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UNIFORM INEQUALITIES FOR CONDITIONAL
p-MEANS GIVEN ¢-LATTICES

By H. D. BRUNK
Oregon State University

Let (X, &, P) be a probability space and . a sub-g-lattice of .5 : &
is closed under countable union and countable intersection and contains X
and @. Let P+ denote conditional expectation given .» (Barlow and co-
workers, 1972), and for fixed p = 1 let M= denote conditional p-mean given
% (Brunk and Johansen, 1970). Rogge showed (1974) that for ¢-fields .+~ and
B, sup (I[P f — Pof]|;: 0 < f < 1} = 23, )1 — 6.5, )]}, where
0(7, #) = max {Supae o infpe i P(A A B),supge .5 infae o, P(A A B)}:and
that for p = 1 the convergence to 0 of ||[P nf — P = f]|, is uniform for
[fl £1if 6(F %, Fw)—0. In the present paper an inequality for con-
ditional p-means given o-lattices similar to Rogge’s is obtained for p = 2
and is applied to obtain uniformity of convergence to 0 of ||[M-»f —
Mo fl|, when 6(-, %) — 0.

1. Introduction. Let (X, 5, P) be a probability space, and let . and <%
be g-sublattices of .~ : each is closed under countable union and countable
intersection, and contains X and the empty set, . A pseudo-metric on the set
of all s-sublattices of & isdefined by §(.57, £#) = max {sup,. , inf,. , P(4 A B),
supy. , inf,. . P(4 A B)}. The restriction of this pseudo-metric to the set of
o-subfields of .~ was introduced by Rogge (1974). Boylan (1971) used a similar
pseudo-metric in obtaining conditions sufficient for the convergence in L, of a
sequence of conditional expectations P(f|.%,) to be uniform in the class of
# -measurable real valued functions f bounded in absolute value by 1; see also
Neveu (1972). Rogge sharpened and extended Neveu’s (loc. cit.) uniform in-
equality for conditional expectations and showed that ||P*"»f — P =f|, — 0 as
n— oo uniformly in the class f: | f| < lif and onlyif (27, -/ ) — 0; here
denotes the usual norm in L,(X, &, P). Further, for p > 1, (%", 4 )—0
implies [|[P7»f — P*=f]||, — 0 uniformly in the same class of functions f, where
, denotes the norm in L, (X, &, P). These results follow from his funda-
mental inequality,

‘1

sup {||[P“f — P2f]l:: 0 = f < 1} < [20(5, B)(1 — o(, D))

Applications of conditional expectation given a g-lattice are described by
Barlow and coauthors (1972). Conditional generalized means were studied by
Brunk and Johansen (1970). In the present paper, inequalities similar to Rogge’s
are obtained for conditional p-means given o-lattices, when p = 2. Whether or
not similar inequalities obtain for other generalized means remains an open
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question. Also, the specialization of the inequality of the present paper to the
case of conditional expectations and o-fields is inferior to Rogge’s inequality,
and it is an open question whether inequalities for the more general situation
which reduce to Rogge’s can be obtained.

2. Terminology, notation, and preliminary results. As the reader has noticed
above, some elements of the notation proposed by de Finetti are used. Thus P
denotes not only the probability measure but also expectation according to the
probability measure, and P denotes conditional expectation given the o-lattice
7. Also A denotes the indicator of a set 4 in .~ as well as the set A4 itself;
A is the function X — R taking the value 1 at points in A, the value 0 at points
in 4°. Thus A A B=B(1 — Ay + Al — B)y= AV B— A A B, where Vv de-
notes maximum and A denotes minimum. If .2 is a ¢-sublattice of &%, a
function f: X — R is .%“measurable if for each real a, {f > a} € %~. One may
think of the class of all .%~measurable functions as an extension of the class of
indicators of sets in .97, and the class of .%““measurable real-valued functions
will be denoted by 7*. Fix p > 0. A function fe & * such that P(|f|?) < oo
determines an equivalence class of functions in & * differing from f on sets of
probability 0; such an equivalence class is an element of L, = L,(X, .7, P).
The notation will not distinguish between a function and the equivalence class
it represents. Throughout the remainder of the paper, p represents a fixed num-
ber, p = 2, and || f|| denotes P(|f|?); it is the usual norm in L, whereas the norm
in L, will be denoted by ||+||,. Wesetg = [1 — (1/p)]~}, sothat (1/p) + (1/q) = 1.

