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ON VAGUE CONVERGENCE OF STOCHASTIC PROCESSES

By R. V. ERICKSON AND VACLAV FABIAN!
Michigan State University

Suppose Y, Y, are stochastic processes in C[0, 1] and the finite-dimen-
sional distributions of Y, converge vaguely to those of Y. Then a necessary
and sufficient condition for the vague convergence of the distributions of
Y» to that of Y is an approximate equicontinuity of the sequence {Y,)>.
Dudley (1966) generalized this standard result. We generalize Dudley’s
result to the case when the values of X, are in an arbitrary metric space
and extend the result also to the case of the Skorohod metric. In our situ-
ation vague compactness does not imply tightness and thus a different proof
than Dudley’s (1966) must be used. The proof we use is simple and of in-
terest even when other proofs are available.

1. Introduction. Let Y, Y, be stochastic processes with a parameter space T
and values in a metric space (Z, d) and let the finite dimensional distributions
of Y, converge to those of Y. Let 7/ be the topology of uniform convergence
in Z7, the space of all functions on T into Z. We shall say that the distributions
p. of Y, converge vaguely to the distribution p of Y, in symbols p, — p, if

1) liminfp,0 = pO for every OeZ

where p, is the inner measure induced by p, and p is the outer measure induced
by p.

For Z the real line, (T, v) a compact metric space, p tight, and under some
measurability conditions, it follows from Dudley’s (1966) Theorem 1 and Pro-
position 2 that p, — p if and only if (Y, is approximately equicontinuous, i.e.
if for every positive ¢ there is a positive d such that, eventually,

(2) (pa)-{x; SUP,(s,0)<s [x, — x| < eg>1—c¢.

The importance of Dudley’s result is that it relaxes the previously used
requirement that the domains Zp, and Zp of p, and p should contain Z/. This
relaxation makes it possible to obtain stronger properties by simpler means
in most applications when the Skorohod topology has been used (see Remark
2.12).

We shall generalize the result by deleting the assumption that Z is the real
line and by weakening the assumption that p is tight to the requirement that
(2) holds for n = 0 with p, = p. We shall talk about nets instead of sequences,
and we shall relax some other assumptions as well (see Remark 2.11). Dudley’s

Received October 25, 1974; revised April 21, 1975.

1 Research by Vaclav Fabian supported by NSF Grants GP-13484 and GP-31123X2.

AMS 1970 subject classifications. Primary 60B10; Secondary 62E20, 60G99.

Key words and phrases. Vague convergence, tightness, uniform metric, Skorohod metric,
stochastic process.

1014

g’]
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [Pz
The Annals of Probability. STOR

o B
®
www.jstor.org



VAGUE CONVERGENCE 1015

proof consists of two steps: by his Proposition 2, if (Y, is approximately equi-
continuous then (p,) is tight, and, by his Theorem 1, precompact. We shall
see in Remark 2.10 that such a proof is no longer applicable in our situation
since the approximate equicontinuity does not imply tightness.

The direct proof we use is similar to that used by Héjek and Sidak (1967,
Theorem V.3.2) to establish the result for Y, Y, in C[0, 1]. The proof is simple
and short, and is barely affected by the generalization which makes it impossible
to use the tightness argument. Thus the proof may be of interest even in cases
where other proofs are available. In such special cases it can be still simplified
and shortened, firstly because lesser generality requires fewer introductory ex-
planations and conventions and secondly because we separated the argument
into a part common for the uniform and Skorohod topology and other parts
specific to these two topologies.

2. Conditions for the vague convergence of Y, to Y.

2.1. Preliminaries. Throughout the paper X is a given set. A probability p
means a probability on a g-algebra 7 such that |J 2 = X. If pis a pro-
bability then / and ¢ denote the outer and inner measure generated by p. If f
is a real function on X then { fdy is the infimum of § 4 du taken over all & for
which § 4 dy is defined and & = f. Similarly we define { fdp. It is easy to see
that g4 = (y, dp, pAd = § y, dp for every A C X. -

We shall consider a pr5bability p and a net {p,» of probabilities. If £7is a
class of subsets of X we write

(1 PaSp on &
as an abbreviation for
() lim inf (p,)_.O = pO for every O in &

and we say in this case that {p,) converges vaguely to p on .

