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CHARACTERIZATIONS OF SOME STOCHASTIC PROCESSES!

By Y. H. WaNG
Concordia University, Sir George Williams Campus

In this paper, we extend known characterizations of normal and other
distributions. Let X{(¢), # = 0, be a continuous (in probability) homogene-
ous process, with independent increments. Let g(s, ¢) and A(s) be continuous
functions on [a, b]2 and [a, b], 0 < a < b < . Define stochastic integrals
Y= () h(s)X(ds)and Yz = (¥ 2 g(s, ) X(ds)X(dr). Ttis known that Y; exists
in the sense of convergence in probability. It is shown here that Y; exists
at least in the sense of convergence in L;, under the additional assumption
that Xis of second-order. The main results of this paper are to obtain, under
additional appropriate assumptions on g and &, characterizations of a class
of stochastic processes which include the Brownian motion, Poisson, nega-
tive binomial and gamma processes, based on the linear regression of Y, on
Y.

1. Introduction. One of the most well-known theorems on the characteriza-
tion of probability distributions involves the independence of the sample mean
and sample variance. Historically, it is the first theorem on characterization.
In 1925, Fisher [2] proved that if the population distribution is normal, then
the sample mean and sample variance must be independent. The important
Student’s ¢ distribution was derived using this result. In 1936, Geary [3] proved
that the independence of the sample mean and sample variance is a sufficient
condition for the population distribution to be normal under the assumption
that it has moments of all order. This theorem was later improved upon by
many authors, and closely related characterization theorems were obtained for
other distributions such as the Poisson, binomial, negative binomial and gamma
distributions. For a review of the literature in this area, the readers are referred
to [4], [8] and [9].

The purpose of this paper is to extend the above results to stochastic processes.
We prove two characterization theorems for stochastic processes based on the
linear regressions of double stochastic integrals on simple stochastic integrals.
Our results include Brownian motion, Poisson, gamma and negative binomial
processes. For recent characterization theorems of Brownian motion and Poisson
processes, see [10].

2. Preliminaries. Let X(¢), t = 0, be a stochastic process. Fix [a, 5], 0 <
a<b< oo Letg(x,:---,x,) be a real-valued function defined on [a, b]*
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and
2.1 Po={(tis tus s li)) 1 @ = 1y < 1y < - o0 < My, = b,
i=1,2,...,
be finite sets of points defining partitions of [a, b]. Let S(n,, ---, n,), k = 1,
denote the approximating sum corresponding to the partitions P, - - -, P,:
(2.2) S(ny, cooom) = THog e Nk 9t -5 ) XAy, - - lej) >
where  X(At;, .- -, Aty = TTE [X(2) — X(15,0)] and ¢ ;0 St < 1,
Ji=1l,---,n,i=1, ..., k. Evidently, S(n,, ---, n,) is a sequence of random
variables determined by the partitions P,, - .-, P, and the intermediate points
t’s. Nowletn,— oo, - . ., n, — oo such that max; .. ; A1l (4, — 1,20} — 0.
If S(n,, - - -, n,) converges uniquely in probability or in L, to a limiting random
variable, and if the limit is independent of the partitions Py, ..., P, and the
choices of the intermediate points r’s, then the limiting random variable is
called a stochastic integral which we write as

(2.3) Y=oty -+, ) X(dr) - - - X(d1) .

We say that the function y(#, ---, t,), / = 1, is a function of bounded varia-
tion in [a, b] if there exists a constant C, 0 < C < oo, independent of the parti-
tions P;, - - -, P, but possibly depending on the interval [a, b], for which

(2.4) Dy e Bl Ar(n, 1) < C
for all partitions P, - .., P,, where
(2.5) AT(’ila e ly) = IT |T(’i1’ H) til) = (Lyrs =+ s til')l

and the product is taken for all (i, - - -, i;’) such that exactly one coordinate of
@#'s -+, i) equals the corresponding one of (i; — 1, ..., i, — 1) and the rest
(I — 1) are equal to those of (i}, - - -, i;). (This definition of “bounded variation”
is a generalization of the one given by Loéve on page 473 in [5].)

If k = 1, it is known (c.f. [6], pages 103-7) that: a) If the covariance function
7(t, s) = E[X(1)X(s)] is a function of bounded variation in [a, 5] and g is a con-
tinuous function in [a, 6], then the stochastic integral Y, defined by (2.3) exists
in the sense of convergence in L,; b) If X is a continuous (in probability) homo-
geneous process with independent increments and if g is a continuous function
in [a, b], then the stochastic integral Y, defined by (2.3) exists in the sense of
convergence in probability. Since for a continuous, second-order, homogene-
ous process with independent increments, the covariance function y(z, s) =
E[X(#)X(s)] is a function of bounded variation in [a, b], if in b) we require that
X be of second order, then the stochastic integral Y, defined by (2.3) exists also
in the sense of convergence in L,.

