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A GENERALIZED SHANNON-MCMILLAN THEOREM FOR
THE ACTION OF AN AMENABLE GROUP
ON A PROBABILITY SPACE

By J. C. KIEFFER
University of Missouri at Rolla

A generalization of the Shannon-McMillan Theorem (L! version) is ob-
tained for the action of an amenable group on a probability space, thereby
settling a conjecture of Pickel and Stepin. Interesting properties of the
limit function are derived. The entropy of an action of an amenable group
is defined.

Let G be a group and let (Q, .7, 2) be a probability space. Let T: G X Q@ — Q
be an action of G on Q; that is, for each g € G,T(g, +): Q — Q is measurable and
measure-preserving and 7(g,9,, ®) = T(g,, T(9, ®)), 9y, 9:€ G, 0 e Q. (From
now on, we will write T for the map T(g, +).) We suppose from now on that
G is amenable; that is, there exists an invariant mean on B(G), the space of
bounded real-valued functions defined on G. (The amenable groups have not
been completely characterized as yet; finite groups and abelian groups are ame-
nable, and any extension of an amenable group by an amenable group is ame-
nable. Thus, for example, solvable groups are amenable.)

If E is a set, let |E| denote the cardinality of £. Let K be a subgroup of G.
Then K is amenable and there exists a net {4,} of finite nonempty subsets of K
such that

(1) lim, |4, g4, N 4] =1, gek.

(See [4]; conversely K is amenable if a net {4,} of finite nonempty subsets of K
exists satisfying (1).) From now on, we say that a net {4,} satisfies property &

with respect to a subgroup K if {4,} is a net of finite nonempty subsets of K

satisfying (1).

If Q is a partition of Q, and @ € Q, let Q(w) be the element of the partition Q
which contains w. Let P be a fixed countable measurable partition of Q with
finite entropy H. If E is a finite nonempty subset of G, let h(E) ¢ LY(Q) be the
measurable function such that

hE) = —10g A[{V ;ex (T*)'PY@)], ©eQ.

The Shannon-McMillan theorem states that if G = Z, the group of integers,
and 4, ={0,1, -..,n}, n=1,2, ..., then |4,]7'h(A,) converges in L'(Q) as
n— oo [1]. A generalization of the Shannon-McMillan theorem for the group

Received October 3, 1974; revised May 1, 1975.

AMS 1970 subject classifications. Primary 60F99, 28A65; Secondary 43A07.

Key words and phrases. Amenable group, Shannon-McMillan theorem, entropy, group action,
partition of a probability space.

1031

I8
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éfr )2
The Annals of Probability. RIKORN

WWWw.jstor.org



1032 J. C. KIEFFER

Z* (where k is a positive integer) has appeared which states that if 4, — {(xys
Xy ooy X)) €ZF:0< x, <n,i=1,2,.--,k}, n=1,2, ..., then |4,|"'h(A4,)
converges in L(Q). (See [5], [6], [12].) Pickel and Stepin [10] have shown that
if G is the group of dyadic rationals modulo one and if 4, is the cyclic subgroup
of G generated by 2", then |4,|"'h(A,) converges in L(Q) as n — co. Pickel
and Stepin conjectured that a result of this type holds for every countable abelian
group G. The main result of this paper is the following theorem which includes
these results as special cases, and settles the conjecture of Pickel and Stepin.
(In the following, we say that a function fe LY(Q) is invariant with respect to
a subgroup K if for each g e K, - T? = fa.e. [1].)

THEOREM 1. Let K be any subgroup of the amenable group G. There exists a
function £(K) e LY(Q), invariant with respect to K, such that for every net {A,)
satisfying property ./’ with respect to K, lim, |A,|7*h(A,) = £(K) in LY(Q).

It turns out that Theorem 1 will follow “>m Theorem 3, which is a special
case of Theorem 1 for countable subgroups. We therefore have to defer our
proof of Theorem 1 until after Theorem 3 is proved.