We start with the simple Lemma 2.2, which gives conditions under which
the class <7 for which p, = p on ¢ can be enlarged. This is followed by The-
orem 2.3 which shows that our concept of vague convergence agrees with that
of Dudley (1966). Lemma 2.6 will be used in considering both the uniform
and Skorohod topologies. In Definition 2.7 a concept of an almost simple pro-
bability p is introduced; it is a generalization of the property that p is concentrated
on a union of equicontinuous families. Theorem 2.8 is the main result concern-
ing the uniform topology and is followed by several remarks.

2.2. LEMMA. Suppose
p.Sp on &,
G C X and suppose that for every ¢ > 0 there is an O in 7 such that
1) PG —-0)<e, PO — G) < ¢ eventually.
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Then
@) PSP on ZU(G).
Proor. From Halmos (1950, Theorem 14.G) it follows that
(Pa)—G g (pa)—o - pa(o - G) ’
the subadditivity of p yields
PG = pO + p(G — 0)
and (2) follows easily from (1).

2.3. THEOREM. Suppose t is a topology for X, C(X) is the class of all real
bounded continuous functions on (X, t) and ¢ is the class of all exactly open sets
int,i.e. @ ={f(0, +00)]; fe C(X)}. Then

1) PeSp  on &

if and only if

2) diam {§ f dp,, { f dp., {f dp, § fdp} — 0
for every f e C(X).

If © is metrizable then & = t.

ProoF. Suppose (2) holds, O e, ¢ > 0. There is an f in C(X) such that
O = [0, +o0)] and then f, = (nf,) A 1arein C(X), f, 1 1o, § fudp > pO — ¢
for some n, since { - dp is continuous from below for nonnegative integrands
(see, e.g., Hewitt and Stromberg, 1969, the proof of Theorem II1.9.17). This
and (2) imply (1).

Suppose (1) holds, fe C(X). We may assume that f is into (0, 1). Let k be
a positive integer. Take F; = {x; f(x) = i/k} to obtain

1 1 1
x Zi":l)ﬂpi =f= * + * Zf=1XF,-'
The subadditivity of upper integrals and superadditivity of lower integrals
yield
- 1 1 _ 1
{fdp, < * + * 2t Pu(F)) * i p(Fy) = ifdP .

Since X — F, are in ¢ we obtain lim sup p, F; < pF, and

limsup § fdp, < § fdp.
This, applied to fand 1 — f, implies (2).
The last assertion, that = = 7 if r is metrizable, is easy.
The following will be assumed from now on:

2.4. AssUMPTION. (Z,d) is a metric space, T is a set, X C Z”.

2.5. Norarion. If T, C T then u, denotes the pseudometric for X defined by

Up (%, y) = sup {d(x,, y.); t € Ty}
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and 7, denotes the topology induced by u, if T, is finite. For T, infinite,
wp, = U {rr; T1 C Ty, T, finite} .

Note that the vague convergence on r, is the vague convergence of the finite
dimensional distributions (cf. Billingsley (1968, Section 5)).

If p is a pseudometric and ¢ > 0 then S,(x, ) denotes the open e-sphere around
x, with respect to p. We write S, to mean SuTO.

The topology 77 associated with u, is the topology of uniform convergence.
If T is given a topology, the family of all continuous functions on T into {Z, d)
will be denoted by C.

2.6. LEMMA. Suppose that p is a pseudometric for X, © the topology induced by
p. Suppose that for every ¢ > 0, T, is a finite subset of T, and C, is a subset of X
satisfying
nH Sr (% 1) N C,. C Sy(x,¢)

foranyn. > 0andall xeC,. Set T, = J{T,;e¢ > 0}. Suppose that Ip > n,,
Pa S p onap, and

(2) _Hce>1—e

for every ¢ > 0.
Then a sufficient condition for

(3) PaSp on

is that, for every ¢ > 0

“4) (Pa)-C. > 1 — ¢ eventually.
PrOOF. Let Ger, 0 > 0. Set

(5) Gy = {x; S,(x, ) C G}

and select ¢ such that 0 < ¢ < ¢ and

(6) Gy > pG — 4§ .

