,(Q) of the linear space
generated by {§, — &,,te T}, such that

&, — &, = A\ f(uydu  forall teT.

Define g: T — Ly(Q) by g(f) = Af(f). Then ge L,[T, L(Q)] and A §; f(u) du =
{t g(u)du [8, page 83]. It follows that &, = &, + | g(u)du, t€ T, and thus (ii)
is satisfied.

(il) implies (i). Since the function r — &, is absolutely continuous, there is a
g€ L[T, L(Q)] such that

&, =¢&,+ $tg(u)du forall teT

the equality being in L,(Q). Since g is measurable, there is a measurable subset
N of T with Lebesgue measure zero such that g(T — N) is separable. Now
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define the process { by {, = g(¢) forte T — Nand ¢, = O for t € N. Then { is of
second order, {{,, t € T} is separable as a subset of L,(Q), and hence so is H(),
the closure of the linear space generated by it. Let Q(t, s) = E[g(f)g(s)] and
K(t, s) = E(£,L,), t,seT. Since g is measurable, it is weakly measurable and
thus for all fixed e T, Q(v, ) is measurable. Since for fixed te T, K(t, +) and
Q(t, +) agree on T — N, it follows that K(7, ) is also measurable. An inspection
of the proof of Theorem 1 of [3] shows that H({) separable and K(¢, +) measur-
able for all re T imply that { has a measurable modification, denoted by .
Now for all teT — N, E(y) = E({,®) = E[¢%()] and thus g e L,[T, L,(Q)] im-
plies (1). This in turn implies E {} |5(¢, )| df < oo, and thus (s, w) € L,[T]
with probability one, i.e., for all @ € @ — Q, with P(Q,) = 0. Now define the
process X by

X(t, ) = &(a, ) + §% p(u, ) du for teT, 0weQ—-Q,
=0 for teT, weQQ,.

It is easily seen that each of E(§, — &,)’, E(X, — &,) and E[(§, — £,)(X, — &,)]
equals §; {. E[g(#)g(v)] du dv. Hence for all fixed teT, E(&, — X,)* = 0 and
thus Plo e Q: §(t, w) = X(t, w)} = 1. If S is a countable dense subset of T
which is a separating set for £, we have Plw e Q: §(1, w) = X(t, 0), te S} = 1
and since X has continuous paths with probability one it follows that P{w e Q:
§(t, w) = X(t, w), te T} = 1 and thus (i) is satisfied.

(i) implies (iii). This is obvious, with r(u, v) = E(5,7,), when we note that
the measurability of the second order process y implies that r is measurable and
Z2(r) is separable [3, Theorem 1].

(i) implies (iv). Since (i) is equivalent to (iii), and (iii) is a condition on the
two-dimensional distributions of &, it suffices to prove that (i) implies (iv) when
& is Gaussian. In fact we will show that if & is Gaussian and its paths are abso-
lutely continuous with probability one then (i) and (iv) are satisfied, proving
thus the last claim of the theorem as well.

Since ¢ has with probability one continuous paths it is product measurable
[12, page 122]. If T,(w) is the set of points in T where the path £(+, w) is dif-
ferentiable, the almost sure path absolute continuity of & implies Leb {T —
Ty(w)} = 0 a.s. Also, if T, is the set of points in T where the paths of £ are
differentiable with probability ome, it is shown in [2, Theorem 3 (ii)] that
Leb {Ty(w) A T;} = 0 a.s. It follows that Leb {T — T,} = 0 and thus we will
take T, = T — T,. For every teT, = T — T, the paths of ¢ are differentiable
with probability one, hence & is mean square differentiable at s and thus
9*R(t, s)[dt ds exists for all ¢, seT,. Now let Q e & with P(Q,) = 0 be such
that for all w e Q@ — Q, é(-, w) is absolutely continuous and define ¢ by

&(t, ) = lim sup,_, n |:§ (t + % , w) — &(1, w):| for tefa, b), weQ — Q,

=0 for tefa,b), wecQ, and t =5, weQ.



1054 STAMATIS CAMBANIS

Then { is product measurable and for all w ¢ Q — Q,, we have {(z, ) = &'(t, w)
for t € T,(w) — {b}, where &’(+, w) denotes the path derivative of &(-, ®). Also
for all te T, — {b}, (1, w) = &'(t, w) a.s. Now define 5 by 5(t, w) = {(¢, w) for
teT,; weQ, and 9(t, w) = 0 for te T, w e Q. Itisclear that 5 is product meas-
urable and also Gaussian, since for all t e [a, b) — T,, 5, = lim,_, n(&,,,,, — &)
a.s. and § is Gaussian. Also for all we Q — Q, 7(+, ®) = {(+, ®) = &'(+, ®)
a.s. [Leb] on T and since £(+, w) is absolutely continuous, &’'(., w)e L,[T]. It
follows that with probability one 7(., w) e L,[T] and hence by a result in [13,
page 391] (1) is satisfied. (5) follows if we note that for all ue T, — {b},
E(n,} = EL}) = E(§,") = (°R(¢, )/t 3s),_,_,. We also have

&(t, w) = &(a, ) + §¢ n(u, ) du for refa, b], 0eQ —Q,.
Now an application of Fubini’s theorem justified by (1) gives

R(t,s) = R(t, a) + \: E(€,7,) du t,seT
Az AR = (2§22 E(n, 7,) du dv ty by 85 5,€ T

and since by (1) the functions inside the integrals are Lebesgue integrable, it
follows that R(t, ) is absolutely continuous on T for every fixed s € T and that
R is absolutely continuous on 7' X T. Thus (i) and (iv) are satisfied.
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