DEeFINITIONS. If g € G and A is a nonempty subset of G, let A(g | A) € LY(Q) be
the function such that

h(g| A)(w) = —log A[{(T")'PY@)| A )(@), ©eQ,
where _#Z, is the smallest subsigma-field of _ containing J,., (7?)"'P. Let
h(g|$) = h({g}). Let H(g|A) = \ h(g| A)dA, H(E) = § h(E)dA. Let e be the
identity of G. If K is a subgroup of G, let Z(K) = {M e _#: for each g € G,
A[T*(M) A M] =0}. We remark that a function fe LY(Q) is invariant with
respect to K if and only if f is measurable with respect to Z7(K).
The following lemma is easily proved and is left to the reader.

Lemma 1. If {A,} satisfies property . with respect to the subgroup K, and if E
is a finite subset of K, lim, |A,|7'|N,cr 94 = 1.

LEMMA 2. a) If {E,} is a sequence of subsets of G and E, 1 E, then h(e|E,) —
h(e|E) in L{Q) and a.e. [2]. Furthermore, § sup, k(e|E,)dA < H + 1. ’

b) h(e|E)T* = h(g|Eg) a.e. [1], g€G.

C) H(e|E) < H(e|F), EDF.

d) If E D F and H(e|E) = H(e|F), then h(e|E) = h(e|F) a.e. [4].

PROOF. Parts a) and c¢) may be found in [9], Chapters 1 and 2. Part b) is
easily shown from the definition. Part d) follows because if the conditional
information H(e|F) — H(e|E) is zero, then the conditional information density
h(e|F) — h(e| E) is zero almost everywhere ([11], page 35).

A total order of the set W is a transitive relation on W such that if x, ye W
exactly one of the following holds: x < y, y < x, x = y.

Let K, be a fixed countable subgroup of G. Corresponding to K,, construct
a probability space (S, ., p), an action U of K, on S, and a total order < of S
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such that the following two properties hold:

(2.1) For each se S, if g, and g, are distinct elements of K;, then U?i(s) and
Uvx(s) are distinct elements of S.

(2.2) For each ge K, {se S: U'(s) < s} e S

To see that one can do this, if X, is finite take § = K, with each point of §
measurable with measure |S|~!, and let < be an arbitrary total order of S. Let
K, act on S by left multiplication.

If K, is countably infinite, one can assign to {0, 1}*1 (the set of all maps from
K, to {0, 1}, or equivalently, the Cartesian product of a countable number of
copies of {0, 1}, indexed by K,) the usual product sigma-field, and then an ap-
propriate product measure. (A measure which induces in each factor {0, 1} of
the product space {0, 1}*1 the measure p such that p({0}) = p({1}) = 4, will do.)
Let the action of K, on {0, 1}¥1 be left translation. It is not hard to show that
there is a measurable subset S of {0, 1}¥1 of measure one, invariant under the
action of K,, such that (2.1) holds. One then restricts the action of K, to the
subspace S and orders S by a lexicographical order. Then (2.2) will also hold.

DEerINITIONS. For each se S let <, be the total order of K, such that if g,,
9:€ Ky, 9, <, 9, if and only if Un(s) < Ur(s). Let V (s) = {9’ € K;: 9’ <, 9},
gek, seS. Let (S x Q, x # p x 1) be the probability space which is the
Cartesian product of (S, & ) and (Q, _#; 2).

LEMMA 3. For each E C K, there exists a jointly measurable function ¢ e
LY(S x Q) such that

a) For almost every s with respect to 1, ¢(s, ) = h(e| E 0 V(5))(+), a.e. [1];

b) If{E,}is a sequence of subsets of K, and E, | E, then ¢, — ¢, in L'(S x Q);

c) If K, is a subgroup of K, and & is the family of all finite subsets of K, directed
by inclusion (D), then limg. - ¢p = ¢y, in LY(S x Q).