The set

(7) 0 = U {Sr(x: 1) x€ G, 0 C}

is in 7, and satisfies C, n O < G by (1) and (5). Thus

(8) G,nC.,cOCGU(X—C).

In particular, 0 — G ¢ X — C. and

) o —-Gy<a, PO — G) < 4, eventually.
On the other hand, by (2) and (6),

P(G) =25 < p(Go 1 C) < pO < p_(0 1 G) + p(O — G)
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and (9) implies that
p(0ONnG)=pG — 36.
Thus
(10) PG —0) < p(G) —p(ONG)< 3.
Lemma 2.2 applies now and yields (3).

2.7. DEFINITION. p (resp. {p,», resp. {p,», p) is called almost simple if for
every ¢ > O there is a finite cover .7, of T such that, with
1 D, = {x; x e X, diam x[4] < ¢ for every Ae .7},

p-D.>1—¢ (resp. (p)-D,>1 — ¢ eventually, resp. p_D, >1—¢ and
(Pa)-D. > 1 — ¢ eventually). In addition, if 7, is a subset of T which intersects
every A in |J {7; ¢ > 0} then we say that p (resp. {p,>, resp. p, {p,») is almost
simple with base T,.

2.8. THEOREM. Suppose p is almost simple with base T,,

(1) Zp D 7wy PaSp On Tp.
Then a necessary and sufficient condition for
2) Pa P on %

is that p, {p,) be almost simple with base T,.

Proor. Apply Lemma 2.6 with ¢ = %/, C, = D,,, 1, = ¢/3, T, afinite subset
of T, which intersects every 4 in .7, ;. We have T, D T, and thus Zp > .,
P pon g, and the sufficiency follows from the lemma. The necessity follows
since D, is in 77 and so if p_D, > 1 — ¢ then liminf(p,)_D, = pD, > 1 — e.

2.9. LEMMA.

(i) If T is a compact metric space, Zp D 7/, pC = 1 then p is almost simple.

(i) If po = p on mp, {p,y is almost simple and p is tight (i.e. to every ¢ > 0

there is a compact subset C, of (X, 7/ such that p_C, > 1 — ¢) then p is almost
simple.

(iii) If p is defined on the g-algebra generated by =,, {p,y is almost simple and

Pa S p On wy then p can be extended to a probability p such that p, {p,> is almost
simple.

PrOOF. Part (i): Let v be a compact metric for T. Every x in C is uniformly
continuous and C is the union of p-measurable sets 4, in 77 of all x in C for
which sup {d(x,, x,); v(s, 1) < 1/k} < e. From the compactness of T it follows
easily that p is almost simple.

Part (ii): Suppose ¢ > 0, .77, D, are as in the definition of almost simplicity
of {p,y. Form D, = {x; diam x[ 4] < 2¢ for every Ae.7"}. Then K, = C, —
D/ is compact in (X, Z/). The sets B, , = {x; d(x,, x,,) > ¢}, with {1, t;} C
Ae 7, are open and cover K,. Thus there is a union B of a finite number of
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such sets for which B 5 K,. Since BC X — D,, Ber,, we obtain pB <
liminf(p,)_B < ¢ and p_D,/ > 1 — 2¢. Thus p is almost simple with cover
T = ‘7:/2‘

Part (iii): Since {p,) is almost simple and p, = p on =, we obtain that there
are finite covers .77, of T satisfying

(1) pix;diam x[A4 N T,] < ¢ forevery Ae 7} =1—¢/2

for every finite subset T, of 7. It follows that (1) holds for every countable
subset of T.

The rest of the proof consists of extending p to describe a separable stochastic
process. To facilitate the notation let Y be a stochastic process with the pro-
bability distribution p. If 4isin 7 = |J{T ;¢ = 1,2, ...}, selectas, e 4.
The family of all random variables d(Y,, Y, ), t € A has a countable subfamily
with the same essential supremum, i.e., there is a countable subset T', of 4 such
that, for each r,

2) dy,, Y,) < sup {d(Y,, Y,);se€T,} a.e.

(This should be well known and is easy to establish by taking T, = {t,, t,, - - -}
for which E arctan (Vi d(Y,, Y,)) is maximized.)