If k = 2, it is an open question whether the stochastic integral Y, defined by
(2.3) exists in the sense of convergence in probability, even under the assump-
tion that X is a continuous and homogeneous process with independent incre-
ments, and g is a continuous function in [a, b]*. We shall prove the following
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theorem, which gives the existence of the stochastic integral Y, defined by (2.3)
in the sense of convergence in L,.

THEOREM 2.1. Suppose that g is a continuous function in[a, b]* and the covariance
Sfunction y(t;, -+ -, ty, 8y, - -+, 8) = E[X(1)) - -+ X(t,) X(s,) - - - X(s,)] is a function of
bounded variation in [a, b]. Then the stochastic integral Y, defined by (2.3) exists
in the sense of convergence in L,.

Proor. We show that the approximating sum defined by (2.2) is a Cauchy
sequence in L,, for which it suffices to show that

(2.6) limni,ni'_.w,lgigk E[S(ny, -, n)S(n/, -+, )]

exists and is independent of the manner in which n; and n/ tend to infinity.
It follows from (2.2) that

(2'7) E[S(”v R} nk)S(nll’ Tt nk,)]
= Dl DL 9@l oo 15)9(sSs - STT(Bty, <o, Asy)
with
(2.8) 1Aty - oo Aty Asyy oo, Asy)
= 2no (=" 2 T(til’ s s Sp ""sj,,)

and 3], denotes the summation of all possible (¢, -, t;,,5;, -+, 5;,) such
that exactly m (0 < m < 2k) of i}, -+, @y, ji1, -+, j, equal i, — 1, -, i — 1,
Ji — L, -+, ji, — 1 and the rest (2k — m) are equal to i, - - -, i, ji, - +» Jiu-

Since by our assumption the covariance function y is a function of bounded
variation in [a, b], the right-hand side of (2.8) converges absolutely, therefore
the limit (2.6) exists.

It follows from (2.8) that if we let n, — oo, n/ — oo for all i, the limit of
(2.6) is
(2'9) Sg e Sg g(’n ) tk)g(sv ctty Sk)T(dtp ey dsk) .

This fact gives us the following theorem. A stochastic process X(7) is said to be
a Ith order process if E|X(7)|" < oo for all ¢.

THEOREM 2.2. Suppose that X is a 2kth order process with covariance function
T(ts <05 Lo Sps -+, 8) = E[X(1) - - - X(1,) X(sy) - - - X(5,)] and let g be a con-
tinuous function in [a, b]*. Then the stochastic integral (2.3) exists if and only if
the Riemann-Stieltjes integral (2.9) exists.

From now on we shall assume that X is a continuous (in probability) homo-
geneous process with independent increments. Also to make sure that the double
integrals Y,’ and Y,” defined by (2.11) below exist, at least in the sense of con-
vergence in L,, we shall assume that X is a process of second order.

Let g,(t, s) and g,(t, s) be two continuous real-valued functions defined on
[a, b such that

(2.10) §t 52 g\(t, s)dtds =0, §8 82 g.(t, s)dtds =c+0 and
faon(t, 1) dt = (50,2, 1)dt = 1.
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(The “1” in (2.10) is taken for convenience. In the proofs in Section 3, we only
require that the corresponding integrals do not vanish.)
We define two double stochastic integrals Y,’ and Y,” by

@11) Y/ = §2Lgy (L )XdX(ds)  and Yy = {48 gy(t, ) X(d)X(ds) -

The following results are well known, and their proofs can be found in many
standard textbooks on probability theory, such as Chung [1] and Loeve [5].

LeEMMA 2.1. Suppose X is a continuous (in probability) homogeneous process with
independent increments, then:

a) X is infinitely divisible and hence its characteristic function ¢(u, t) = E[e™* ]
never vanishes for all real u and t = 0.

b) é(u, t) = ¢'(u), for all t = 0, where $(u) = ¢(u, 1).
If, in addition, we assume that X is of second order, then:

c) E[X(t)] = tu, Var[X(f)] = te* and Cov [X(t), X(s)] = ¢* min (¢, 5) for all
t, s = 0, where ¢ = E[X(1)] and 6* = Var [X(1)].

d) For the stochastic integrals defined by (2.11), we have E(Y,') = o* and E(Y,") =
o + p*. If in (2.3) we require that \} g(t)dt = 1, then E(Y,) = p.