It follows in the usual way from Clarkson’s inequalities (1936, page 400) that
if C is a closed convex cone in L,, and if fe L, there is a unique closest point
of C to f, to be called the projection of f on C and denoted by =, f. One can
show also, as do Ando and Amemiya (1965) for the case of a subspace, that =,
is a continuous operator, not generally linear.

If . is a g-sublattice of &, L,(57) will denote the closed convex cone of
%-measurable functions in L,. If fe L,, the projection of f on L (.5 is the
conditional p-mean of f given .9, and is denoted by M*f. For p = 2 it is the
conditional expectation of f given .&, denoted by Pf. And if .=/ is a g-sub-
field of &, P*f coincides with the usual conditional expectation given .o/

The properties of M+ listed below are easily established by standard techni-
ques; see also Nikolskii (1963). Define the function & by

h(a) = |a|*~'sgna

for real @ where sgna=1ifa >0, sgna= —1ifa<0. IffeL, ifCisa
closed convex cone in L, and if g = 7, f, then

M Plgh(f — 9] =0,

and for-all ze C,

) Plzh(f — 9)] = 0.
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In particular, if f e L,, if 5 is a g-sublattice of .7, and if g = P*f, then

1y Plo(f— )] =0,
and if z e L(.%") then

@ Plz(f—9)]=0.
Setting z = 1 and z = —1 in (2), we find that
(3) ' Pf = Pg .

In fact it can be shown (Barlow and coworkers, 1972, page 343) that if ¢ isa
Borel function such that ¢(g) € L,, then

@) PLI(0)] = Plog(9)] -
IffelL, ifa<f<b,andif o is a g-sublattice of &, then
5) a< MY <b,
and
©6) If = M=AIL < A1
Further, if a = 0 and b is real,
N0 M*¥(af + b) = aM*f + b.

3. The theorem.

THEOREM. LetfeL,, p = 2. Let .57, <% be o-sublattices of &, at distance
(A B §. IfOLZ L1, then

(®) IM7f — MZf]|P < 2774o(, BT — 6(, )]}
If |f] £ 1 then
@8y IM~f — MZf||P < 2°{6(-57, B — (7, B)P
COROLLARY. Let .57, be a o-sublattice of %, n=1,2, ..., and 57 a g-sub-

lattice of &, If 6(.7,, ) — 0 as n, m — oo, then to each f e L, corresponds a
function f_ € L, such that M~ ~f — f_, and the convergence is uniform for |f| < 1.
If 6(7,, ') — O then ||M*~f — M f|| — O for each f e L,, and the convergence
is uniform for |f] < 1.

This corollary generalizes Rogge’s improvement of Boylan’s martingale uni-
form convergence theorem to conditional p-means given g-sublattices.

The theorem is proved in a sequence of lemmas.
LeEMMA 1. Let .57, &% be o-sublattices of &, For Be <5,
P(P¥B A [l — P7B]) £ 0(.¥, %) .
Proor. Set g = P*¥B, and let 4 ¢ .57. We have
P(A A B) = P[A(l — B) + B(1 — A)].
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It follows from (2)’ and (3) that
P(A A B) = P[A(L — g) + g(1 — A)]
=z PAg AL =)+ (1 —ADlg A1 =9
:P[g/\(l —g)].
Hence
Plg A (1 — g)] £ inf,. ., P(A A B) < sup,. , inf,.,, P(4 A B)
< (7, P . il
LEMMA 2. Let fe B*,0< f< 1, If 6(7, &) < 4, then
©) If — M¥FIP = 6(4, D)1 — 8(4, )] -
ProoF. Case 1: f= Be<F*. Set g = P¥f. Then

IIf — gl = P(If — gI*) = P[B(1 — g)" + (1 — B)g"] .
But from (4) we have
P[B(1 — g)*] = Plg(1 — 9)’]
and
P[(1 — B)g*] = P(¢*) — P(¢**") = P[g*(1 — 9)] -

Thus

If —gll* = Plo(1 — 9)lg"* + (1 — 9)*']} = Ple(1 — 9)] -
Setk =g A (1 — g). Then

Plg(1 — 9)] = P[k(1 — k)] = P(k) — P(k*) = P(k) — [P(K)]*

= P(O)[1 — P(k)] < (7, BN1 — 8., 55)]

by Lemma 1. A fortiori, (9) holds.