For every t in 4 change the definition of Y, on a null set to obtain (2) every-
where, instead of almost everywhere, for every 4 in .77, Define p by pM =
P(Y-'[M]) for every M such that Y-[M] is P-measurable. Then p extends p
since the change did not affect the finite dimensional distributions of Y and,
for every et =1,2, ...,

P-{x, diam x[4] < ¢ forevery Ae .9} > 1 —¢

which shows that p is almost simple. Since the family of covers .77, can be
taken the same for p as for p,, we obtain the desired result.

2.10. REMARK. Suppose p is almost simple, p, = p on n,, Zp D rn, and
(T, v) is a compact metric space. Set w,(d) = sup {d(x,, x,); v(s, f) < 6}. Then
a sufficient (and necessary, if pC = 1) condition for

(1) PeSp  on %
is that for every ¢ > 0 there is a 6 > 0 such that

2) (Pa)-{x5w,(0) < e} > 1 — e eventually.

Indeed the sufficiency follows easily, since if the condition holds, one can find
finite covers .7, such that the corresponding sets D, contain the events in (2).
We then obtain the sufficiency from Theorem 2.8. The necessity follows since
the sets in (2) are in 7/ and their union, as 6 — 0, contains C.

The above result follows from Dudley’s Theorem 1 and Proposition 2 under
the additional assumptions that (Z, d) is the real line, X is the set of all bounded



1020 R. V. ERICKSON AND VACLAV FABIAN

functions on T, p is tight, and
3) Sp(x,e)e Dp n Dp, for every a,¢>0,xeX.

Our proof is not substantially affected by considering a metric space {Z, d)
instead of the real line. However, the original proof, using a tightness argu-
ment, cannot be successful in this generality. Indeed, suppose T is a singleton,
p a nontight probability, Zp > =, p, = p. Then p, — p on Z (trivially), but
{pay is not tight. On the other hand conditions of Theorem 2.8 are satisfied
with 7, = (T}, D, = X.

2.11. REMARK. Suppose p is almost simple, p, = p on n,, Dp D n,, (T, V)
is a compact metric space. Suppose (2.10.3) holds.
Then a sufficient (and necessary, if pC = 1) condition for

(1) PaSp on %
is that for every ¢ > 0, there is a 6 > 0 such that
(2 Podx; w,(0) < e} > 1 — ¢ eventually.

In view of Remark 2.10 it is enough to show that (2) is sufficient. To doso,
repeat the argument in Remark 2.10, observing that the sets D, are in Zp, n
=, because of (2.10.3) and (2) thus implies that p,D, = (p,)-D, > 1 —¢
eventually.

2.12. ReMARK. The standard definition of p, — p vaguely on 7/ is stronger
than ours in that it requires Zp, D %/, Zp D 7/ in addition to p, =, p on Z.
Of course, with Zp, D %, &Dp > Z/, the condition p, = p on Z/ can be
restated as

) lim inf p, O = pO for every OeZ .

There are frequent situations in which Zp, do not contain Z7. The standard
solution has been to find another topology, say &, such that Zp, > &, Zp o
& and (1) holds with 7/ replaced by &, In many cases this program works
with & the Skorohod topology (see Billingsley, 1968, Section 14). However,
the following question occurs: why, in selecting a smaller family than 7/, should
we limit ourselves to topologies, and not, e.g., to all sets O in 7/ which are
measurable? Or, more generally, why not replace p,, p in (1) by (p,)- and p?

It turns out that if T = [0, 1], Z is the real line, pC = 1 and p, — p vaguely
on .%~“in the standard sense, then, indeed, a stronger result holds, namely p, =
p on 7/ (see Remark 3.3).

The results by Dudley, and our preceding theorems, give necessary and suf-
ficient conditions to establish p, = p on Z. Thus they can be used to simplify
and strengthen all results concerning vague convergence, with respect to the
Skorohod topology, to a probability concentrated on C.
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3. Extension to the Skorohod metric.

3.1. AssumpTION. We assume now that 7 = [0, 1], D is the family of all
functions on T into {Z, dy which are right-continuous and have left-hand limits.
Define the Skorohod pseudometric ¢ for X = Z7, and the function w,’(d) as in
Billingsley (1968, Section 14), replacing the distance |x, — y,| by d(x,, y,,).
Denote by .&“the topology induced by o.