Proor. Using condition (2.2) above, for each finite subset E of K,, ¢, can
be defined as a jointly measurable function satisfying a). If F C K| is not finite,
choose a sequence {F,} of finite sets such that 7, 1 F. Then by a) and Lemma 2a,
¢, converges almost everywhere to a jointly measurable function we will call
¢, which satisfies a). Now if E, 1 E, then ¢, — ¢, a.e. [¢ x 4] by Lemma 2a
and a). Also by Lemma 2a, sup, ¢, € LY(S x Q) and so by the dominated con-
vergence theorem, ¢, — ¢, in L(S x Q). For the proof of c), if lim, . ¢, =
¢, then there exists a sequence {F,} from -7 such that F, 1 K, and lim, ¢,
$x,» which is a contradiction of b).

We will make essential use of the following generalized ergodic theorem due
to Chatard [2].

THEOREM 2. Let K be a subgroup of G. Let the sequence {A,} satisfy property
P with respect to K. Then if fe L{(Q) lim, |A4,|™ X e, [+ T = E(f | €(K)) in
LY(Q).
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THEOREM 3. Let K, be a countable subgroup of G. Let K, be any subgroup of K.
Let the sequence {A,} satisfy condition 7 with respect to K,. Then |A4,|7h(A,) —
E({s ¢x, dpr| 2(Ky)) in LY(Q).

Proor. From the definition of conditional probability, it easily follows that
h(A,)@) = X eq, (9| A 0V ())(@), ae. [¢ x 4]. Using Lemma 2b, we see
that A(A,) (@) = 3, c4, He| 4,97 N V()97)(T?w). Since V (s)g~" = V(U’s),
B(A)@) = Nyea, $a,o-1(Us, T°0). Integrating with respect to p, h(4,) =
Yigea, [V P4, p-1dp]- T, ace. [4]. Now from Theorem 2, we need only show
that lim, ., {|4,]74(A4,) — |A4,]7* Zyea, [§ ¢, de]- T?} = 0, in LY(Q). We have
”h(An) - deA,, [§ ¢K2 dy] : Tg” = deA,, ||¢A,ng_1 - ¢K2||,’ where ”‘” denotes
the L'(Q) norm, and ||+||’ denotes the LY(S x Q) norm. It suffices then to show
thatlim,, |4,|™ 3, c 4, [$4,0-1 — $x,ll” = 0. Fixe > 0. Using Lemma 3c, choose
a finite subset B of K, such that ||¢, — || < ¢ for each finite subset 4 of K,
suchthat 4 D B. Let Z, = Ny b'4,, n = 1,2, .... Let Z,° be the comple-
ment of Z,in G. Now if g € Z,, then 4,97 D B. Thus ¥ ., ||¢4,,1 — P,/ =
deA,nnZn ||¢A,ng‘1 - ¢K2||, + deA,nnZ,nc ||¢A,ng_1 - ¢K2||’ <¢d,n Z,|+2H(A4, N
Z,). By Lemma 1, lim,|4,|"!|4, n Z,| = 1 and lim, |4,|""|4, n Z,7| = 0. Thus
lim sup, |4, X eu, |$4,0-1 — $&,/]" = e This completes the proof.

PrROOF OF THEOREM 1.

ParT I. Let {4,} be a net satisfying property . with respect to K. Suppose
lim, |A4,|~'h(A,) does not exist in LY(Q). Then for some ¢ > 0, we may define
inductively a sequence {E,} of finite subsets of K and a sequence {C,}; extract-
ed from {A,} such that

a) C,isany A4, and E, = {e};

B) [ICA="(C,) — |CaalH(Co)l| Z & 1 2 15
C) Icn|_1|naeEﬂ_l gcnl = I —nn = 13

d) E,=[E,_,uC,UC ", n=1.