The general case: fe <#*, 0 < f < 1. Obviously every constant function f
satisfies (9), for then the left hand member is 0. Now suppose f, is simple,

fo = Zf=obiBi s

where 0 = b, < b, < --- < b, =1,B,n B, =@ fori#j,i,j=1,2,---, k.
Then

fo= Z?:l(bi_ bj-l) V?=i Bi'
Set

T ={feF* 0L 1||f — M¥S|]P < 3(S, B — 5(7, B)]) -

Since f,e F*, Vi ;B,e#* for j=1,2,..-,k. By Case 1, Vi B, ez’
But ” is convex, b; — b, =0 forj=1,2, ..., k,and X }%_ (b, — b,;_,) = 1.
Hence fe <. The set < is also closed under increasing limits; since every
function f in <#'* bounded by 0 and 1 is the limit of simple functions in <,
also fez. [l
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LEMMA 3. For real a and b, and for p = 2,

(10) @ — b7 < 27=%(a — b)[A(@) — h(®)],
where
(11) h(x) = (sgn x)|x|>~*.

ProoF. If sgna = sgn b, (10) is a consequence of the inequality (1 + x)»-! >
1 4 x?=', x = 0. If sgn a + sgn b, (10) follows from the inequality (1 + x)*-! <.
27731 4+ x*7), x = 0.

Lemma 4. Let fyeL, x*elL, A={feL,: P(x*f)<0}, M={fel,:
P(x*f) =0}, gs=74f0s 9u = 7nfor If fo2 A, then g, =g,eM, so that
P(x*g,) = 0.

Proor. Since A D M, ||fy — 94| £ ||fo — 9ul|- f g, €M theng, = g, e M.
Suppose then the contrary, g, ¢ M, i.e., P(x*g,) < 0. Since f, ¢ 4, P(x*f,) > 0.
Set ¢(1) = P{x*[tf, + (1 — )g,]}, t€[0,1]. Then ¢ is continuous, ¢(0) < 0,
¢(1) > 0. Hence 3¢,€(0, 1) such that ¢(z) = 0. Set g, = t,f, + (1 — #,)9,.

Thengie M S 4, fo — g1 = (1 — 1)(fo — 92)s Ifo — gl = (1 — )llfo — 94l <
[lfo — 9.||, a contradiction. Hence g, ¢ M and g,, = g,. []

LEMMA 5. Let fye L,. Let C, be a closed convex cone in L,, i =1,2. Set
9, = ﬂciﬂ)’ i=1,2,9, = T, 91s 12 = T G- Then
(12) llgy — gall” = 277[I1fo — Gall”?ll9y — gall + 1Ifo — @l|”*[|92 — il -

ProoF. By Lemma 3,

g, — @ll” = [I(fo — 92) — (fo — WII?
= 277°P{(9, — @)[A(fo — 92) — (/o — 9)]} -
Then (1) implies
||gl - gzllp é 2p—2P{g1 h(ﬂ) - gz) - gzh(fo - gl)} .
Note that h(f, — g)eL,, i=1,2. Set A, ={feL,: P[fh(f, — 9)] =0}, i=
1,2,and g, == 4,9 912 = 7, ¢, By Lemma 4, with x* set successively equal
to h(fy — g,) and A(f, — ¢,), P[gs h(fo — 9.)] is O if g, ¢ 4, and is nonpositive if
0, € A,, in which case g;, = g,; also P[g},h(f, — ¢,)] is O if g, ¢ 4, and is non-
positive if g, € 4,, in which case gj, = g,. In any case,
19, — @.l|” = 2°7*P{(9, — 9)h(fo — 92) + (9. — 9)h(fo — 9))} -
But for u, v, in L,,
Plub(v)]] = P(lu||v]*~") < [[ull|v]]*"* -

Also, since by (2), C; S 4,, i =1,2, we have ||g, — g3|| =< ||9, — 94| and
[19: — 95:l| < |92 — 91||- Inequality (12) follows. []

PROOF OF THEOREM. Let feL,, 0 < f<1. In Lemma 5, set C, = L,(.%¥),
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C, = L(F#), fo=f We have g, = M*f, g, = M?f, g, = MZ(M*™f), g, =
M¥(M<f). By Lemma §,

IMf — M2flle < 20=|If — M|l Mf — M= (M)
NI = MAFIPAMAf — M= (M2 f)]]

By Lemma 2 and (5), [|M*f — M*“(M[)]| < (3(, )1 — 8(=, 2,
and ||M~f — M“(M~f)|| has the same bound. Also ||[f — M~“f|| < ||f]| £ 1
and ||[f — M¥f]| < ||f]| £ 1, so that (8) follows. If |f| < 1, set f; = (1 + f)/2;
then 0< fi,< 1. Also |[MYf— MA(M“f)|| = 2||M~f, — M7(M~f)|| <
2{0(, L)1 — 6(, &) }/? and ||M~“f — M~*(M“f)|| has the same bound,
yielding (8)'. [
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