3.2. THEOREM. Suppose Assumption 3.1 holds, T, is a dense subset of [0, 1],
leTy, p,zponmn,, X< Dp, p(D)y=1. Fore>0,35>0let
D, ,={x;xeX,w/(0) < ¢}.
Then

1) PSP on &
if and only if to every e > 0 there exists a 6 > 0 such that
2) (Pa)-D.; > 1 — ¢ eventually.

ProoF. Suppose ¢ > 0. Extending Lemma 1 in Billingsley (1968, Section 14)
we obtain DN D, ;1 D as 6 »0. Also, D,,e.~. Select 6 in (0, ¢) such that
pD.,; >1—candset C,=D,, ,.

Take a finite subset T, of T, such that every point in T has distance §/5 or
less from T, 1e T,. We want to prove that (2.6.1) holds for p = g, 5, = ¢/4.
Thus let

3) xeC,yeSs(x,¢/4)nC,.

There are finite decompositions H,, H, of [0, 1) into intervals of form [a, b)
and length at least ¢ and such that

“) diam x[1] < ¢/4, diam y[J] < ¢/4
for all e H,, Je H,. Define H as the family of all nonempty intersections

InJwithle H,, Je H,. Consider a U in H.
If the length of U is greater than 4/5 then U intersects T, and from (3) and (4)

) Uy(x,y) < ge.

Suppose the length of U is d/5 or less, U = [b, ¢). Then there are [a, ¢), [b, d)
in H with lengths at least £0 and such that [a, ¢) C Ie€ H,, [b, dyc JeH, (or
the same holds with /e H,, J e H,; we will treat the first case only).

Take an increasing function 2 on [a, d] onto [a, d) which maps [a, ¢) onto
[a, b) and satisfies sup, |4t — | < /5, and At = t on [a, b — 9/5), [¢ + 9/5, d).
Since d(x,, y,,) < ¢/4 for a ¢, in [a, b) N T, and because diam x[[a, c)] < ¢/4,
diam y[[a, b)] < ¢/4, we obtain

(6) d(x, ya) < 3e
for all € [a, c). By a similar argument, we obtain that (6) holds for every ¢ in
[¢, d), thus for every ¢ in [a, d).
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Extend the definition of 2 by the same construction for all other U with the
length 9/5 or less, verify that this does not lead to any conflict, and complete
the definition by setting 2r = ¢ for + where 1 has not been yet defined. We
obtain then from (5) that (6) holds for all 7 in [0, 1] and

() p(x,y) = Ug(x,y 0 2) + sup [ar — 1] < <.

This shows that (2.6.1) is satisfied, if ¢ is sufficiently small.

If our condition holds, d can be chosen so that (2.6.4) is satisfied and by
Lemma 2.6 our condition is sufficient for (1). Its necessity follows since the
sets D, ; are in &7,

3.3. CoROLLARY. Suppose the assumptions of Theorem 3.2 hold, {Z, d is the
real line, 77  p and p(C) = 1.
Then

Q) pasp  on X
if and only if for every ¢ > O there is a 6 > 0 such that
(2) (Pa)-D.; > 1 —¢ eventually.

ProoF. In view of Theorem 3.2 and since 7/ O ./ it is enough to show that
under the present conditions p, = p on .~ implies (1).

The proof follows an argument which Billingsley (1968, Section 18) shows
to almost prove that under our conditions, p, = p on >/ implies lim inf p, 0 =
pO for every O e 77. For our definition of vague convergence, the proof goes
through without any difficulty. If F is a Z/-closed subset of X then the closure
F7 of Fin (X, &) is a subset of F U (X — C), since the restrictions of .-/ and
7/ to C concide (Billingsley 1968, Section 14). Thus

limsup p, F < p(F U (X — C)) = pF
and (1) holds.

3.4. ReMark. Under the assumptions of Corollary 3.3, both the conditions
in this Corollary and the condition in Remark 2.10 are necessary and sufficient
for p, =, p on 7/, but relation (3.3.2) is easier to verify (with D, , as in Theorem
3.2) than (2.10.1).
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