(To accomplish c) above, use Lemma 1.) Then {C,} satisfies property <~ with
respect to the countable group |J,, E,. This implies by Theorem 3 that |C,|~*A(C,)
converges in LY(Q), a contradiction of b). Thus lim, |4,|~*k(A,) exists in L}(Q).

Part II. Let {4,} and {B,} satisfy property .~ with respect to K. Let
lim, |4,|"h(A,) = hy, lim, |B,|~'h(B,) = h,. We show that #, = h,. Define in-
ductively sequences {C,}y, {D,}, {E,}5 such that

a) E, = {e}, {C.} C {4}, {D.} C (B}

) [[IC7H(C,) — bl < 1% [|IDy|7A(D,) — | < n7lm = 15

C) |C'n|—1|ngeE,n_l gcnl g l - n-l’ IDnl_llngeEﬂ_l gDnl g 1 - n_l’ h g 1;
d) E,=[E,uC,UC,'UD, U D, '

Then {C,} and {D,} both satisfy property . with respect to the countable
group U, E,, and so by Theorem 3, lim,, |C,|-*(C,) = lim, |D,|~'k(D,). Apply-
ing b), we see that #, = #&,.
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All that remains to be shown is the invariance of the limit £(K) with re-
spect to K, which is an immediate consequence of the following lemma and
Theorem 3.

LEMMA 4. Let K be a subgroup of G. Let L be a countable subgroup of K. Then
there exists a countable subgroup L' of K such that L' D L and £(L') = #(K).

Proor. Let {4,} be a sequence of finite subsets of L such that 4, 1 L. Define
inductively sequences {B,}; and {E,}; of finite subsets of K such that

a) E, = {e};

b) [l|Bu7h(B,) — £(K)|| < n'sm = 1;

) B Myer,_ 9B =1 —niyn = 1;

d) E,=[E,,UB,UB,UA,UA"n=1l.
We have that {B,} satisfies property . with respect to the countable group L' =
U.E,; thus |B,|~'A(B,) — 4(L"). From b) above, we see that |B,|"'A(B,) —
4£(K). Thus £(L') = #(K). Also, note that L ¢ L’ c K.

al

THEOREM 4. Let K be a countable subgroup of G. Let {K,} be a sequence of
subgroups of K such that K, 1 K. Then 4£(K,) — £(K) in LYQ).

Proor. Let {B,}; be a sequence of finite subsets of K such that B, 1 K, B, C
K,. Define inductively sequences {D, ) and {E,} of finite subsets of K such that

a) E,={e}, D,CK,, nz1;

b) [[I1D.|#(D,) — £(K,)|| £ n7", n = 1;

) IDa™Nyer,_, 9D, =1 — 1t n = 15

d) E,=[E,,UB,UB,*UD,UD, " n=l.

Then K = |, E, and {D,} satisfies property .77 with respect to K; therefore,
|D,|"*h(D,) — £(K). It follows from b) above that £(K,) — £(K).

DEerINITION. If K is a subgroup of G, let £ (K) = | 4(K) dA.

THEOREM 5. Let K,, K, be subgroups of G with K, C K,. Then 2¢(K;) <
FAK,).

Proor. If K, is countable then from Theorem 3 2#(K,) = (s H(e|K; N
V.(s)) du(s), i = 1,2, and the result follows from Lemma 2c. If K, is uncounta-
ble, choose a countable subgroup K, of K, such that 5#(K,") = S#1(K,). Then
choose a countable subgroup K, of K, such that K’ 5 K, and S£(K,") = S£(K,).
Then Z27(K)) < 271(K,') and thus 2Z(K,) < F#(K,).

The following result gives an interesting martingale property.

THEOREM 6. If K, and K, are subgroups of G such that K, C K, and 57 (K,) =
1K), then E[£(K,)) | Z(K))] = £(K,).