Leta < a, < b, < b,i = 1,2, besuch that [a,, ,]* and [a,, b,]* are two smallest
squares inside [a, b]* satisfying g,(¢, 5) = 0 for (¢, s) ¢ [a,, b,]’, i = 1,2. Alsolet
I, i = 1,2, be any intervals satisfying [a,, b,] S I, < [a, b], i = 1, 2. Define

(2.12) h(t) = 1/(length of 1)), if rel, and =0 elsewhere,
i=1,2.

Supposea = a,,b = b,,i = 1,2, thenl, = [a;, b,] = [a,b]land h(t) = (b — a)™*
for t € [a, b] and = 0 elsewhere, i = 1, 2.
We define two simple integrals Y,’ and Y,” by

(2.13) Y, = {} hy(r)X(dt) and Y, = (¢ hy(0)X(dr) .
It follows from Lemma 2.1-d) that E(Y,") = E(Y,”) = ¢ = E[X(1)].

3. The results. The first theorem we show is a characterization of a class of
stochastic processes which includes the Brownian motion process with linear
mean value function, and the Poisson process based on the property that the
regression of Y, and Y, is a.e. linear. A homogeneous process X with inde-
pendent increments is said to be 1) a Brownian motion process (also Wiener
process or Wiener-Lévy process) with linear mean value function if the incre-
ments X(¢ + r) — X(¢) have normal distributions with means gz and variances
o’t, for all ¢ = 0, 2) a Poisson process if the increments X(¢ + ) — X(f) have
Poisson distributions with parameters 4z, for all - = 0. It follows from Lemma
2.1-d) that the two stochastic integrals Y,’ and Y’ as defined by (2.13) and (2.11)
are unbiased for ¢ and ¢°, the location and scale parameters of the process X,
and therefore they are the stochastic process versions of the sample mean and
variance. Since the Brownian motion with linear mean value function is a
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stochastic process version of the normal random variable, we can expect to ob-
tain a characterization theorem of it based on the property E(Y,’| Y,’) = constant
a.e. Similarly, for the Poisson process, the location and scale parameters are
equal, and we look forward to characterizing the Poisson process with the prop-
erty E(Y,'|Y)/) = Y, a.e.

For convenience and without loss of generality we shall assume that [a, 6] =
[a;, ] =1, =[0,1],i=1,2.

LemMA 3.1. Suppose that X(t), t = 0, is a continuous (in probability) homogeneous
second-order process with independent increments and let ¢(u, ) = E[e™**¥'] be the
characteristic function of X(t) and ¢(u) = ¢(u, 1). Then

8) E[(X(t;) — X(t;-1)e™ ) = (1fi)(t; — t,-)¢'(w), for all 0 <, , < 1; < 1
and all real u.

b) If (5;155:) N (1;-10 1) = B, then E[(X(s;) — X(s,-))(X(1;) — X(t;-0))e™ "] =
— (8 = i)ty — LIPS W), forall0< s, =5, =1L, 0, =521
and all real u.

©) If (515 80) = (1;-10 1), then E[(X(s;) — X(s5;-1))(X(1;) — X(1;-,))e™* "] =
— (8 = 5[ P @PF7 (W) + (50 — s H{[F' (W7 (W) — ¢7(w)), forall0 < s,y =

s; < 1 and all real u.

ProoF. Note first that by Lemma 2.1-a) ¢~*(¥) in b) and c) above are well
defined for all real u.

a)  E[(X(r;) — X(1;-,))e™* ]
= E[(X(t;) — X(t;,))e™ X=X t-0Nd(u, 1 — t;)d(u, t;_,)

= L0 Gty — 1) 1 — b 1) = (1 — )P ) -
i ou i

b)  E[(X(s) — X(s5))(X(1) — X(2;-,))e™ ]
— E[(X(Sl) . X(Si_1))61;“(“,(%’—‘””'1”]
X E[(X(1;) — X(1;)e =X t5-0]
X ¢, 1 — 1,4+ 1, — 8 + ;1)

i
X o(u, 1 —t; + 1,0, — s, + 5i-1)
= = (8 = si)(t; = )P WPPT) -

The proof of c) proceeds similarly and is omitted.

THEOREM 3.1. Suppose X(t), t = 0, is a continuous (in probability) homogeneous
second-order process with independent increments, and let Y,' and Y, be defined as
in (2.13) and (2.11), respectively. Then the conditional expectation

(3.1) E(Y/|Y ) =aY/ + B

holds a.e., where a and 3 are real constants, if and only if
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(1) a =0, and X is a Brownian motion process with linear mean value function.
(2) a # 0, and X(t) = aY(t) + (B/a)t, where Y is a Poisson process.

