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THE OTHER LAW OF THE ITERATED LOGARITHM!

By NARrRESH C. JAIN AND WILLIAM E. PrRUITT

University of Minnesota

Let {X.) be a sequence of independent, identically distributed random
variables with EX; = 0, EX;2 = 1. Define S» = X1 + +-- + Xa, and 4, =
maxisksa |Skl. We prove that lim inf An(n/log log n)~* = z/8} with proba-
bility one. This result was proved by Chung under the assumption of a
finite third moment and under progressively weaker moment assumptions
by Pakshirajan, Breiman, and Wichura. Chung posed the problem of
whether it is enough to assume only the finiteness of the second moment
in his review of Pakshirajan’s paper in 1961. We showed earlier that
(nflog log m)* is the correct normalization but were unable to show that
the constant is necessarily z/8%.

1. Introduction. Let {X,} be a sequence of real valued, independent, identi-
cally distributed random variables defined on a probability space (Q, &, P).
Define S, = X, + .-+ + X, and 4, = max, ., |S,]. We will prove the

THEOREM. If EX, = 0 and EX® = 1, then

An

(n/log log n)?

This result was obtained by Chung (1948) under the additional assumption
that E|X,|* < co. In 1959, Pakshirajan showed that it was sufficient to assume
that E|X,|*** < co for some 6 > 0. In his review of [6], Chung raised the
question of whether the result is still valid if only the second moment is assumed
finite as in the case of the Hartman-Wintner law of the iterated logarithm.
Breiman (1967) proved that it is sufficient to assume that E(X, loglog | X))’ < oo
and Wichura [7] recently showed that even EX?loglog |X,| < oo is enough.
In an earlier related paper [5], we proved the theorem except for the fact that
the constant value of the lim inf might depend on the distribution of X;.

lim inf,

T
= — a.s.
8t

2. Proof of theorem. First we will need a result about Brownian motion
which is well known but we will include the proof for completeness.

LemMMA 1. Let B, be standard Brownian motion and R, = max,.,, |B,|. Letc
be a positive constant and t, = cn®. Then

R,”
* (t,/log log t,)}
(Actually, there is equality but we only need the inequality.)

lim inf,_,
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T
— a.s.
8
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Proor. The distribution of R, is given by [4, page 206]:

Pl <) = PR <) = 2 mo (2 expl—man + 17807

and so

4

v {e—n2/ax2 _ %e-sﬂ/az?} < P{ t< x} < 4
T

T

= e—n?/sa?

(2.1)

Now let U, = max, <. |B, — B, _|. The U, are independent and

P10 < i iogregn) 1 = MG < sgrogit ™ % wiogn

Thus, by Borel-Cantelli we have

lim inf, _u <™ as.
(t,/loglog 1)t — 8
But, since R, <R,  + U, and
lim sup, ., _&L___
(1,/log log 1,)
= limsup,_,, R,y (taaloglogr, )t _

(tp-1loglogt, )t (1,/log log 1,)}
by the standard law of the iterated logarithm, this is sufficient.

Now we are ready to obtain the upper bound of the theorem. We use the
Skorokhod embedding (see, e.g. [3, page 276]) to construct a standard Brownian
motion B, and a sequence {T,} of nonnegative, independent, identically dis-
tributed random variables with ET, = 1 such that the distribution of S, S,, - - -
is the same as that of B/, B; .7, - ++. Thus we may work with the latter
sequence. Take ¢ > 0 and let ¢, = (1 + &)n”,

R
= — | = 1.0. ¢,
! <log log ¢,
Q={T\+ -+ + T, < (1 + ¢)n eventually},

and Q, = Q, n Q,. By Lemma 1 and the law of large numbers, P(Q,) = 1.
Now if @ € Q, and 7 is sufficiently large,

Aun = MaXygjcan [Bryoir| S R,

and infinitely often this is

(1 + )-_ (Fgllgg t, )k é ( E)g gi <10g ln(:g n")& ’

This suffices for the upper bound.
The lower bound depends on
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LeEMMA 2. If ¢ < n/8%, then there is any > 1 and a positive constant C such that

P << (iogiogn) 1 = iogs)

Sfor all n sufficiently large.

Assuming the lemma for the moment, let n, = [a*] for « > 1. Then logn, ~
k log a so that by Borel-Cantelli, with probability one,

4, >c <i_>i
= \loglogn,

for k sufficiently large. Then if n, < n < n,,, and k is large,

A, > A, = c<___”'°_>* > ¢ <__”__>* a.s.
— "7 \loglogn,/ ~ a \loglogn

This is sufficient since ¢/a can be made arbitrarily close to /8.
PRrooOF oF LEMMA 2. First, let
M, = max, g, Sk m, = min,g, ., S,
M = max,, ., B,, m = miny,, B, .
Now, if @ < b, we have by the invariance principle (see, e.g. [3, page 282])

M,
nt

2.2) P{a<_’?’;_§ <b}—->P{a<m§M<b}
n

and the convergence is uniform in a, b since the limit distribution is continuous.
If y = (b — a)/2, then

(2.3) Pla<m< M< b < PR <7}.

(This intuitive result may be obtained easily from the joint distribution of m
and M (see, e.g. [1, page 79]), or it may be seen even more easily by noting
that it is equivalent to saying that Brownian motion is less likely to leave
(—7, 7) by time one, starting from zero, than if it starts at x == 0. The inequality
is then obtained by starting a Brownian motion at zero and restarting it when
it first hits the set {x, —x}.) Now by (2.2), (2.3), and (2.1) we see that for given
7 > 0, there exists a v, such that for all a, b satisfying b6 — a = 2y and all
v = v,

(2.4) Plat < m, < M, < bt} < 2e="87,
Choose £ € (c, n/8%), n e (1, */85?) and then take 8 so large that
(2.5) VB & gmntul/eel

Let v = [Bn/log log n] and N = [loglog n/B]. Then, for large n,

(2.6) {4, < c<i)g_;’6é7)*} C N E s
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where
n 3
E, = n;'=1 {ls(k—l)v+jl <c <W> }
: s S, E) s
c ﬂj=1 Stk-nv+i — Sck-1y € —-B;V ’ -‘é;” (k=D *

Thus, by (2.4) with y = £8-%, we have for all sufficiently large n
P(E|Sp-1),) < 2677052,
Applying the Markov property to (2.6) in the usual way we then obtain

P {An <ec (@I’o?;)%} < (2e-PHmn)

< C(zl/ﬁe—z2/8$2)log logn
< C(log n)=7,
the last inequality being a consequence of (2.5).
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