Proor. If K, is countable, then S#(K,) = § H(e|K; n V,(s)) du(s), i = 1, 2.
Thus 27(K,) = 2#(K,) implies by Lemma 2c that H(e|K, N V,(e)) = H(e|K, N
Vi(e)) a.e. [¢]; this implies by Lemma 2d that ¢, = $x,a.¢. [t x 2]. Therefore,
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§ px, dp = § i, dpr ace. [2]. Now £(K,) = E[§ ¢ dp| Z(K))], i = 1,2. Thus
E[£(Ky) | (K] = E[E[§ ¢x, dr| €1K,)]| Z(K))]
= E[E[{ ¢, dp| €(K))]| €(K))]
= E[§ ¢K1 dp| €(Ky)] = £(Ky) .

If K, is uncountable, choose a countable subgroup K,’ of K, such that £(K,") =
#(K,). Then choose a countable subgroup K, of K, such that K’ D K,’ and
4(K/) = #(K,). We have E[£(K,)| Z(K,")] = 4(K,") and thus E[£(K;) | Z(K,)] =
4(K,). Taking the expectation of both sides with respect to Z{(K,) gives
E[£(K;)| €(K))] = #(K)).

LEMMA 5. Let K, L be subgroups of G such that K C L and 4(K) = #(L). If
K’ is a subgroup such that K C K' C L, then 2(K') = #(L).

Proor. By Theorem 5, #27K')=27(K) and so by Theorem 6,
E[£(K)| €(K')] = #(K"). But E[£(K)| €(K")] = E[£(L)| ©(K")] = £(L).

THEOREM 7. Let L be a subgroup of G. Let -~ be a directed family (directed
by inclusion) of subgroups of L whose union is L. Then in LYQ) lim,. . £(K) =
#£(L), and limy . ,, ZZ(K) = infy . , SA(K) = 27 (L).

Proor. Iflimg. .. £(K) does not exist, there exists an increasing sequence {K,}
of subgroups in 2" such that {«£(K,)} does not converge. Choose by Lemma 4
an increasing sequence {J/,} of countable subgroups such that £(J,) = £(K,).
Then {£(J,)} must not converge, a contradiction of Theorem 4.

Thus lim, . #(K) = # for some function «. Let L’ be a countable subgroup
of Lsuch that (L") = #(L). Choose a sequence {E,} of finite subsets such that
E, 1 L'. Choose an increasing sequence {K,} from <7 such that £(K,) — « and
K, D E, for each n. Choose an increasing sequence {K,’'} of countable subgroups
such that K,’ K, and £(K,’) = #(K,) for each n. Let J, be the group gener-
ated by E, U K,’. Then K, c J, C K, and so £(J,) = #(K,) by Lemma 5.
Therefore £(J,) — #. Now {J,} increases to a countable subgroup J. Thus
4(J,) — £(J), and hence «£(J) = 4. Also, L D J D L’ and so £(J) = 4(L) by
Lemma 5. We conclude # = £(L). Thus lim,, . 4(K) = £(L). Integrating,
limyg, . #(K)=22(L). But lim,. . 22(K) must be inf. .7 (K) by
Theorem 5.

FINAL REMARKS. Denote S27(G) by S2(P, T) to denote the dependence of
ZZ(G) on the action T and the partition P. Define the entropy 57 (T) of the
action T to be 57 (T) = sup, &#(P, T), where the supremum is taken over all
countable measurable partitions P of Q with finite entropy. Conze [3] has defined
the entropy of an action of the group Z*. Our definition above extends his.

The entropy of an action of G is easily seen to be an invariant under iso-
morphism. Conversely, for actions of Z which are Bernoulli shifts, Ornstein
[8] has shown that equality of entropy implies isomorphism. The concept of
Bernoulli shift has been generalized to an action of an arbitrary group G by
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Kirillov [7]. It would be interesting to know whether Ornstein’s theorem gener-
alizes to actions of an amenable group G which are generalized Bernoulli shifts.
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