PrOOF. As we have mentioned earlier, it is assumed, without loss of generality,
that [a, b] = [a,, b,) = I, = [0, 1], i = 1, 2. It follows from Theorem 6.1.1 in
Lukacs and Laha [7] that the condition (3.1) is equivalent to
(3.2) E[Y,/ e ¥ V] = aE[X(1)e* ] + BE[e™* ], for all real .

The left-hand side of (3.2) can be expressed as
(3.3)  E[Y/e"r®] = lim $3_, T, 0:(t% %)

X E[(X(t;) — X(£;-))X(se) — X(se-1))e™ ]

where0 =, <, < - <t,=1,0=5<5< - <s, =L, t;, =t;* ¢,
Spoy < 5% < s, and the limit is taken in such a way that max; , [t; — ¢;_,][s, —
5,_1] — 0, as n, m — co. To simplify our calculation, we shall assume, without
loss of generality, that n = mand 5, = ¢, foralli =0, 1, ..., n. (Otherwise, a
finer partition which includes #,’s and s;’s may be taken.) Then, using Lemma
3.1-b) and c), we have

Z%ar Zha 5% sE[(X(15) — X(1;0))(X(5) — X(5-))e™ ]
= 251 0u(t;%, 57 E[(X(1;) — X(1520))%e™ ]
(3-4) + Zia1 Zews (15" 57 VE[(X(15) — X(1;0))(X(50) — X (Si-r) )€™ V]
= = D51 D= G5 5N — 152008 — se-)[ (@)~ (w)
+ L 9u(5%, 57 — S (7 (w) — ")} -

Letting n — oo with max, ;(¢; — t;_,)(s; — $,_,) — 0, the first summation in (3.4)
converges to

(3.5) — 4 §b 0(t, 5) dt ds[ ¢ (W[~ w) = 0.
The second summation in (3.4) converges to (note, we have ¢; = s;, for all j)
(3:6) gt ndr{[F ()PP () — $"()} = [$' ()P~ (u) — ¢"(w) -

Therefore, from Lemma 3.1-a), and equations (3.5) and (3.6), the condition
(3.1) is equivalent to

3.7) [¢' (W)~ (u) — ¢ (u) = % &'(u) + Po(u), for all real u.

or (for detail from here on see [8]),

(3.8) ad_u (% 3(u) / ¢(u)> = ai (5& B(u) /¢(u)> — 8,  forallreal u.
From (3.8), we conclude that if a = 0

(3.9) d(u) = exp{ipu — 3o’u*}, for all real u,
where £ is a real number and ¢* > 0, both independent of u. If @ + 0

(3.10) P(u) = exp{—i(Bja)yu + A(e** — 1)}, for all real -
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where 4 is a nonnegative real constant independent of u. The proof is completed
by Lemma 2.1-b).

REMARK. It follows from Theorem 3.1 that if « = 1 and 8 = 0, that is
E(Y,|Y/) = Y/ a.e., then we have as expected, a characterization theorem of
the Poisson process.

Next, we present a characterization theorem for the gamma and negative bi-
nomial processes. A homogeneous process X(¢) with independent increments is
said to be 1) a gamma process, if the increments X(r + r) — X(f) have gamma
distributions with parameters ar (@ > 0) and 8 > 0, for all = = 0, 2) a negative
binomial process, if the increments X(r + ) — X(7) have negative binomial dis-
tributions with parameters rt (r = 0) and p (0 < p < 1), for all = = 0. Since,
by Lemma 2.1-d) the two stochastic integrals Y,” and Y,” as defined by (2.13)
and (2.11) are unbiased for ¢ and ¢* + (7, they are two stochastic process versions
of the sample mean and the quadratic statistic $* = (1/n) 37, X;>. The follow-
ing theorem is a logical extension of Theorem 3.1 in [8].

THEOREM 3.2. Suppose X(t), t = 0 is a continuous (in probability) homogeneous
second-order process with independent increments, and let Y, and Y, be as defined
by (2.13) and (2.11), respectively. Then the conditional expectation

(3.11) E(Y,"|Y)) = aY,”
holds a.e., where a is a real number, if and only if

(1) @« =0, and X or — X is a gamma process,
(2) @ #0,c <0, and X(t) = aY(t), where Y is a negative binomial process.

Proor. Following the steps in the proof of Theorem 3.1, we can rewrite the
condition (3.11) as

(3.12) 5_14 <g; ¢”(u)> = ai (% ¢°(u)> , for all real u.

From (3.12) it follows that if « = 0, then

(3.13) du) = (1 — i0u)-* for all real u.

where 2 = —c™' > 0 and ¢ is a real constant independent of u. If a + 0 and

¢ < 0, then

(3.14) o(u) = <__P—>T , for all real u.
1 — get=

where r = —¢ ' >0,0< p<1and ¢g=1— p. The proof is completed by
Lemma 2.1-b).
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